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Abstract. Due to the chaotic nature of atmospheric dynam-
ics, numerical weather prediction systems are sensitive to er-
rors in the initial conditions. To estimate the forecast un-
certainty, forecast centres produce ensemble forecasts based
on perturbed initial conditions. How to optimally perturb
the initial conditions remains an open question and different
methods are in use. One is the singular vector (SV) method,
adapted by ECMWF, and another is the breeding vector (BV)
method (previously used by NCEP). In this study we com-
pare the two methods with a modified version of breeding
vectors in a low-order dynamical system (Lorenz-63). We
calculate the Empirical Orthogonal Functions (EOF) of the
subspace spanned by the breeding vectors to obtain an or-
thogonal set of initial perturbations for the model. We will
also use Normal Mode perturbations. Evaluating the results,
we focus on the fastest growth of a perturbation. The re-
sults show a large improvement for the BV-EOF perturba-
tions compared to the non-orthogonalised BV. The BV-EOF
technique also shows a larger perturbation growth than the
SVs of this system, except for short time-scales. The highest
growth rate is found for the second BV-EOF for the long-
time scale. The differences between orthogonal and non-
orthogonal breeding vectors are also investigated using the
ECMWF IFS-model. These results confirm the results from
the Loernz-63 model regarding the dependency on orthogo-
nalisation.

1 Introduction

Both initial state errors and model errors are undesirable but
inevitable features of any numerical weather prediction sys-
tem. To estimate the error growth, forecast centres produce
ensemble forecasts. An ensemble forecast is composed of
a number of simulations (ensemble members), with differ-
ent initial states and/or model formulations. The differences
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in initial states and model formulations are designed to es-
timate the respective uncertainties. For the initial-state per-
turbations, several characteristics are desirable. One of them
is that the perturbations are realistic in the sense that they
represent possible atmospheric perturbations consistent with
uncertainties in the observed properties of the atmosphere.
Another desirable feature is to capture the fastest growing
modes out of these that are both realistic and compatible with
the uncertainty. Perturbation growth will be the focus for this
study.

The initial error growth is approximately exponential but
as the error grows the growth rate declines, and after about
two weeks the error saturates. Both error saturation and
the chaotic dynamics of the atmosphere can be associated
with the nonlinear nature of the equations governing atmo-
spheric dynamics. In this study we will compare several
techniques that can be used to construct initial state pertur-
bations. The methods will be applied to a simplified model
(Lorenz, 1963) that has error growth characteristics similar
to those of the real atmosphere. The properties found in the
simplified Lorenz-63 are used to design experiments with a
comprehensive weather prediction system, the ECMWF IFS-
model.

A purely stochastic perturbation is very likely to decrease
in time as most phase space directions in atmospheric models
will produce gravity-wave-like motion that will die out rather
quickly in a forecast integration. Other types of perturbations
that grow quickly on a time scale of a few days may instead
be associated with particular model balances that only rarely,
if ever, are observed. Perturbing a forecast model in this way
will result in rapidly growing perturbations but the resulting
error growth may not properly represent the real uncertainty
of the observations.

Several methods have been proposed for representing ini-
tial state uncertainty. One is the singular-vector technique
(Lorenz, 1965; Palmer, 1993), designed to achieve maximum
perturbation growth rate on a time scale of a few days. An-
other method is breeding (Toth and Kalnay, 1993), designed
to allow perturbations to represent atmospherically realistic
structures. The breeding method uses forward integrations of
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model dynamics to generate perturbations while the singular
vector method utilises a mathematical technique that opti-
mises perturbation growth over a given time interval. Pertur-
bations constructed by the singular vector method could give
rise to structures rarely observed in the atmosphere (Isaksen
et al., 2005).

In this study we will focus on the growth of small initial-
state differences in a very simple model. The model used
is the Lorenz-63 model (Lorenz, 1963). Numerous studies
have been made using this system during the past decades,
e.g.Smith et al.(1999), Palmer(1993) andAnderson(1996).
In Palmer(1993) the predictability of the Lorenz-63 model
is investigated, and it is found that the predictability differs
significantly between different parts on the attractor. InAn-
derson(1996) different ensemble methods are compared on
the Lorenz-63 model.

When there is more than one perturbed forecast, the or-
thogonality of the perturbations is important for finding the
fastest growing perturbations, especially in a low-order sys-
tem. For breeding vectors this is discussed byAnnan(2004).
He found that by using 2 orthogonal breeding vectors it was
possible to capture the fastest-growing perturbations more ef-
fectively. We will extend his study and use orthogonal BV to
see how effectively the fastest growing modes are captured
compared to singular vectors. In the present study we use the
empirical orthogonal functions (EOF) of a set of breeding
vectors as initial perturbations.

