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Abstract. The rapid rotation of planets causes cyclonic ther-dynamic Reynolds number estimated on the west-drift ve-
mal turbulence in their cores which may generate the largelocity is Re~10°. In addition, planets are rapidly rotating
scale magnetic fields observed outside the planets. We invegodies. Thus, the time scale of the large-scale convection
tigate numerically a model based on the geodynamo equain the Earth’s core is~10° years, during which the planet
tions in simplified geometry, which enables us to reproduceitself makes~10° revolutions (in other words, the Rossby
the main features of small-scale geostrophic flows in physicahumber Ro~10-9). As a result, there is an additional spatial
and wave vector spaces. We find fluxes of kinetic and magscale~E~3 L, whereL is a large scaleg ~101° is the
netic energy as a function of the wave number and demonEkman numberChandrasekharl961;, Busse 1970, asso-
strate the co-existence of forward and inverse cascades. Waated with the cyclonic structures elongated along the axis
also explain the mechanism of magnetic field saturation abf rotation, which is much larger than Kolmogorov’s dissipa-
the end of the kinematic dynamo regime. tion scale,~ Re~#/3 L, but, however, is still too small to be
resolved in the numerical simulations with the present reso-
lution I~(1073+10"2)L.
1 Introduction The presence of rapid rotation leads not only to a change
from the spatially uniform, isotropic, Kolmogorov-like so-
Many astrophysical objects such as galaxies, stars, the Earthition to the quasi-geostrophic (magnetostrophic) form, but
and some planets have large-scale magnetic fields that at@ rather more fundamental consequences. The rapid rota-
believed to be generated by a common universal mechanisifion leads to the degeneration of the third dimension (along
— the conversion of kinetic energy into magnetic energy in athe axis of rotation) and can cause an inverse cascade in the
turbulent rotating shell. The details, however, and thus theSystem. Inverse cascades are a well-known phenomenon in
nature of the resulting field, differ greatly. The challenge for two-dimensional turbulence and are a good example of self-
the dynamo theory, see, e.gigllerbach and Rdiger(2004), organization when the large-scale structures are fed by small-
is to provide a model that can explain the visible featuresscale turbulencefisch et al. 1975 Kraichnan and Mont-
of the field with realistic assumptions of the model param-gomery 198Q Tabeling 2002, see also review of the re-
eters. Calculations for an entire planet are done using eicent results irAlexakis (2007); Verma(2004. As the quasi-
ther spectral modeld&ono and Robert2002 finite-volume ~ geostrophy is an intermediate state between two-dimensional
methods Hejda and ReshetnyaR004 Harden and Hansen and three-dimensional flows, the quasi-geostrophic turbu-
2003 or finite differences Kageyama and Satd_ggn and lence may exhibit SimUltaneOUSly features similar to both the
have demonstrated beyond reasonable doubt that the turb@xtreme cases: 2-D and 3'DBelow we consider the be-
lent 3-D convection of the conductive fluid can generate ahavior of the energy fluxes in the wave space for regimes
large-scale magnetic field similar to the one associated witfPased on the Boussinesque thermal convection. For simplic-
small random fluctuations. However, both of these meth-ity we consider the Cartesian geometry, which is simpler for
ods cannot cover the enormous span of scales required fdhe modeling of rapidly rotating dynamo systems and was
a realistic parameter set. Even for the geodynamo (whict#sed in many geodynamo research projeRisblerts 1999
is quite a modest case on the astrophysical scale) the hydrelones and Robert2800Q Buffett, 2003.

1As the magnetic field generation is a three-dimensional pro-
Correspondence td’s/l.. Reshetnyak cess, see, e.gZeldovich et al(1983, existence of the third dimen-
BY (m.reshetnyak@gmail.com) sion in the full dynamo problem is crucial.
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2 Dynamo equations
2.1 Equations in physical space

The geodynamo equations for an incompressible fluid
(V-v=0) in a layer of the height L rotating with angular ve-
locity 2 in the Cartesian system of coordinates y, z) in

its traditional dimensionless form can be expressed as fol-

lows:
oB _

Vv
EPrl |:§+(V-V)Vi| =-VP—1 xV+
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Velocity V, magnetic fieldB, pressureP and the typical

diffusion timer are measured in units af/L, /2Qxk up;,
pk2/L2 and L2/k, respectively, where is the thermal dif-

fusivity, p is the density,u the permeability, P s
Vv

1AB
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V
the Prandtl numbeis =—— is the Ekman numben, is
E=2arz i

the kinematic viscosityy is the magnetic diffusivity, and

STL
O=«/n is the Roberts number. Rﬁago— is the mod-

ified Rayleigh numberg is the coefﬁcieﬁt of volume ex-
pansion,sT is the unit of temperature, for more details
see Jones 2000 , go is the gravitational acceleration, and
To=1—z is the heating from below. The problem is closed
with periodical boundary conditions in the, y) plane. In
the z-direction, we use simplified condition€éttaneo et

IV, 3V dB
al, 2003: 7=0, V,=—=—2>=0, B,=By,=——=0 at
9z 0z
z=0, 1.

