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Abstract. Multivariate methods were applied to denoise the
gravity and geomagnetic signals continuously recorded by
the permanent monitoring networks on the Etna volcano.
Gravity and geomagnetic signals observed in volcanic ar-
eas are severely influenced by meteorological variables (i.e.
pressure, temperature and humidity), whose disturbances can
make the detection of volcanic source effects more difficult.
For volcano monitoring it is necessary, therefore, to reduce
the effects of these perturbations. To date filtering noise is a
very complex problem since the spectrum of each noise com-
ponent has wide intervals of superposition and, some times,
traditional filtering techniques provide unsatisfactory results.
We propose the application of two different approaches, the
adaptive neuro-fuzzy inference system (ANFIS) and the In-
dependent Component Analysis (ICA) to remove noise ef-
fects from gravity and geomagnetic time series. Results sug-
gest a good efficiency of the two proposed approaches since
they are capable of finding and effectively representing the
underlying factors or sources, and allow local features of the
signal to be detected.

1 Introduction

Over the last decades, new modern techniques of volcano
monitoring have been implemented on Mt. Etna in order to
improve the knowledge of eruptive processes. In particu-
lar, monitoring involves gravity and magnetic techniques that
have provided essential information on the eruption mecha-
nism including magma storage and transport within the vol-
cano edifice (Carbone et al., 2003; Del Negro et al., 2004).
However, gravity and geomagnetic time series are severely
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influenced by meteorological variables (i.e. pressure, temper-
ature and humidity), whose disturbances can not only make
the detection of volcanic source effects more difficult but also
may lead to misinterpret data. For all practical purposes, vol-
cano monitoring is concerned with detection of gravity and
geomagnetic anomalies attributable to the dynamics of a vol-
cano and removal of variations with no geophysical signifi-
cance.

Temporal gravity changes in volcanic areas are related
to sub-surface mass-redistributions and/or surface elevation
changes in response to magmatic activity, and their am-
plitude, wavelength and duration depend on several pa-
rameters such as the size, depth and evolution rate of
the sources. The expected gravity changes due to vol-
canic sources range in amplitude between 10 and 1000µGal
(1µGal=10−8 ms−2) with a spectrum varying from 1–10 s
to more than 1 yr. To isolate gravity residuals, due to
sub-surface mass-redistribution it is necessary to remove
the effects of non volcanic sources (i.e. luni-solar gravita-
tional effects, atmospheric contribution, instrumental drift,
ground tilt etc.). Unfortunately, especially when used in the
adverse environmental conditions often encountered at ac-
tive volcanic areas, the behavior of spring gravity meters
(the most commonly utilized instruments for microgravity
studies) have proven to be severely influenced by meteo-
rological variables (i.e. pressure, temperature and humid-
ity; Andò and Carbone, 2001, 2004, 2006; Carbone et al.,
2003; El Wahabi et al., 1997; Warburton and Goodking,
1977). In particular, El Wahabi et al. (1997) showed that,
over a yearly period, temperature changes can produce up
to 1 mGal (1 mGal=10−5 ms−2) instrumental effect. An ad-
mittance up to 0.2 mGal/◦C, over changes in periods longer
than 1 month, has been evidenced in Carbone et al. (2003).
It should also be noted that the temperature effects are evi-
dent for longer periods than 1 month (Carbone et al., 2003).
The correction formulas are instrument-specific and often
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frequency-dependent. Obviously, frequency-domain filters
cannot be applied to remove the effects of these perturba-
tions since the spectrum of each noise component has wide
intervals of superposition. A wavelet based approach to fil-
ter noise components from gravity signals was proposed in
Panepinto et al. (2006). Andò and Carbone (2001, 2004,
2006) investigated the possibilities of a Neuro-Fuzzy algo-
rithm as a tool to reduce the effect of meteorological vari-
ables from the continuous gravity signal.