The BV-EOF and singular vector methods are compared
with random perturbations and also other constrained meth-
ods (normal mode and the original, non-orthogonalised,
breeding method). Here, the definition of a constrained
method is that it only samples some subspace of the complete
model phase space (Anderson, 1997). The growth of per-
turbations generated by the different methods is compared.
In addition to the Lorenz-63 model, we use the numerical
weather prediction model used by ECMWF, to further in-
vestigate some properties found in the simple system. Some
fundamental conclusions concerning the methods are made
which are believed to be of relevance for full-scale NWP sys-
tems.

2 The Lorenz-63 model

The chaotic model used here, first introduced byLorenz
(1963), is a simplified model based on convective dynam-
ics, and has been widely used in chaos research. The model
equations are:

ẋ = σ(y − x), (1)

ẏ = rx − y − xz, (2)

ż = xy − bz. (3)

The system is 3-dimensional, non-linear and has a chaotic
behaviour for the widely used parameter valuesσ=10,r=28
and b=8/3 (also used in this paper). The attractor of the

system is a quasi-2-dimensional (fractal dimension about
2.05) structure with the famous “butterfly-wings” shape. (Al-
though the dimension>2 it consists of fairly well-defined
planes in the “wings”.) The system has 3 fixed points. The
origin is a saddle point with one strongly unstable direction.
The centres of the wings are weakly unstable spirals in the
attractor plane and stable in the direction orthogonal to the
attractor plane. Two time-scales appear in the system. One
describes the rotation around the centre of a wing and the
second the residence time within one of the butterfly wings
(Palmer, 1993). The short time scale is around 0.75 time
unit (tu). The long time scale is influenced by the chaotic
behaviour of the system and can be defined in a statistical
sense. It is around 1.8 tu.

The system of Eqs. (1–3) can be formulated as

ẋ = F(x). (4)

The growth of a perturbation (1x=x−x0) can be studied by
linearisation of the system around a point at timet :

1ẋ = F (x(t)) − F (x0(t)) ∼= J (t) · 1x, (5)

where

J (t) =
∂F

∂x
|x=x0(t). (6)

The eigenvalues of the JacobianJ in Eq. (6) gives infor-
mation about the evolution of the perturbations. If the real
part of an eigenvalue is positive (negative), the perturbation
is growing (decreasing) in the direction of the corresponding
eigenvector. Because of the dimensionality of the system,
J has the three eigenvalues (in arbitrary order)e1=a1+ib1,
e2=a2+ib2, e3=a3+ib3. Even though the system is chaotic,
the real parts of all three eigenvalues are negative in some
points (an<0 for all n). As the Lorenz-63 system is dissi-
pative,a1+a2+a3<0 for all points (Lorenz, 1963). The dif-
ferences in growth rate of perturbations differs widely as a
function of location on the attractor as illustrated in Fig. 3
in Evans et al.(2004). Especially in the intersection of the
butterfly wings the perturbation growth rate is high.

3 Constrained methods

The aim of this study is to find the perturbation that best
approximates the local, fastest growing mode. The eigen-
value structure and its changes along the attractor trajecto-
ries are important for the constrained perturbations, but in
different ways. The normal mode perturbations are directly
constructed from the eigenvalue structure in the initialisation
point. Breeding vectors use the dynamics from the previous
simulation and are therefore sensitive to changes in the eigen-
value structure (the dynamics of the system) preceding the
new initialisation of the ensemble. Singular vectors use the
J matrix along the unperturbed trajectory forward in time.
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3.1 Normal modes (NM)

The normal-mode method identifies the fastest growing
eigenmode for the initial point by (as discussed in Sect.2)
using the eigenvalues of the Jacobian of the system:

J v = λv. (7)

By calculating the eigenvector for the largest positive eigen-
value, the direction of the fastest growing eigenmode of the
instantaneous Jacobian is found.

If the dominating eigenvalue is complex the fastest grow-
ing eigenmode lies in a plane spanned by vectors constructed
by the real part and the imaginary part of the conjugated
eigenvectors (equivalent with the plane spanned by the 2
complex-conjugate eigenvectors). In this case we randomise
the perturbations in that plane.