0z

2.2 Equations in wave space

To solve problem Eq.1) we apply the pseudo-spectral ap-
proach Qrszag 1971 frequently used in geodynamo simu-
lations Jones and Robert200Q Buffett, 2003. The equa-

tions are solved in the wave space. To calculate the non-
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F [ 1 (3)
r=|Pr-Vx(VxV)+Rarl,—

1, x V—i—(B'V)B]k.
For integration in time we use the explicit Adams-Bashforth

(AB2) scheme for non-linear terms. The linear terms are
treated using the Crank-Nicolson (CN) scheme. To resolve
the diffusion terms we use the well-known trick which helps

to increase the time step significantly. Consider equation

0A
-t kKA = U. (4)
Alter it to read
K2yt
3A; Ao 5)
t

and then apply the CN scheme.

The most time-consuming part of our MPI code are the
Fast Fourier transforms. To make our code more efficient we
use various modifications of known FFT algorithms, which
take into account special kinds of symmetry of the fields. The
optimal number of processors for the grids 128 n~50.

The scalability tests demonstrated even the presence of su-
peracceleration if the number of processars

3 Basic properties of the fields

We consider simulations without rotation similar to
Meneguzzi and Pouqugi989 and with rotation for two
regimes with different amplitudes of the heat sources:

NR: Regime without rotation (the Coriolis term is dropp&d)

Ra=6.10°, Pr=1,E=1,4=10, Re~2.5.1C°.

R1: Regime with rotation, Re:1.3-10°, Pr=1, E=2-10"6,
=10, Re~1.6:10°.

linear terms one needs to make the inverse Fourier transeg,.

form, then calculate the product in physical space, make th
Fourier transform of the product, and finally calculate the

R2: Regime with rotation, Ra:2.1-10°, Pr=1, E=2-10"5,
€ g=10, Re~3.1C°.

derivatives in wave space. After eliminating the pressure us- The first (NR) regime is close to the typical Kolmogorov

ing the divergence-free conditignV =0, k-B=0, we arrive
at:

|:8B

—+ qlsz}
Vv

E [Pr—1 — 4+ sz} = kPy + Fy
at .

=[V x(V x B)];

ot &

(2)
T:| =—[(V-WT+V]x
k
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convection; for more details sddeneguzzi and Pouquet
(1989. Inclusion of rotation (regime R1, Figs. 1-5) leads
to the transform of the isotropic convective structures to the
cyclonic state with the horizontal scateg3 (k.~ E~1/3)
(Chandrasekhafd 961). Inclusion of the magnetic field (the
full dynamo regime with magnetic energy comparable with

2As there is no rotation, Ra ar@l do not retain their physical
meaning defined in Sect. 2.1. More details on parametrization of
non-rotational magnetoconvection can be foun#leneguzzi and
Pouque(1989.
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Fig. 1. Regime R1. Sections of temperature distribution. All sections correspond to the middle of the cube. The field rafgés areft,
(0.46, 0.54) —right.

Fig. 2. Distribution of theV,.-component of the velocity field with rangés248, 253), (—143 144).

the kinetic energy in order of magnitude) does not change théo NR with the spectrum law-k—>/3, Fig. 5. However, we

structure of the convective patterns very mudbnes2000. emphasize that the information on the spectra is not enough
At the same time, the spectra of magnetic energy are quitéo judge, if the role of rotation is negligible or not, and addi-
different and have no well-pronounced maximunk at tional analysis is needed. The argument is as follows: rota-

tion leads to the degeneration of the third dimension (along
The increase of the Rayleigh number leads to the decreasthe z-axis) Batchelor 1953. On the other hand, in isotropic
of the relative role of rotation and should decrease the peakwo-dimensional systems, the spectrum of the kinetic energy
of the kinetic spectra energy, which is in accordance with thealso has a-5/3-slope, but the direction of the energy trans-
spectra for regime R2, Fig. 5. In principle, a further increasefer at the large scales is inverse (there is also a direct cascade
of Ra should lead to the original Kolmogorov state, similar
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Fig. 4. Distribution of theB,-component of the magnetic field with rangesl.44, 1.14), (—1.88, 2.37)

of the enstrophy at the small scales with-3-slope). Asthe 4 Energy fluxes

quasi-geostrophic turbulence inherits the properties of both

systems, 2-D and 3-DHpssain 1994 Constantin 2002, To analyze the energy transfer in the wave space, we follow
we will consider the behavior of the energy fluxes in wave Frisch(1999. Let us decompose the physical fiefdinto
space more carefully. a sum of low-frequency and high-frequency counterparts:

fr)=f<@)+f> (), where
f<(r) — Z fAkeikr, f>(r) — Z ﬁeikr_ (6)

[k|<K |k|>K
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Fig. 5. On the left is the spectrum of the kinetic energy for NR (red), R1 (green), R2 (blue). On the right is the spectrum of the magnetic
energy. The straight line corresponds to Kolmogorov's spectrm®/3.