Geomagnetic changes attributable to the dynamics of
a volcano are usually very small, within 1∼10 nT, while
changes up to a few hundreds nanoteslas are caused by nat-
ural geomagnetic fluctuations of external origin (ionospheric
and magnetospheric currents, and secular variations) whose
spatial distribution is, generally, considered uniform because
of the great distance of their sources. The classical differ-
ential technique, based on simultaneous simple differences
among the magnetic field amplitudes recorded at several
points on a volcano, is the most frequently used and re-
liable method to remove them. Unfortunately, this simple
technique does not allow properly reducing the geomagnetic
signal to the level of a few nanoteslas, which is the appar-
ent upper limit of detectability of magnetic anomalies asso-
ciated with volcanic activity (Davis et al., 1981). Up to now
filtering geomagnetic noise is a very complex problem that
involves the development of different algorithms to reduce
transient fields, which could be of the same order as the vol-
canomagnetic signal to be detected (Currenti et al., 2004). If
very rapid changes are indeed characteristic of volcanomag-
netic events (Sasai, 1990), then filtering techniques for re-
moving short-period geomagnetic noise may be very helpful
in increasing the detectability of volcano-related magnetic
field changes. Methods of predictive filtering (Davis et al.,
1981) and adaptive type approach (Currenti et al., 2004) have
been suggested to remove changes in the difference fields
due to contrasting responses at magnetometer sites. How-
ever, even if the effects of external and transitory fields are
properly eliminated, both periodic and non-periodic geomag-
netic changes have clearly been observed in the magnetic re-
duced signals. Since fluctuations are present even when no
volcanic activity is apparently affecting the signal (e.g. John-
ston, 1989; Zlotnicki et al., 2000; Del Negro et al., 2004) it
is evident that external sources are responsible for these vari-
ations. Hence, it is necessary to correct this component in
order to identify significant geophysical signals. Recent and
more accurate studies claim that annual periodic variations in
the geomagnetic total intensity could be caused by seasonal
changes in the heterogeneous magnetization of near-surface
rocks due to a diffusion of atmospheric temperature changes
into the ground. The intensity of the local magnetic anomaly
depends on the heterogeneity of the near-surface rocks and
their temperature dependence. Using the method proposed
by Utada et al. (2000), the features of annual variations can
be quantitatively estimated by a simple one-coefficient filter.
However, this simple linear filtering is not able to remove a

residual annual component (Del Negro and Currenti, 2003)
which is probably due to a non-linear effect of the tempera-
ture.

Notwithstanding the problem of filtering gravity and geo-
magnetic time series recorded in volcanic areas has been ad-
dressed by different authors, the lack of standard procedures
justify the effort presented in this paper, devoted to describ-
ing the application of two different techniques for denoising
gravity and geomagnetic data. The first one is a nonlinear
autoregressive model based on the application of an Adap-
tive Neuro-Fuzzy Inference System (ANFIS), whose intrin-
sic learning features seem to be particularly suitable for such
a task. The second one is a method obtained by combin-
ing wavelet transform and Independent Component Analysis
(ICA), which is able to separate multiple data series into in-
dependent data series. Both techniques were applied to data
recorded by the gravity and magnetic monitoring networks
of Etna volcano (Italy). A comparison between ANFIS and
ICA techniques is also reported together with a consideration
on their usefulness.

The objective of the work was not the observation of
anomalies related to an eruptive event but rather the study
of methods for noise reduction in gravity and geomagnetic
field measurements in volcanic area. It is important to note
that, in this paper, the term noise is used to indicate only the
components due to non volcanic sources (i.e. meteorological
effects).

2 Mathematical background

To represent the relation between a geophysical variabley(t)

(e.g. gravity field and geomagnetic field) and a set of related
variablesu1(t), u2(t), . . . up(t), which represent candidate
sources of noise, we can consider both non-linear such as
autoregressive models with exogenous inputs (NARX), and
linear approaches, such as the Independent Component Anal-
ysis (ICA) technique. NARX models are recurrent dynamic
structures, with feedback connections, which can be repre-
sented as:

y(t) = f (y(t − 1), . . ., y(t − ny), u1(t), u1(t − 1), ...,

u1(t − n1), ...up(t), up(t − 1), ...up(t − np)) (1)

wheret represents the discrete time variable,y(t) is the out-
put model,u1, . . . un are the model input variables, andf is
an unknown non linear function, which can be approximated
by using several methods such as the neuro-fuzzy approach
considered in this work.

In neuro-fuzzy systems, neural networks are used to tune
the membership functions of the fuzzy system and to auto-
matically extract fuzzy rules from numerical data. The inter-
nal structure of a neuro-fuzzy network is illustrated in Fig. 1.
The nodes of the first layer represent the crisp inputs. The
activation functions of the second layer nodes are Gaussian
and act as membership functions. Each neuron of the third
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 Fig. 1. Neuro-fuzzy network architecture.

layer acts as a rule node so that this layer provides the fuzzy
rule base. The output of this layer determines the activation
level at the output memberships. As ordinary neural nets, the
neuro-fuzzy one learns on a training data set, tuning mem-
bership functions and rules, by means of a back-propagation
algorithm.
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The second approach taken into account in this study, to ex-
press the relation between different variables, considers the
static linear model:

y(t) = a1u1(t) + a2u2(t). . . + apup(t) (2)

In the model (2), the observed variable is considered to
be a linear mixtures of some latent variables, assumed to

be nongaussian and mutually independent. The set of un-
known coefficientsa1, . . . ap, can be obtained by using
various kinds of methods. By arranging the observations
yi=ai,1·u1+ · · · ai,n·un of the random variabley into a vec-
tor Y it is possible to write

Y = A · u (3)

whereA is the so-called mixing matrix. Thus, given the ob-
servationY the problem is to estimate both the mixing ma-
trix A and the observed sourcesu. This is done by adaptively
calculating a cost function which either maximizes the non-
gaussianity or minimized the mutual information.