3.2 Singular vectors (SV)

To calculate the relative growth of a perturbation, the ratio
between the amplitudes of the initial and the final perturba-
tion can be calculated:

α =
〈1x(t), 1x(t)〉

〈1x(t0), 1x(t0)〉
. (8)

were 〈, 〉 defines the inner product. If the linear evolution
of the system is written in the form1x(t)=M(t, t0)1x(t0),
Eq. (8) can be written as

α =
〈M(t, t0)1x(t0),M(t, t0)1x(t0)〉

〈1x(t0), 1x(t0)〉
=

1xTMTM1x

1xT 1x
. (9)

Given a norm and optimisation timet the problem of finding
the spatial directions of fastest growing modes can be solved
by determining the eigenvalues and eigenvectors ofMT M.
These are the singular values and the singular vectors of the
system (Palmer, 1999). The propagatorM(t, t0), referred to
as the tangent linear model (TLM), is determined by using
a basic, unperturbed, trajectory of the system. Therefore the
singular vector method is limited to sufficiently small per-
turbations. If the perturbations grow larger the evolution of
the perturbations determined by the TLM and the non-linear
model will differ (Mu et al., 2003). The first approach to
the singular vector method comes fromLorenz(1965). The
method is described by e.g.Palmer(1993) and used opera-
tionally at ECMWF.

3.3 Breeding vectors (BV)

Another method used in NWP is the breeding method (Toth
and Kalnay, 1993, 1997). The method was used opera-
tionally at NCEP until May 2006. The difference between
a perturbed and the unperturbed simulation is re-scaled to a
small amplitude at certain times during the integration and
added to a new analysis. By starting with different initial
conditions additional breeding vectors can be constructed.

From the beginning the initial perturbations are randomly
chosen (but as a difference between two realistic atmospheric
states), but after a few cycles the breeding vectors converge
to the dominant Lyapunov vector, especially in a low order
system as Lorenz-63. Hence, the different breeding vectors
tend to become linearly dependent.

3.4 BV-EOF

To avoid the problem that breeding vectors are linearly de-
pendent, computations of an orthogonal complement to the
dominant Lyapunov vector is needed. In for exampleAnder-
son(1996) andAnnan(2004) this is done by a Gram-Schmidt
orthogonalisation method. In this paper we will use another,
more generalizable, method where the orthogonal comple-
ment is given by the EOF of the breeding vectors.

Define a matrix whose columns are the breeding vectors,

B = [x1 − xc, x2 − xc, ..., xk − xc] , (10)

wherexi is the state vector for the i-th perturbed forecast of
a k-member ensemble forecast andxc is the state vector for
the unperturbed forecast. The covariance matrix is formed as
BT B. The eigenvectors ofBT B are the Empirical Orthogonal
Functions (EOFs) of the local breeding vector subspace, and
the eigenvalues describe the variance in the direction of the
EOFs. We will use the EOFs of the covariance matrix as the
new ensemble perturbations, by normalising the EOFs with
the square root of the corresponding eigenvalue (variance),
yielding equal initial amplitude for all EOFs. These are here-
after added to the unperturbed forecast. This method will be
referred to as BV-EOF in this study. The method scales up
additional growing modes in the system, which can be in an
early stage of their development.

Operationally, a similar orthogonalisation technique as
BV-EOF is used for Ensemble Transform Kalman Filter
(Wang and Bishop, 2003). But in the literature the focus has
been on the norms used (observation space for ETKF) for the
normalisation and not on the properties of the orthogonalisa-
tion. Since May 2006 NCEP uses a transformation (ET) of
breeding vectors (Wei et al., 2008) as initial perturbations for
their ensemble forecasting system. The method is similar to
ETKF but yields an orthogonal set of initial perturbations in
the inverse analysis error variance norm. The properties we
will find regarding othogonality of the BV-EOF technique
apply to the ET method as well as ETKF unless the simplex
transformation (Wang et al., 2004) for centering the ensem-
ble around the analysis is used.

3.5 Norm dependence

In order to calculate both SV and BV-EOF one needs to de-
fine a norm and an associated scalar product. The result-
ing ensemble members are orthogonal in this scalar product,
which is an advantage of these methods. By contrast, the BV
method, which is norm independent, tends to generate almost
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linearly dependent ensemble members, as will be seen below.
However, the norm dependence of SV and BV-EOF can also
be considered as a weakness, since it introduces an arbitrary
element in their definition.

In the ECMWF ensemble prediction system an energy
norm is used, mainly for practical reasons.Barkmeijer et al.
(1999) propose using the Hessian of the cost function (the
inverse of the analysis error covariance matrix) to define
a norm for the initial perturbation (i.e. the denominator in
Eq. 8) that reflects the actual uncertainty. A recent compar-
ison (Lawrence et al., 2007) between energy norm and the
Hessian norm for singular vector calculations indicates that
they generate similar singular vectors.

