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Abstract. Reliability analysis of probabilistic forecasts, in so as to be exhaustive (i.e. at least one event will happen for
particular through the rank histogram or Talagrand diagramsure) and mutually exclusive (i.e. if one event happens, none
is revisited. Two shortcomings are pointed out: Firstly, a of the others does). The events are defined in terms of the
uniform rank histogram is but a necessary condition for re-observation, that is, knowing the observation is sufficient to
liability. Secondly, if the forecast is assumed to be reliable,determine which of the events has occurred. Both the defini-
an indication is needed how far a histogram is expected tdion of the events as well as the assigned forecast probabil-
deviate from uniformity merely due to randomness. Con-ities can (but do not necessarily have to) vary between dif-
cerning the first shortcoming, it is suggested that forecastderent forecast instances. As an example, consider the case
be grouped or stratified along suitable criteria, and that reli-whereY is a variable between zero and one, for example rel-
ability is analyzed individually for each forecast stratum. A ative humidity. A probabilistic forecast might be specified by
reliable forecast should have uniform histograms for all in- assigning varying probabilities to the ten sub-intervals with
dividual forecast strata, not only for all forecasts as awhole.vertices%; k=0...10. Alternatively, a probabilistic fore-

As to the second shortcoming, instead of the observed freeast might be specified by defining ten intervals of varying
guencies, the probability of the observed frequency is plotdength, each of which carries the forecast probability 0.1.

ted, providing and indication of the likelihood of the result |, very broad terms, this paper is about how to verify
under the hypothesis that the forecast is reliable. Furtheryhether a probabilistic forecast has “come true”. The appro-
more, a Goodness-Of-Fit statistic is discussed which is espiate answer to this question depends on the interpretation
sentially the reIiabiIity.term of thg Ignorance score. The dis- ¢ probability. One common (but not the only possible) in-
cussed tools are applied to medium range forecasts for 2 Mg pretation of probability is that of a long term observed rel-
temperature anomalies at several locations and lead timesgyive frequency. If each individual forecast probability could
Thg forecasts are stratified along. the expected .ranked prolse compared to a large number of observations, the degree of
ability score. Those forecasts which feature a high expected,greement between forecast probabilities and observed fre-
score turn out to be particularly unreliable. quencies could be tested. If no significant disagreement oc-
curs, the forecast is called reliable or calibrated. Reliabil-
ity relates the forecast probabilities to actually observed fre-
guencies and thus provides the forecast with a degree of ob-
jectivity. It is important to note that reliability is not the only

Suppose the objective is to make forecasts about the possibf@eSirable P“’Pe”y ofa probat_)ilistic forecast, another one be-
valuesy of a random variabl¢’, the observation, which is N9 resolution. Broadly speaking, a forecast shows resolution

unknown by the time the forecasts have to be made, but thg different events are antedated by different forecast behav-
actual value of which will be revealed at some futur’e time. ior. For example, a rain forecast has resolution if forecasts

The observation is often referred to as the verification. Apreceding rainy days are .significantly diﬁerent.from those
probability forecasts is a probability assignment to a CO”eC_prec_:_edlng sunny d_ays. _Th's paper deals exc_luswely with re-
tion of potential events. This paper focuses on forecasts fohability. For extensive discussions on resolution and ways to

more than just two events. The events are typically choserfu@ntify it, see for example/ilks (2009; Toth et al.(2009;
Brocker(2008.

) A frequently employed tool to analyze forecast reliabil-
Correspondence tal. Brocker ity is the histogram, in particular the rank histogram or Ta-
BY (broecker@pks.mpg.de) lagrand diagram. The idea of histograms is to divide the
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662 J. Brocker: Reliability analysis