The original sourcesu can be recovered by multiplying
the observed signalsY with the inverse of the mixing matrix
W=A−1, also known as the un-mixing matrix. Of course,
in general the matrixA in not square thus the inverse matrix
must be interpreted in the sense of the generalized-inverse
(Ben-Israel and Greville, 2003).

One of the problems of the ICA approach is that it is
not possible to identify the original scaling of the sources
(Hyvärinen and Oja, 2000). The reason is that, bothu andA
in expression (3) are unknown. Thus, any scalar multiplayer
in one of the sourcesui could always be cancelled by divid-
ing the corresponding columnai of theA matrix by the same
scalar. However, in our applications, the energy of the un-
known component, expect the volcanic source component, is
measurable. For instance, one typical problem is to remove
the meteorological variables (i.e. temperature, pressure, etc.)
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Fig. 2. Filtering strategy used to remove the effects of meteorologi-
cal variables from gravity and geomagnetic time series considered.

effects. Thus, we can compute appropriate scale factor by
measuring the oscillation of each component in the observed
time period and comparing this oscillations with the corre-
sponding one provide by the ICA approach.

3 Computation of the residuals

Regardless of the adopted representation for the relation
among geophysical variablesy(t) and a set of candidate
noise sourcesu1(t), . . . up(t), the denoising scheme (Fig. 2)
adopted in this work is based on the idea of existence of a
time interval in which the signaly(t) is not affected by a vol-
canic source. In this hypothesis, a residual signalr(t) can be
computed as:

r(t) = y(t) − y′(t) (4)

wherey′(t) is the estimated value ofy(t). This residual in
absence of effects due to the volcanic sources, that might in-
volve mass redistribution and/or variations of the local geo-
magnetic field, will be limited in amplitude to typical ranges
depending on the considered signals (i.e. ranging between a
few µGal for gravity and a few nT for geomagnetic field).
Knowledge of the magnitude of the residuals in “quiet peri-
ods” allows to recognizing and isolating the anomalies due
to volcanic sources.

Let us represent the componentxi of the observed ran-
dom vectorx=[x1, x2, · · · xm]

T are generated as a sum of
the independent componentsuk, k=1, · · · n. The data is rep-
resented by the random vectorx=[x1, x2, · · · xm]

T and the
components as the random vectoru=[u1, u2, · · · un]

T . The
task is to transform the observed datax, using a linear static
transformationW as u=W ·x into maximally independent
components u measured by some function of independence.
This is done by adaptively calculating the w vectors and set-
ting up a cost function which either maximizes the nongaus-
sianity of the calculatedsk=W ·x or minimizes the mutual
information.

Fig. 3. Schematic map showing the locations of the continuous
gravity and magnetic stations operating on Mt. Etna.

4 Data set and preliminary analysis

The long and high-quality gravity and geomagnetic se-
quences recorded at Etna volcano during the last two decades
represent an essential starting point to develop and validate
analysis techniques to remove effects caused by meteorolog-
ical variables. The continuously monitoring systems running
at Etna were set up in 1998 (Del Negro et al., 2002; Car-
bone et al., 2003) and improved during recent years. At
present, they consist of 3 gravity remote stations, a net-
work of 6 scalar magnetometers and 3 magnetic gradiome-
ters. Stations are located at elevations ranging between 1700
and 3000 m a.s.l. along a North-South profile crossing the
summit craters. The magnetic reference station (CSR) is in-
stalled further west (about 50 km) on the Nebrodi Mountains
(Fig. 3). The continuous recording stations were devised us-
ing innovative technologies which guarantee uninterrupted
working under harsh environmental conditions.

The gravity stations are equipped with LaCoste and
Romberg (L&R) spring gravimeters, featuring analog feed-
back systems, which are installed in partially buried concrete
cases at ESL and BVD, while at PDN the gravimeter is lo-
cated inside the observatory building. Data are recorded at
1 datum/min sampling rate through a CR10X Campbell Sci-
entific datalogger. All magnetic stations are equipped with
a GSM-90 Overhauser effect magnetometer (0.01 nT sensi-
tivity). Each station synchronously samples the Earth’s mag-
netic field every 5 s. A Global Positioning System (GPS)
receiver controls the synchronization of readings. Simulta-
neously with gravity and magnetic signals, atmospheric and
ground temperature, pressure and humidity are acquired at
each station.
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Fig. 4. Power spectral densities of analyzed signals:(a) geomagnetic;(b) gravity; (c) temperature;(d) humidity; (e)pressure.