The norm dependence of the singular vectors has also re-
cently been discussed byKuang(2004).

Notice that it is necessary to define a norm in order to mea-
sure the magnitude of the perturbation (or the error) when
evaluating the performance of an ensemble, even if no norm
is used when constructing the ensemble members. For the
Lorenz-63 model we will simply use the Euclidean norm,
both when evaluating the ensembles and when constructing
the SV and BV-EOF ensembles. The perturbation size for
the ECMWF NWP-model results is measured using the total
energy norm (Magnusson et al., 2008).

4 Initialisation

We create ensemble members by different methods, both
unconstrained (Random Perturbations, RP) and constrained
(NM, SV, BV and BV-EOF) in order to compare them. All
perturbations initially have the same scalar distance from the
unperturbed forecast (centre member). The norm used to cal-
culate the differences between the simulations is

||x|| = 〈x, x〉
1
2 =

√
x2

1 + x2
2 + x2

3. (11)

The reason why a simple isotropic norm is used is that the
aim of the present study is to find the direction for the fastest
growing perturbation of the system, not to sample an error
distribution.

The random perturbations are randomly distributed on a
spherical shell around the centre member with no preferred
directions.

For the SV-method the first two singular vectors are used
as perturbations, and for the BV-EOF the two first EOFs. It
is a disadvantage of this study that two directions in a 3-
dimensional system are used but this is needed to study the
improvements obtained through the orthogonalisation. An
ordinary (not orthogonal) breeding system (BV) is also used
to make it possible to measure the impact of the orthogonali-
sation. The cycles for BV and BV-EOF are started from two
random perturbations for the very first step.

Perturbations are also made using the normal mode
method (NM) whereby the eigenvectors and eigenvalues of

J are calculated and the eigenvector corresponding to the
largest eigenvalue is used as a perturbation. In the case when
these are complex-conjugate, the perturbation is placed ran-
domly in the circle spanned by the real and imaginary part of
the eigenvector. This circle is a cross-section of the spherical
shell used for the random perturbations.

For time stepping of the Lorenz-63 model we use Heun’s
numerical method (Kalnay, 2003). The time step used is
0.01 tu. To let the first initial point of the study be located on
the attractor, the model is integrated 3000 steps before the en-
semble is initiated. The initial state for each ensemble mem-
ber is determined using the different perturbation methods
described above. The length of the perturbation is prescribed
as 0.01 length units, which is around 0.05% of the size of
the attractor. The choice of the perturbation length is made
following the conclusions fromTrevisan(1993).

The system is integrated forward in time for each initial
state. After a given time interval, the system is restarted with
new perturbations for the new initial point. Previous studies
have used different restarting intervals, e.g.Annan (2004)
used 0.1 tu andAnderson(1997) 1 tu. In our study we use
both 0.1 tu and 1 tu as intervals (cycle length) for the rescal-
ing, to study how the behaviour of the perturbation depends
on the integration length. Those time scales can be compared
with the time for the error to saturate on the attractor, which
is around 6 tu (Trevisan, 1993). As mentioned above the ro-
tation period in a wing is around 0.75 tu and the residence
time within one of the attractor wings around 1.8 tu. Because
the long time-scale is of the same order as the residence time,
it is likely that the trajectories pass locations on the attractor
with large perturbation growth rate during the long restart in-
terval. We believe that this in practice limits the time interval
during which the TLM is valid in the SV calculation.

In our study we focus on perturbation growth. We are
not studying the behaviour of the ensemble in terms of skill
scores. Therefore we are not using a centred ensemble and
no attempt is made to simulate an analysis error. We thus
differ from Anderson(1997) who, to simulate the analysis
error, also moves the centre of the ensemble away from a
“true point” that simulates the actual atmospheric trajectory.
This disturbance is made at random, thus moving the initial
state away from the attractor of the system. We instead fol-
low the trajectory on the attractor, thus assuming that each
analysis coincides with the simulated “true state”. The re-
sults are however relevant to the analysis error problem as
they show which characteristic structures that grow quickest.