observations among a limited number of categories, therebyrequencies are consistent with reliability or not. A strati-
defining a set of exhaustive and mutually exclusive eventsfied Goodness-Of-Fit-test is introduced as a convenient sum-
Then the observed frequencies for these categories are comary statistics of the histogram. The statistic employed in
pared with the corresponding forecast probabilities. Oftenthis paper is similar to Pearson’s classical statistic in that it
the nature of the problem already suggests a set of categoriets, asymptoticallyy 2-distributed, but in addition can be in-
and sometimes it is even possible to define a set of categorigerpreted as the reliability term of the Ignorance score. In
with all corresponding forecast probabilities having the sameSect.3 the discussed tools are applied to a number of opera-
numerical value. In the latter case, the histogram of observedional probabilistic weather forecasts. In these examples, the
frequencies is expected to be more or less uniform. forecasts are stratified along the expected ranked probability
In this paper, | discuss how both information content andscore. The expected ranked probability score is not the true
reliability of histograms can be improved. As currently em- score of the forecast but the expectation value of the score
ployed, histograms suffer from two long noted conceptualif the verification was in fact distributed as specified by the
problems. Firstly, a single histogram can only display theforecast, and hence is a property of the forecast alone. The
observed frequencies averaged over all forecasts. Reliabilesults indicate that the investigated forecasts are the less re-
ity though means agreement of forecast probabilities and obliable, the better their expected ranked probability score. In
served frequencies for each probability forecast individually.this example, forecasts with small expected ranked proba-
It might be objected that this definition of reliability is mean- bility score appear to suffer from both bias and insufficient
ingless if for each forecast distribution, there is at most onespread. It seems that to rectify the problem, a de-biasing
observation. This is a practical difficulty, but not a conceptual conditionedon the expected ranked probability score is nec-
one, as will be discussed later when reliability will be for- essary, since standard de-biasing would affect all forecasts at
malized using conditional probabilities. At any rate, there isthe same time. Sectichconcludes.
agreement in the literature that a uniform (unconditional) his-
togram is only a necessary, but not a sufficient condition forl.1 General considerations

reliability (Hamill and Colucci 1998 Hamill, 2001, Gneit- . . _ —
In this subsection, a general definition of reliability along

ing et al, 2005. In order to alleviate this problem, the con- " " ) L '
cept of forecast strata is introduced. Essentially, the foreWIth its mostimportant consequences is discussed. We will

casts get stratified along some descriptive variable, and sui'st fix some notation which will be employed throughout
sequently reliability is analyzed individually for each stra- (N€ Paper. Let’ be the observation, which is unknown and
tum. Secondly, in the past, too little attention was paid to thelo be fore_cast. Fo_r most of this section, in order to avoid un-
question as to whether the obtained results are actually stdi€cessarily technical language and concepts, the observation
tistically significant. A forecast might show deviations from Y is assumed to take values in a (posglbly mﬂmtg) interval
reliable behavior simply because of random fluctuations dueE,O!c the real numbers. For e>.<a_mple,Yif|s th,e fe"",‘“"_e hu-

to limited amounts of data, even if the forecast were reliable.Midity; thenE would be the unitinterval. It will be indicated

As reliability analysis attempts to compare forecasts accord!oW the stated results apply to other important types of ob-
ing to an allegedly objective criterion, any result should be S€Tvations. In most cases, this should be obvious. We will
treated with the utmost care in order to avoid conclusionseXPliCitely mention whenever the assumptionsforre es-
which are in fact unwarranted by the data. An indication hasSential. . ) . ) )

to be provided of the observed frequencies’ expected varia- robability forecasts for might come in a variety of dif-
tions for a reliable forecast. Employing a Goodness-Of-Fit€rent forms. Again for simplicity’s sake, | will assume for
test (in one way or another) was suggestedHanill and the begmnm_g th_at the forecasts consist of distribution func-
Colucci (1997; Hamill (2003, but it seems that onlyEl- tions. A distribution functiorG (y) is defined as the forecast

more(2008 actually used them in connection with ensemble Probability for the evenr <y, for any arbitraryye £. A dis-
forecasts. Both problems will be revisited in this paper, andtribution function is sufficient to define the forecast probabil-

possible improvements will be suggested. ities for effectively” any event. _ .

The remainder of this introduction gives an overview over | nere are other forms of forecasts which can provide prob-
the paper. In Sectl the notion of reliability is discussed. 2aPilistic information, most notably ensemble forecasts. Later
A general definition of reliability is provided, from which a ' this section, it is discussed how the concepts outlined for
few commonly known conditions of reliability are derived. distribution functions can be applied to ensemble forecasts.