The definition of a background level for each signal re-
quires a long and continuous data series acquired in unper-
turbed (i.e. quiescent period) conditions, therefore we used
data gathered on Etna when no significant volcanic activity
was observed. As a first step, we reduced gravity data for the
effect of Earth Tide and instrumental drift (Torge, 1989). The
effect of Earth Tides (amplitude up to 250µGal peak-to-peak
depending on latitude, elevation and stage in the tidal cycle)
is modeled through the Eterna 3.30 data processing package
(Wenzel, 1996). The accuracies of the prediction model is
within ±1%, implying tidal residuals affecting the gravity
signal up to 1–2µGal peak-to-peak over the most relevant
tidal families (diurnal and semidiurnal). To correct the data
for the main effect of instrumental drift a best linear fit was
removed from the sequences. For geomagnetic signals we
have used both the raw signals and the difference of the geo-
magnetic fields measured by magnetic stations located in the
volcanic area with respect to reference station (CSR).

Considering that effect of meteorological variables mainly
affects the long period components (Carbone et al., 2003; Del
Negro et al., 2004), we computed hourly averages and used
time series generally of about 6 months or more. In order
to define the correlation between gravity, geomagnetic data,
and meteorological variables (temperature, pressure and hu-
midity), we performed the analysis in the frequency domain
for each time series investigated. The power spectra analysis
for each signal, obviously, reveals the presence of harmonics
with their fundamental oscillations (see peaks in Fig. 4). In
particular, besides seasonal components, the dominant pe-

riodic components of raw gravity data are centred around
12 and 24 h. The same semidiurnal and diurnal components
were found in the temperature, pressure and humidity sig-
nals. In the same way, power spectra of geomagnetic data
show prominent peaks at the period of 8, 12 and 24 h.

Cross-correlation analysis in the time domain between
geophysical signals and meteorological variables was also
performed. Although the results of this analysis are strongly
dependent on the period chosen and on the length of the con-
sidered window time, they provide useful information on the
general relationship between different signals. Both gravity
and geomagnetic signals show a strong correlation with tem-
perature. In particular, the correlation coefficient for differ-
ent gravity and geomagnetic time series is up to−0.64 and
0.68, respectively. Moreover, gravity data are anti-correlated
and show a considerable time lag up of to 900 h. As regards
geomagnetic data, it is worth noting that the significant cor-
relations found between differences of geomagnetic signals
and temperature, over a time lag of about 10 h, are not so
marked when we considered the raw signals.

Correlations were also observed between gravity signal
and pressure (factor is up to−0.367) with a time delay of
about 200 h, and between geomagnetic data and humidity
(index is up to−0.54). Conversely low correlation coeffi-
cients were obtained between gravity sequences and humid-
ity (especially at PDN station), and between geomagnetic
data and pressure for all values of the time delay. As an ex-
ample of the correlations identified in different periods at dif-
ferent stations, we report two representative series in Fig. 5.
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Fig. 5. Gravity, geomagnetic and meteorological variables (temperature, humidity and pressure) recorded on Mt. Etna from February to
December 2005. The correlation coefficients between gravity and geomagnetic signals and meteorological variables are reported at the
bottom.
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Table 1. Three different structures to model the effects of temperature and pressure in the gravity signals.

Model 1 y(t)=f (T (t), P (t))

Model 2 y(t)=f (T (t), T (t−m), P (t), P (t−n))

Model 3 y(t)=f (T (t), T (t−m), Tmean(t−m), P(t), P(t−n), Pmean(t−n))

These correlations were taken into consideration during the
implementation of the model for reducing geophysical sig-
nals for the effect of meteorological variables.

5 The ANFIS non linear approach

The adaptive network based on fuzzy inference system (AN-
FIS) is a specific approach in neuro-fuzzy development.
Neuro Fuzzy systems make use of neural networks (ANNs)
in order to determine the parameters of a fuzzy rule base
from fuzzy sets and fuzzy rules by processing data exam-
ples (patterns). These systems are able to capture the benefits
of fuzzy logic and ANNs in a single framework. ANFIS is
based on a fuzzy Sugeno’s model which has shown signifi-
cant capability in modeling nonlinear systems. It can simu-
late and analyze the mapping relation between the input and
output data through a learning procedure to implement a set
of fuzzy rules in “if-then” form to determine the optimal dis-
tribution of the membership functions. In ANFIS, the mem-
bership function parameters are extracted from a dataset that
describes the system behaviour and successively optimized
according to a given error criterion (Jang, 1993; Ubeyli and
Guler, 2006) during the learning process. The optimization is
accomplished using a hybrid algorithm combining the least
squares method and the gradient descent method. The train-
ing process aims to minimize the training error between the
real target and the ANFIS output. This allows ANFIS to learn
features from observed data, and represents the final model
in the form of linguistic rules.