5 Results

5.1 Perturbation evolution

Figures1 (0.1 tu) and2 (1 tu) show the time evolution of the
difference between the perturbed simulation and the central
forecast trajectory. In these figures, 2 perturbations of SV,
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Fig. 1. Evolution of the difference between the central member
and perturbed members, for 7 equally spread initial points taken
along a trajectory. Rescaled every 0.1 tu. BV (black, dashed),
RP (light-grey, solid),NM (grey, solid), first SV (dark-grey, thick
dash-dotted), second SV (dark-grey, thin dash-dotted), first BV-
EOF (black, thick solid), second BV-EOF(black, thin solid).

BV and BV-EPS are plotted and simulations of 50 random
perturbations. For NM 50 perturbations are plotted if the
initial point yields a non-zero imaginary part of the largest
eigenvalue, otherwise 1 perturbation is plotted. Note that the
difference is plotted on a logarithmic scale.

Figure1 shows 7 cycles with short restart intervals (0.1 tu).
This is an example of a trajectory first passing close to the
origin of the attractor, going out in the end of a wing and fi-
nally falling into the centre of the other wing. First looking
at the unconstrained method (RP), we see that the difference
between the central and the perturbed simulation, in many
cases, rapidly decreases. This occurs in cases when the ini-
tial perturbation has a large component away from the attrac-
tor. But the RP also gives us information about the largest
possible perturbation growth. E.g. between 0.75 and 0.85 tu
the system is stable and it is impossible to find a growing
direction.

As mentioned in Sect.4 the NM perturbations are depen-
dent on the eigenvalue structure. For cycle 1 and 4 there is
one leading direction, and only one member is used. For
the other cycles, the leading direction is confined to a plane
and then 50 perturbations are used on that plane. The NM
method shows a large improvement compared to RP, espe-
cially when the NM perturbations are distributed on a plane.
This improvement indicates that using the information about
the leading eigenvectors is a useful method for creating per-
turbations located close to the attractor of the system.

For the SV method, the first SV is optimised to find the
fastest growing direction for the optimisation time. We see
that the method performs perfectly in all the cycles.
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Fig. 2. Same as Fig.1 but rescaled every 1 tu.

Figure2 shows the same kind of plot as above but for a
longer time scale. The most obvious result is that the second
BV-EOF performs best in almost all the cycles shown here.
For the SV method the second SV seems to perform as well
as the first, which indicates that the time scale is too long
to make the approximation using TLM valid. The breed-
ing method is unable to find the fastest growing direction of
the system. One explanation is that both breeding vectors
have become linearly dependent so that only one direction in
phase space is spanned.

5.2 Perturbation growth rate

In order to obtain reliable statistics of the perturbation
growth, we have run 5000 simulations and calculated the per-
turbation growth.

For a chaotic system with exponential perturbation growth
rate, the perturbation size at timet+1t is

||1x(t + 1t)|| = ||1x(t)|| exp(λ1t) (12)

The instantaneous exponential growth rate (the slope of
the curves in Figs.1 and2) can be calculated as:

λ =
1

1t
ln

(
||1x(t + 1t)||

||1x(t)||

)
(13)

and letting1t go to zero. The instantaneous growth rate can
vary significantly for different parts of the attractor as seen in
the previous figures and also discussed in e.g.Palmer(1993).
By instead letting1t in Eq. (13) go to infinity and letting
1x(t) go to zero the dominant Lyapunov exponent can be
calculated. If the dominant Lyapunov exponent is greater
than zero, the system is chaotic (Strogatz, 2000).

As described in Sect.3.3, breeding vectors are an ex-
tension of the Lyapunov concept where1t (breeding cycle
length) and||1x|| (initial perturbation amplitude) are finite.
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Fig. 3. Perturbation growth rate in terms of the instantaneous
growth rate as an average over 5000 cases. Breeding cycle length
and singular vector optimisation time 0.1 tu but the ensembles are
run until 1 tu. BV (black, dashed), RP (grey, solid),NM (dark-grey,
solid), first SV (black, thick dash-dotted), second SV (black, thin
dash-dotted), first BV-EOF (black, thick solid), second BV-EOF
(black, thin solid).

Table 1. Mean exponential growth rate as a mean for 5000 simula-
tions for the short (0.1 tu) and long (1 tu) time scale respectively.

0.1 tu 1 tu

RF (max) 3.96 1.90
RF (mean) –1.35 1.00
NM 2.51 1.37
BV 0.88 0.91
BV-EOF1 2.96 0.85
BV-EOF2 –1.19 1.57
SV1 3.90 1.35
SV2 –2.04 1.37

We will use Eq. (13) and letting1t=0.1 tu and1t=1 tu re-
spectively as a measure of the mean exponential growth rate
using 5000 simulations. In addition to the mean exponential
growth for each perturbation method, we have also calcu-
lated a maximized growth for the RP method by finding the
perturbation yielding the highest exponential growth rate for
each simulation. The average of the exponential growth rate
for both the short (0.1 tu) and long time scale (1 tu) of each
method is shown in Table1.