For any periodical functiong andg one has the relation wherek=|k|, Tk (k) is the kinetic energy flux from harmon-

(Frisch 1995: ics with differentk, F (k) is the work of external forces and
, D(k)=—k?Ex (k) is a dissipation. The accurate form Bbf
< o ~=0, <% __o reads:
dx d o
(7 g
af og > <20 Tx = ——r / Tk (k) dk = 0,
<g£>_—<fa>, < f7g°>=0, J (13)
allyy, Jallg
where Ty = TR L=
< f(r) >= VA/ @) dr ®) We introduce advective fluky =T,,+T;, with zero average:
Y oo
stands for averaging of over volume). Multiplying the / Ty (k) dk = 0. (14)

Navier-Stokes equation by = and the induction equation by +=0

B~ leads to the equations of the integral fluxes of the kinetic,:igur,a 6 shows the fluxes of kinetitx and magneticy,
2 : 2 : : _ . :
Exg=V</2 and magneti&y=B</2 energies fromk=K 10 gpergjes for the regimes mentioned above. Regime NR

k<K: for Tx demonstrates the well-known behavior for the di-
Mx(K) =< (V X rotV) - V< >, rect Kolmogorov's cascade in 3-D. For large scéllgs<0,
9) these scales are donors and provide energy to the system.

My (K) =< rot(V x B)- B< > On the other hand, the harmonics with the latgabsorb

energy. The two-dimensional turbulence exhibits mirror-
and for the flux of the Lorentz work: symmetrical behavior relative to the axis of the absciss

- (Kraichnan and Montgomeyy1980. In this case the energy

[y (K)=< (rotB x B) - V= > . (10)  cascade is inverse.

Rotation essentially changes the behavior of the fluxes of
kinetic energy. The leading order wave numbek s For
k>k. we also observe the direct cascade of endfgy0.

The maximum ofTk is shifted relative to the maximum of
the energy to large; the more Re, the stronger the shift. For
k<k., the behavior is more complex: for sméajlthe inverse
cascade of kinetic energy takes plagg,>0. On the other
hand, for the larger region @f (0. . . k.) we still have the di-
JEk (k) rect cascad@x <0. The increase of Re leads to the narrow-
Ik (k) + F (k) + D(k), (12)  ing of the region with the inverse cascade and to the increase

Here subscript&, M andL correspond to kinetic, magnetic
and Lorentz fluxes. Introducing
ol (k)
ok
where we changed to &, leads to the obvious relation for
Ex in k-space:

Tk (k) = (11)
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Fig. 6. Normalized fluxes of kineti@x (on the left) and magnetity, (on the right) energies in wave space: NR (red), R1 (green), R2 (blue).
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Fig. 7. Normalized fluxes of the generation tera¥;, (on the left) and advective Ty (on the right) terms in wave space: NR (red), R1
(green), R2 (blue).

of the inverse flux. One may suggest that the change of thd /k: rm=2>1 and that for the planetgs>v. At the same
sign of flux Tx atk <k, is connected with the appearance of k
the non-local energy transfer: so that the energy to the large
scalesk; comes from modegka|~|k3|>> k1|, ki=ko+k3
(Waleffe, 1992). In the absence of the magnetic field the
maximum ofTx (k=1) appears. Hence, in the case of rota- Now we examine the origin of the magnetic energy on
tion, two cascades of kinetic energy (direct and inverse) takescale ¥ k: Is it connected with the energy transfer from the
place simultaneously. other scales or is it a product of real generation on this scale?

Now we consider the magnetic part. In contrastfie, Figure 7 demonstrates the fluxes-ef; concerned with
Ty includes not only the advective term, but also the gener{,gnetic field generation. The maximum of the generation
ative term. This leads to integra@l, being positive over all

_ -~ V term without rotation is on a large scale, while for the ro-
k. Moreover, Ty is positive for anyk. The position of the  (54ing system it is at-1/k,. Interestingly, for the rotating
maximum ofTy, is close to those in the spectra®f;, Tk.

system there is a regionT; <O for largek, where the mag-

It is evident that, for planetary cores, the distance be-netic field reinforces convection. For regime NRI; drops
tween the maxima in fluxeg,, for NR and R1, R2 can be quickly because of the kinetic energy decrease (Fig. 5). As
quite large, however, not as largefas This statement con- a result we have: for the rotating system, the magnetic field
cerns the condition on magnetic field generation, which holdss produced by the cyclones, while the large-scale dynamo
when the local magnetic Reynolds numhgerl on the scale  operates for the non-rotating system.

7]
moment, the fluxes with small are small, i.e., the system
is in a state of statistical equilibrium: dissipation on small
scales is negligible.
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. T .
—T., Ty: for all three cases it holds th%tTi“~10‘1, i.e.,
L
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Note that the full magnetic fluXy, (Fig. 6) is localized at ' ‘ . L . )
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k>>1. For the non-rotating system, this is because the mean Fluid Mech., 4. 441-460 , 1970.
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