We implemented ANFIS autoregressive non linear mod-
els to denoise gravity and geomagnetic signals from effects
of temperature, pressure and humidity. The development
environment adopted was the Matlab® Neuro-Fuzzy tool.
The model uses three bell shaped membership functions and
a Sugeno model structure of the rule base. The available
datasets were divided into training and testing subsets in or-
der to ensure the validation of the model on fresh data, i.e.
data not considered during the training phase. This avoids
the well known problem of over-fitting. Based on results of
correlation analysis the most promising candidates as input
variables were the temperature (T ) and pressure (P ) for the
gravity signal and the temperature and humidity (H ) for geo-
magnetic signals. Once the input variables have been chosen,
it is necessary to define the structure of the autoregressive
model, i.e. the values ofny, n1...np which appear in expres-
sion (1). We tested three different configurations for model-

Table 2. Standard deviation of the residuals obtained by three dif-
ferent models described in Table 1.

Model 1 Model 2 Model 3

Standard deviation 70.07µGal 13.35µGal 4.86µGal

ing the effects of temperature and pressure in the gravity sig-
nals, as indicated in Table 1, wheref is the non-linear model
estimated by neuro-fuzzy algorithm;t is the present time in-
dex; T and P represent temperature and pressure, respec-
tively; m and n represent appropriate time delays obtained by
the cross-correlation analysis;Tmean(t−m) andPmean(t−n)

are the mean values of temperature and pressure within the
intervals[t−m, t] and[t−n, t].

To estimate the goodness of the models presented in Ta-
ble 1, we calculated the standard deviation of the residu-
als as performance index and results are shown in Table 2.
It is evident that the estimation capabilities of the first two
models are worse than model 3, this is, probably due to the
lack of information on the average behaviour of temperature
Tmean(t−m) and pressurePmean(t−n).

Model 3 was practically applied to a real case study con-
sisting of the gravity sequences recorded from January to
December 2005 at BVD station and from June to Decem-
ber 2005 at PDN station (Fig. 6). These gravity stations, the
only working during the 2005 on Etna, are equipped with
LaCoste and Romberg D-185 and PET 1081 gravimeters, re-
spectively. After removing the theoretical Earth Tide and
the instrumental drift, as described above, large components
with amplitude of about 600 (BVD) and about 500µGal
peak-to-peak (PDN) are strongly dominant in both gravity
sequences (Fig. 6). The amplitude of the residual signals,
calculated as the difference between the instrumental effect
due to atmospheric temperature and pressure, estimated by
model 3 and gravimeters output, is very low compared to the
original signals. These results highlight that the instrumen-
tal effects of atmospheric temperature and pressure are the
most significant components of all the original signals, and
are strongly confirmed also through the low correlation coef-
ficients between residual gravity sequences and temperature
and pressure signals (see Table 3).

We can see that the ANFIS method removes satisfacto-
rily the long period components of the gravity sequences,
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Fig. 6. Left panel: at the top, gravity signal after removal of the best linear fit and the theoretical Earth Tide observed at BVD station from
June to December 2005. At the bottom, gravity residual after removing the meteorological effects estimated by ANFIS model. Right panel:
at the top, gravity signal after removing the best linear fit and the theoretical Earth Tide observed at PDN station from June to December
2005. At the bottom, gravity residual after removing the meteorological effects estimated by ANFIS model. Black arrows indicate anomalies
which are not related to the meteorological variables.

Table 3. Correlation coefficients between raw gravity data, resid-
ual gravity signals and temperature and pressure after removing the
corresponding temperature and pressure effects estimated by AN-
FIS model from each gravity sequence. It is important to note the
large difference of the relative values of the correlation coefficients
before and after the filtering approach were performed.

Temperature Pressure

Raw gravity data at BVD −0.570 −0.350
Raw gravity data at PDN −0.643 −0.367
Gravity residual at BVD −0.055 −0.043
Gravity residual at PDN −0.029 −0.035

considered harmonic of the annual oscillation due to the in-
fluence of the seasonal atmospheric variables changes. The
magnitude of the residuals (BVD and PDN) as well as diur-
nal and semidiurnal components are highly comparable each
other and are in the order of 2÷3µGal (well-matched also
with the uncertain of the Earth Tide model used). Instead,
a significant component with a maximal amplitude range of

about±10µGal peak-to-peak and a period of about 20 days
strongly emerges in the residual of BVD (Fig. 6). This dis-
crepancy is probably due to the position of the BVD station,
located very close to the SE Crater (about 700 m). The resid-
ual may reflect changes in the local gravity field due to the
“normal” activity of the Crater.