Inspired by Fig. 2 inTrevisan(1993), the instantaneous
exponential growth rate (lettingt in Eq. (13) be the previ-
ous time step and1t equal the time step) of all perturbation
methods is plotted as a function of time in Figs.3–4. The
results are a mean of 5000 cycles. In Fig.3 the singular vec-
tors are optimised for 0.1 tu (short time-scale) and in Fig.4
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Fig. 4. Same as Fig.1 but breeding cycle length and singular vector
optimasation time 1 tu. The NM and RP simulations are the same
as in Fig.3.

for 1 tu (long time-scale). The same values are used for the
breeding cycle length in the figures respectively. All simula-
tions are made until 1 tu, which implies that the simulations
for BV and BV-EOF is run until 1 tu even if the perturbations
are calculated using a cycle length of 0.1 tu.

For the breeding method (black, dashed), we see that the
exponential perturbation growth is constant in time. The av-
erage exponent is 0.88 for the short time-scale and 0.91 for
the long. These values agree well with the value of the dom-
inant Lyapunov exponent for the Lorenz-63 in the literature
(0.90).

For the random perturbations (grey, solid), the perturba-
tions generally decrease initially while the perturbations ap-
proach the attractor. But after about 0.1 tu the perturbation
growth increases and shows a period with growth rate faster
than the Lyapunov exponent, referred as transient growth in
Trevisan(1993). After that stage, the growth converges to-
wards the dominant Lyapunov exponent. The average ex-
ponential growth calculated using Eq. (13) from t=0 and
1t=0.1 for the short time-scale is –1.35. For the long time-
scale (t=1) the value is 1.00, which is higher than the one
for BV. This shows that on a long time scale it is possible to
obtain growing perturbations using random perturbations.

In order to detect the maximum and minimum possible
perturbation growth for the system, the maximized perturba-
tion growth is calculated by using 1000 random perturbations
(50 of them plotted in Figs.1 and2). For each simulation,
the maximum and the minimum amplitudes for the set of ran-
dom perturbations are detected. Evaluated for the short time-
scale (0.1 tu), the maximised perturbation growth is 3.95 and
the minimised –15.1. For the long time scale (1 tu) the cor-
responding values are 1.90 and –2.89, respectively. To test
the sensitivity to the number of random perturbations used
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to detect the maximum and minimum possible perturbation
growth, all tests was also run using 10 000 random perturba-
tions. The values for using 10 000 simulations were then 3.96
and –15.4 (0.1 tu), respectively, and 1.91 and –4.07 (1 tu).
This indicates that results obtained by 1000 perturbations are
robust at least for the maximum perturbation growth.

For the normal mode perturbations (dark-grey, solid), we
see that the perturbations have an exponential growth rate
larger than the dominant Lyapunov exponent from the begin-
ning. The growth rate reaches a maximum at 0.1 tu. The
mean growth rate for the short time-scale is 2.51. Then
the growth rate decreases and approaches the dominant Lya-
punov exponent. The average exponent for normal mode for
the long time-scale is 1.37. The immediate growth of the NM
perturbations is a clear sign that the method finds the attrac-
tor of the system. The NM perturbation shows a period of
transient perturbation growth until 0.5 tu. After that period
a perturbation growth smaller than the Lyapunov exponent
appears as expected after a period of transient growth.

The first singular vector using optimisation time 0.1 tu
(Fig. 3, black, thick dash-dotted) shows the fastest perturba-
tion growth with an average of 3.90, very close to the max-
imum possible growth rate. This indicates, as mentioned
above, that the TLM is a good approximation of the non-
linear system for this time-scale. Regarding the longer time
scale, using optimisation time 1 tu (Fig.4), the growth rate
for the first SV is 1.35, significantly lower than the maxi-
mum value 1.90 for the system (and also lower than the NM
value). This indicates that the perturbation during the long
time scale reached an amplitude so that the TLM and the
non-linear model will diverge.