Special attention is paid to ensemble forecasts. Seion Important for our discussion is that both the observation
focuses on verifying reliability through histograms and re- and the forecast are considered random quantities. The idea

lated concepts. Stratification of forecasts is introduced as &f considering the observation a random quantity should not

means to check reliability on a more detailed level. The de-  1the more mathematically inclined reader will be aware of the
viations of observed frequencies from ideal behavior are anfact that a distribution function defines a measure orstiagebra
alyzed. A way to plot histograms is suggested that allows forof Borel sets, which, as far as | can see, contains all practically
an easier and immediate check as to whether the observedlevant events.
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require any further comment, but taking the forecast a ran- the eventY <y, counted over all instances where the
dom variable probably does. The conceptis presumably most  random forecasr is equal to the specific distribution
easily understood for binary events. In this case, the forecast  functionG”.

is just a single number (namely the forecast probability that

the event occurs), hence it makes perfect sense to speak of2. The condition T=G” on the left hand side of Eqlj

it, in conjunction with the observation, as a random quan- involves the whole forecast distributidh not only the
tity (as done e.g. bWilks, 2006 Toth et al, 2003 analyzing probability it assigns to the eveFit<y. One might think
the Brier Score). Typically, both are strongly interdependent, that the forecasr is already reliable if for any held
and it is exactly this dependency we are after in reliability fixed, I'(y) is a reliable forecast for the binary event
analysis. A random probabilistic forecast for a finite number “Y<y” (i.e. for everyy, the forecaspp=I"(y) and the
of categories is almost as easily contemplated as foronlytwo ~ corresponding event¥“<y” form a diagonal reliability
categories. Instead of a single probability, there isnow avec-  diagram). This condition is, in general, not sufficient,
tor of probabilities. A distribution function can be thought of but gives a weaker form of reliability than Eq.)(

as an infinite collection of probabilities. The concept of ran-

dom distribution functions obviously brings about all sorts of 3. A problem of Eq. {) is that the relatioT'=G might

mathematical difficulties, like what a distribution of distribu- occur with probability zero only, in which case there
tion functions should be etc, which we however need not to are no observed frequencies to calculate. Although con-
worry about here. It is of vital importance though to keep ditional probabilities are mathematically well defined
in mind that all quantities derived from the forecast distri- even in this situationBreiman 1973, the fact remains
butions, such as the numbér(y) for a particulary or de- that Eq. ) cannot be verified pointwise, unless the
scriptive statistics like for example the variance or interquar- forecastl’ assumes only a finite number of valués

tile range of the forecast inherit randomness frérand are with positive probability (which is an important special
therefore random variables themselves. case). This problem will be further discussed in S2ct.

Furthermore, averages over time are replaced with math-
ematical expectations. This of course imposes strong sta- 4. Equation {) is well known for the case of binary events,
tionarity requirements on both the series of forecasts and the ~ where it forms the basis for reliability diagramdlr-
series of observations (since we are interested in the aver-  phy and Winkler 1977 Toth et al, 2003 Wilks, 2000,
age behavior of forecasts and observations over time, not the calibration-refinement-factorizatiomyrphy and
over parallel universes). Without such requirements though,  Winkler, 1987 and the analysis of scoring rules, no-
the whole notion of observed frequency and hence reliability tably the Brier ScoreWilks, 2006 Toth et al, 2003.
would cease to make sense. We can thus dispense of the no- The essence of Eql)in the general case can be found
tational inconvenience of a time index. Since we assume the  verbalized inToth et al.(2003 2005. Although he does
probabilistic forecasts to be random quantities, we have to not explicitely say satHamill (2001) also seems to think
amend the notation to distinguish between random variables  of his probabilities being conditioned on the forecast (as
(which are functions) and a particular realization (which are on the left hand side of EQ), since otherwise it would
functionvalued. The probabilistic forecast as a random vari- not make sense to consider “expected values of proba-
able will henceforth be denoted &s Realizations of” are bilities”, as for example in Eq. (1) dflamill (200J).
distribution functions, denoted by Roman capitalor G.

The observation will be denoted 1%, while any particular 1.2 Ensemble forecasts
realization ofY will be denoted byy.