For geomagnetic data, since the results of the simulations
obtained by using the model 2 are better than the results
gained by applying the model 3, we used the structure of the
model 2, but pressure was substituted by humidity (H ) on
the grounds of the cross correlation analysis; consequently
the model is defined as follows:

y(t) = f (T (t), T (t − m), H(t),H(t − n)) (5)

This model was applied to the hourly averages of total in-
tensity variations from February to August 2005 observed
at PDN and DGL stations, relative to the reference station
(CSR). It is worth stressing that, though external magnetic
fields were previously removed by differential technique, and
at that time no significant volcanic activity occurred, a clear
trend is still evident especially at DGL station (Fig. 7a). In
order to evaluate the capability of the filtering process, we
compared the estimated residuals with the differences of total
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Fig. 7. Comparison between the unreduced geomagnetic data (in red) and the residuals (in green) estimated by ANFIS model considering
(a) the differences of the geomagnetic signals (DGL-CSR and PDN-CSR) and(b) raw signals recorded at the gradiometric stations of PDG
and MFS. Black arrows indicate anomalies which are not related to the meteorological variables.
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Table 4. Correlation coefficients between meteorological variables (temperature and humidity), recorded geomagnetic signals and residuals
obtained by ANFIS filtering.

Unreduced data Temperature Humidity Residuals Temperature Humidity

PDN-CSR 0.68 0.54 PDN-CSR 0.003 0.008
DGL-CSR 0.66 0.20 DGL-CSR 0.00001 0.002
MFS gradient 0.87 0.42 MFS gradient 0.0016 −0.02
PDG gradient 0.84 −0.18 PDG gradient 0.021 −0.003

Table 5. Correlation coefficients between meteorological variables (temperature and pressure), raw gravity signals and their related Inde-
pendent Components extracted by FastICA method, and the residual gravity signal after filtering with the related Independent Components
identified by FastICA method.

Raw gravity Temperature Pressure Residual gravity Temperature Pressure

BVD −0.570 −0.350 BVD 0.052 0.135
ICBVD −0.572 −0.359
PDN −0.643 −0.367 PDN −0.020 −0.052

ICPDN −0.602 −0.401

magnetic intensity with respect to CSR station. The magni-
tude of the residuals is lower than the original ones and no
evident trend appears (Fig. 7a). At the same time, we used
hourly averages of total intensity variations recorded at the
MFS and PDG gradiometric stations. Each station consists
of two sensors, (namely MFSnorth, MFSsouth, PDGnorth
and PDGsouth) spaced horizontally by about 50 m, which si-
multaneously sample the Earth’s magnetic field. In this case,
we initially applied the model to the raw signals recorded
by each sensor and then the residual signals were differenti-
ated to obtain the gradient (MFSnorth-MFSsouth and PDG-
north – PDGsouth). Figure 7b shows the comparison be-
tween the hourly averages of the unreduced magnetic gra-
dients recorded from October 2005 to January 2006 at MFS
and PDG and the difference of residuals estimated by ANFIS
model. It is evident that the long period fluctuations affect-
ing original signals, probably due to the joint effects of tem-
perature and humidity, are successfully removed. To better
estimate the validity of the model, as well as for the gravity
case, a correlation analysis between each residual and tem-
perature and humidity was calculated. Also in this case, the
correlation coefficients significantly decreased, ranging be-
tween 0.02 and 0.00001 for temperature and between 0.02
and−0.003 for humidity (Table 4). These results confirm
that the applied model removes both the effect of tempera-
ture and the humidity from magnetic data.

6 The ICA linear approach

The Independent Component Analysis (Bell and Sejnowski,
1995) is an algorithm which can be used for blind source

separation and feature extraction from mixed signals. ICA
outputs a set of linearly independent signals, given a set of
the original multi-channel input signals. This method can
be used directly for feature extraction but requires more than
one time series (at least from two separate sensors). To over-
come this constraint, we propose a method to generate mul-
tiple time series from the single available time series. Ac-
cording to Ming et al. (2005), we use the wavelet transform
to pre-process data recorded by single gravity and magnetic
sensor and then use the obtained information as input for an
apposite ICA tool developed in Matlab® language. We as-
sume that each time series recorded by gravity and magnetic
sensors is affected by multiple sources, and we are interested
in estimating the mixing ratios of the source signals in the
collected data in order to obtain the independent source sig-
nals. In particular, we apply ICA to remove from gravity and
geomagnetic time series the noise signal (due to meteorolog-
ical effects) characterized through the frequency analysis.