Studying BV-EOF for the short time scale, using breed-
ing cycle length 0.1 tu, the first BV-EOF (black, thick solid)
grows at a much higher growth rate than the non-orthogonal
breeding vectors and the average exponent is 2.96. The
second BV-EOF shows decreasing perturbations (negative
growth rate) in the mean. But for the longer time scale, the
highest perturbation growth is found for the second BV-EOF
(1.57), using breeding cycle length 1 tu. This is remarkable,
both regarding the superiority to SV and especially that the
second EOF grows faster than the first one. The growth for
the first BV-EOF is very similar to the BV (and the dominant
Lyapunov exponent). This because both the BV-EOF per-
turbations converge to the dominant Lyapunov vector dur-
ing the breeding cycle using the long time-scale, implying
that the first BV-EOF will be similar to that direction. The
higher perturbation growth rate for the second EOF perturba-
tion could be related to non-orthogonal eigenvectors as dis-
cussed inSmith et al.(1999). Because of this the second BV-
EOF could have a finite time of transient perturbation growth
as seen in Fig.4, before converging to the leading Lyapunov
direction.

In order to investigate if it is possible to optimise the per-
turbation growth for SV and the breeding methods for the
long time scale, the optimisation time and breeding cycle

length were changed with the evaluation time kept fixt at 1 tu.
Changing optimisation time for SV means that we optimise
the perturbation growth for perturbation amplitudes were the
TLM approximation is valid and hope that the perturbations
continue growing also for later time steps (when reaching the
non-linear regime). Highest perturbation growth, regarding
the long time scale, is found to be 1.56, using optimisation
time 0.15 tu.

For the breeding perturbations, the highest perturbation
growth was found for breeding cycle length 1 tu (1.57 for
the second BV-EOF). Using a short cycle length (0.05 tu) the
first BV-EOF achieves a higher growth rate (1.39) than the
second (0.98).

To test the sensitivity to the initial perturbation length,
simulations where also made with the length 0.1 and 0.001
for 1 tu. The results are in line with the results for simulations
using 0.01 indicating that also small initial perturbations will
reach the limit for the TLM approximation during 1 tu. This
indicates that the important factor for the validity of the ap-
proximation is not the perturbation size but the time-scales
of the dynamical system (i.e. how long time it takes for the
system to reach a location with large perturbation growth).

6 Breeding experiments using ECMWF NWP-model

To investigate the properties of orthogonal breeding vectors
regarding perturbation growth in a more realistic environ-
ment, we have used the ECMWF IFS-model with spectral
resolutionTL95 and 40 vertical levels. The BV and BV-
EOF methods are implemented as described in Sect.3 and
for the orthonormalisation a total energy norm is used. We
have used a breeding cycle length of 6 h and we have run 30
simulations with 10 ensemble members. For further details
about the non-orthogonal breeding experiment seeMagnus-
son et al.(2008) (simple breeding).

Figure5 shows the amplification rate in terms of per cent
of the initial perturbation size during 6 h integration as a
function of breeding vector (or EOF) number. For the breed-
ing experiment (solid) we can see that there is no dependence
of breeding vector number for the perturbation growth. This
is natural because all the breeding cycles are separated and
therefore independent of each other. The mean amplifica-
tion (growth) for BV perturbations is 6.3%. For the BV-EOF
(dashed) a clear dependence on EOF number is present. The
first member shows a much lower perturbation growth than
member number 2. This is the same signal as seen in Sect.5
for the Lorenz-63 model and the long time-scale. Vector
number 2 shows the highest amplification (10%) followed
by member 3 and 4 and so on. The mean of the growth rate
of all members is 6.0%. This indicates that the orthogonali-
sation of the breeding vectors does not automatically yield a
higher perturbation growth rate in the mean but an ordering
of the perturbation growth.
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Fig. 5. Perturbation amplification as function of perturbation num-
ber using ECMWF IFS-model for 10 breeding vectors (solid), BV-
EOF with ensemble size 10 members (dashed) and 25 members
(dash-dotted).

In addition to the two experiments described above we
have run a BV-EOF ensemble with 25 members (dash-
dotted). The results show a low amplification rate for the
first member, in fact even a decrease of the perturbation am-
plitude. For the following members we see an increased per-
turbation growth rate compared to the 10 member ensem-
ble. Taking a mean of the perturbation amplification we ob-
tain 5.2%, a lower value compared to the breeding experi-
ment. By instead calculating the perturbation amplification
for members 2 to 11 we obtain 9.7%, a clear difference to
the non-orthogonal breeding experiment and the 10-member
BV-EOF ensemble. For ensemble forecasting, it could there-
fore be possible to obtain higher ensemble dispersion by run-
ning several breeding cycles but only use a subset of the
members for the ensemble and exclude member number one.
One explanation (as discussed in the previous section) is that
the BV-EOF perturbations (except the first) undergo a pe-
riod with transient perturbation growth. But this does not
explain why the first BV-EOF has a growth rate much lower
than the breeding vectors. Another explanation of the de-
cline of ensemble member number one could be the time his-
tory of structures used to generate BV-EOF ensembles. The
structures with most variance may contain modes that have
reached a mature stage of development and have started to
decline. If such mature structures dominate ensemble mem-
ber number one we should thus expect to see a declining am-
plitude.