The FastICA algorithm, based on the approach proposed
by Hyvärinen and Oja (1997), seeks to find a set of inde-
pendent components (IC) by estimating the maximum ne-
gentropy (Hyv̈arinen, 1999). After the pre-processing step,
the FastICA analysis starts choosing the indices of the largest
and smallest eigenvalues of the covariance matrix of the ob-
served signals to be included in the reduced data. Once the
eigenvalues of the covariance matrix of data are computed,
we chose the number of Independent Components (IC) re-
lated with the ICA algorithm according to the subset of sig-
nificant eigenvalues. Gravity and geomagnetic residuals are
obtained by removing the denormalized independent com-
ponents, which show a strong correlation with one or more
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Fig. 8. Left panel: at the top, gravity signal after removal of the best linear fit and the theoretical Earth Tide observed BVD station from
January to December 2005. At the bottom, gravity residual after removing the meteorological effects estimated by wavelet/ICA combined
method. Right panel: at the top, gravity signal after removing the best linear fit and the theoretical Earth Tide observed at PDN station
from June to December 2005. At the bottom, gravity residual after removing the meteorological effects estimated by wavelet/ICA combined
method. Black arrows indicate anomalies which are not related to the meteorological variables.

meteorological signals, from the observed gravity and geo-
magnetic signals. As stated before, the scaling factor for each
ICs was computed by comparing the oscillation of each mea-
surable meteorological variables with the magnitude of each
ICs component.

The FastICA algorithm was applied to the same gravity se-
quences analyzed by the ANFIS non-linear model. The com-
ponents obtained from the wavelet decomposition of gravity
sequences were used as input to FastICA. Only one indepen-
dent component (IC) was found to be suitable in describing
the effects of meteorological variables for each data set con-
sidered. The correlation coefficients between gravity signals
recorded at PDN and BVD stations and the only one Indepen-
dent Component extracted from both signals and temperature
and pressure are reported in Table 5.

The magnitude of the residual signals, after the indepen-
dent component was subtracted from the time series recorded
at BVD and PDN stations, is less than 98% of the origi-
nal signals (Fig. 8). The correlation coefficients between
gravity residuals and meteorological variables are negligi-
ble (see Table 5). This means that the combined method
wavelet/FastICA is able to recognize the main components
induced by the meteorological variables in the gravity sig-

nals. Analysis performed on residuals obtained through
this combined ICA-wavelet method reveals that residuals are
similar to those obtained by the non-linear ANFIS approach.
Thus both the proposed methods are able to remove meteo-
rological effects from gravity signals.

The ICA approach in combination with wavelet transform
was also applied to the same geomagnetic data sets used for
validating the ANFIS model previously described. First of
all, we performed the wavelet decomposition both of the
differences in the geomagnetic signals (PDN-CSR, DGL-
CSR) and raw signals gathered at the gradiometric stations of
PDG and MFS. Geomagnetic signals were decomposed from
scales 1 to 7 and 1 to 9 on the basis of the length of the con-
sidered time window. Therefore, ICA was used to process the
obtained matrix of wavelet coefficients for detecting single
independent sources. The analysis performed on the differ-
ences of geomagnetic signals identified 4 Independent Com-
ponents (IC), while 3 IC were detected for the raw signals of
gradiometric stations. These components are associated with
the principal eigenvalues of the covariance matrix. It is worth
stressing that for all cases only one IC is correlated both with
temperature and humidity, while the others are uncorrelated
with the meteorological variables considered. Furthermore,
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Fig. 9. Comparison between the unreduced geomagnetic data (in red) and the residuals estimated by ICA approach (in green) considering
(a) the differences of the geomagnetic signals (DGL-CSR and PDN-CSR) and(b) raw signals recorded at the gradiometric stations of PDG
and MFS. Black arrows indicate anomalies which are not related to the meteorological variables.
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Table 6. Correlation coefficients between meteorological variables (temperature and humidity), observed geomagnetic signals, and their
related Independent Components extracted by FastICA method.