7 Summary and conclusions

In this study we have compared different initial perturba-
tions strategies to find the direction with highest perturbation
growth in the simple Lorenz-63 system. For the study, we
have used two time scales.

Studying the short time scale, it was found that the pertur-
bations generally must lie within the attractor subspace of the
phase space. If this is not the case, the perturbed trajectory
will in many cases quickly approach the unperturbed, cen-
tral forecast trajectory. This is demonstrated in the present
study by the fact that unconstrained perturbations rapidly de-
cay most during the first time steps. If the perturbation is
confined to the attractor it starts to develop at a higher pace.
Studying a longer time scale, this constraint is not so strong;
the random perturbations originally outside the attractor start
to grow after reaching the attractor.

By studying the eigenvectors of the linearized model
around the initial point some important information on the
phase space directions giving large growth rates can be
found. A perturbation made from this information (NM)
shows large growth rate, especially for the short time scale.
We conclude that the NM method usually succeeds in con-
fining the perturbations to the attractor.

For the short restart interval, the singular vector method
finds the fastest growing direction perfectly. But for a longer
time scale this is not the case. Since the singular vectors are
found by optimising the growth of the tangent linear model,
the fact that BV-EOF is superior to SV for the long time scale
must be an effect of the approximations using the tangent lin-
ear model. To optimise the perturbation growth for a longer
time scale it should be possible to use conditional non-linear
optimal perturbations, CNOP (Mu et al., 2003). CNOP finds
the most unstable perturbations by maximising the perturba-
tion using the non-linear model instead of the tangent linear
model. The result should be equal to the random perturba-
tion with maximal amplification, if the set of RP fills the
shell around the unperturbed point (which is possible in a
three-dimensional system using 1000 perturbations but not
in a NWP-model).

We found that it is possible to obtain a higher perturbation
growth for SV on a long time scale by shortening the optimi-
sation time. This method is used in the operational singular
vector system at ECMWF were the optimisation time is set
to 48 h even if the focus for the ensemble forecast is in the
medium range (3–8 days).

For the BV-EOF and the long time-scale, the fastest pertur-
bation growth is obtained by the second EOF that is orthog-
onal to the breeding mode. One could have expected that the
first EOF, which contains the fastest growing modes from
the previous ensemble should continue growing, but this is
not the case. This might be explained by the fact that the sec-
ond BV-EOF has a period of transient perturbation growth
initially. As discussed in e.g.Farrell (1990) short synoptic
forecast errors shows a period of transient growth initially.
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Therefore it can be seen as an advantage for the BV-EOF
that the perturbations inherit this property.

To further investigate the differences between orthogonal
and non-orthogonal breeding vectors, experiments were un-
dertaken using the ECMWF IFS-model. The results confirm
that higher perturbation growths in individual members were
obtained by using orthogonal breeding vectors. The pertur-
bation growth rate decreases with the perturbation number.
In the NWP model as in the simple model, the first EOF
yields a low growth rate. However, the physical reason for
this property needs further investigation.

The results for the perturbation growth dependence of
EOF number have implications for operational weather fore-
casting systems. Using Ensemble Transform Kalman Filter
techniques when constructing perturbations should show the
same properties as the BV-EOF regarding the ordering. By
using a subspace of the total ensemble members, a more ef-
fective ensemble in terms of perturbation growth could be
obtained.

The conclusion is that the BV-EOF method has the advan-
tage with respect to the non-orthogonal breeding method by
choosing the directions that grow fastest locally but also has
the advantage with respect to SVs that the perturbations are
confined within in the subspace of the Lyapunov vectors.

Another conclusion, obtained by the both the normal mode
method and BV-EOF, and applicable to operational forecast-
ing systems is that perturbations located on the attractor will
start to grow with a reasonable pace. Therefore it should be
possible to construct an ensemble using information about
the observed atmospheric variability, which can be found
in comprehensive atmospheric databases such as reanalyses
(ERA-40, NCEP) or an operational forecasting archive. Us-
ing such a database to construct the perturbations we are
more likely to confine them within the atmospheric attractor.
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