Temperature Humidity Temperature Humidity

PDN-CSR 0.68 0.54 DGL-CSR 0.66 0.20
IC1 0.016 −0.0006 IC1 0.002 −0.0003
IC2 0.001 0.013 IC2 0.01 0.018
IC3 −0.73 0.68 IC3 0.003 −0.005
IC4 0.011 −0.035 IC4 0.91 −0.42

MFSn −0.21 0.08 MFSs 0.016 −0.02
IC1 −0.19 0.07 IC1 0.066 0.06
IC2 −0.12 0.01 IC2 0.013 −0.035
IC3 −0.55 0.19 IC3 0.02 −0.04

PDGn −0.31 0.08 PDGs −0.41 0.1
IC1 −0.25 0.07 IC1 0.17 0.06
IC2 0.14 −0.06 IC2 −0.19 0.027
IC3 0.66 −0.24 IC3 −0.83 0.25

the correlation coefficient computed between the meteoro-
logical variables and the selected IC is always higher than
that obtained between the observed signal and meteorologi-
cal variables (Table 6).

The extracted IC was then denormalized, as stated before,
and removed from the observed signals. The residuals ob-
tained for the differences PDN-CSR and DGL-CSR, and for
MFS and PDG gradients were compared with the unreduced
signals (Fig. 9). The comparison shows that the long period
variations affecting the original signals were efficiently re-
moved. Moreover, the cross-correlation analysis in the time
domain between residual signals and meteorological vari-
ables provided very low correlation coefficients (Table 7).
These results confirm that the method of combining wavelet
transform and ICA is a valuable tool for simultaneous sepa-
ration of ICs affected by hidden meteorological effects in the
observed geomagnetic signals.

7 Discussion and conclusion

With the aim of developing a novel approach to analyze grav-
ity and geomagnetic time series recorded in volcanic areas,
we proposed two different methods, namely the ANFIS and
the ICA. Results presented throughout this paper show the
denoising capability of the two considered approaches for
removing noise from both gravity and geomagnetic signals.
In particular, the very low correlation coefficients between
residuals and the set of explaining variables confirm that both
approaches are able to efficiently remove the effects of me-
teorological variables from considered geophysical data. It
is important to note the presence of small anomalies (such
as amplitude) in the gravity and magnetic time series in the

Table 7. Correlation coefficients between meteorological variables
(temperature and humidity), and residual signals obtained after re-
moval of the related Independent Component identified by FastICA
method.

Temperature Humidity

PDN-CSR 0.0015 0.005
DGL-CSR 0.00008 0.007
MFS gradient −0.0062 0.023
PDG gradient 0.013 −0.001

unreduced signals, which are not due to changes in the mete-
orological variables (Figs. 6 to 9).

The standard deviations of residuals were also assessed
and compared to verify the obtained results from ANFIS and
ICA approaches (Table 8). It should be noted, that the stan-
dard deviation of residuals is much decreased both for grav-
ity and geomagnetic data when compared to that of the unre-
duced signals. In particular, gravity residuals show standard
deviations lower than 98÷99% in comparison with original
data, while the standard deviation of geomagnetic residuals
decreased by about 40% (for PDN, DGL and MFS stations)
and more than 60% for the PDG station.

The ANFIS and ICA techniques remove efficiently noise
components showing themselves a valid approach to the gen-
eral problem of denoising geophysical data. The results are
highly promising, and in our view the proposed techniques
outperform traditional time series filtering in terms of effi-
ciency. This is an important chance since the gravity and
magnetic signals could include volcanic effects with a wide
range of evolution rates. Moreover, frequency-domain filters
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Table 8. Standard deviations of recorded gravity, geomagnetic signals and residuals obtained by the ANFIS and the ICA approaches.

Gravity data Unreduced signal ANFIS residual ICA residual

PDN 165.36µGal 1.01µGal 1.18µGal
BVD 155.98µGal 4.86µGal 6.19µGal

Geomagnetic data Unreduced signal ANFIS residual ICA residual

PDN-CSR 1.25 nT 0.66 nT 0.72 nT
DGL-CSR 1.56 nT 0.84 nT 0.79 nT
MFS gradient 2.25 nT 1.25 nT 1.22 nT
PDG gradient 1.34 nT 0.47 nT 0.41 nT

cannot be efficiently applied to remove the effect of these
perturbations since the spectrum of each component of vari-
ous origins has wide intervals of superposition. Furthermore,
frequency domain filtering does not always work well be-
cause: (i) it globally removes frequencies causing a gener-
alized smoothing effect that substantially broadens features
of interest; (ii) depending on both cut off frequency and fil-
ter order it also could introduce edge effects and distortions
of the original signal; (iii) it does not allow to study local
features of the signal in the time domain.

Finally, on comparing the standard deviations of ANFIS
and ICA residuals, it appears that the efficacy of the two ap-
proaches is very similar. Thus, the criteria for choosing one
rather than the other should be only based on considerations
such as computational speed and degree of difficulty in im-
plementing and applying the proposed filtering scheme. Our
research suggests that the ICA approach is more suitable in
this respect and is thus recommended to solve the considered
filtering problem.
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