As was already mentioned in the introduction, reliability As was mentioned before, distribution functions are not the
means that for any individual forecast distribution, the limit- only possible way to specify probabilistic forecasts, with en-
ing observed frequencies of the corresponding observition semble forecasts being a very important alternative. An en-
are equal to the forecast distributiofoth et al, 2003 2005. semble is a collection of random variabl¥s=(X; ... Xk),
Within formulae, limiting observed frequencies are identified where X, € E for all k. A realization of X will be denoted
with probabilities and denoted with the symbl Another by x=(x1...xk). Loosely speaking, the ensemble members
interpretation of? is the probability measure on the space on are thought of as a collection of candidate values of the ob-
which the random variablgs andY live. Using this conven-  servationy.
tion, reliability can be formulated as This subsection discusses how reliability and in particular
P(Y < yIT = G) = G(y) foranyy € E. 1) Eq. @ trapslate to the contex} of ensemble forecasts. The
first question to be answered is how to interprete ensembles
as probabilistic forecast. A common (but not the only pos-
Eq. @) sible) interpretation proposes that an ensemble constitutes a

1. To all intents and purposes, the notatify <y|I'=G) draw of independent samples from an underlying or “latent”

might be read as “The limiting observed frequency of probability forecast” (Hamill, 2001, Talagrand et al.1997%,

The following remarks might help with the interpretation of
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664 J. Brocker: Reliability analysis

Anderson 1996. This definition applies to multivariate en- bution. This definition renders E¢R)(correct with the con-
sembles as well. dition “I'=G" being replaced by X=x". In weather fore-

A criterion of reliability similar to Eq. {) using this inter-  casting though, ensembles are produced in extremely high
pretation of ensembles can be formulated as follows.ILet dimensional spaces, and it is hard to see how this interpreta-
be the latent probability forecast, and K{*) denote the en-  tion should apply to such an ensemble when projected into
semble member of rarkkwhen sortingX in ascending order. one dimension. It must be said though that the standard in-
Furthermore, by conventiork @ and X (K+D are set to the  terpretation of ensembles as a sample (as employed in this
infimum and the supremum df, respectively, whence al- paper and in most studies elsewhere) is also but a highly ide-
waysI" (X ©@)=0 andI'(x(K+D)=1. It follows from Eq. 1) alized description of currently operational ensemble genera-
that tion schemes.

k The present section will be finished with a few words on
P(Y <x® |F=G)=K_+1 forall k=0... K+1. (2)  multidimensional ensembles. The tools discussed in this pa-
per for analyzing reliability of ensemble forecasts crucially
Equation ) states that the rank of the observatiommong  rely on the assumption that ensemble members and observa-
the ensemble members is a random variable which assumemns can be ranked. This is obviously not the case in higher
the values 1.. K+1 with equal conditional probabilitgt;.  dimensions. One possible solution is to project forecasts and
Equation @) is in fact a slightly weaker condition than observations into one dimension, thereby effectively restrict-
Eq. (1), and it is possible to construct a (somewhat patholog-ing attention to the reliability of marginal distributions.
ical) case where criterior®) is fulfilled but not criterion {). An alternative was suggested Hgnsen and Smit{2004).
To this end, suppose that=1, that is, there is only one en- Tg explain the general features of the idea, assumefthat
semble membek ), drawn from the distributioG. Now js a symmetric function of the ensemble, in other words a
supposeF(y) is a distribution with median zero but other- fynction that stays constant if the ensemble members are
wise arbitrary. IfY is drawn from the recentered distribution permuted. Hansen and Smitk2004 use the length of the
F(y—X®), then an easy calculation shows thatindeed  minimum spanning tree. Using, the variablesfo and
1 fi;i=1... K are constructed, wherg=7(X), and f; is
> similar but with thei-th ensemble member being replaced
by Y. Hansen and Smit{2004 suggest that reliability be
so that Eq.2) is fulfilled, while Eq. () is satisfied ifand only  checked using standard tools but with and the; taking

PY < XPIr=¢)=

if ¥ were drawn fronG. the roles of the observation and the ensemble members, re-
From Eq. @) we get the identity spectively. It seems questionable though if reliability of the
k original ensemble implies that ER)(or even only Eq.3)
PY < X%)= —— (3)  holds for fo and thef;. The difficulty is that althoughfy

k+1 and thef; all have the same distribution, they cannot be con-

This follows from the general fact that if a conditional prob- sidered independent draws from a distribution. | have been
ability of an event does not depend on the condition, then itunable to either prove or disprove E®) (or Eq.3) in this
must be equal to the unconditional probability of the event.sijtuation, but numerical investigations suggest that B)js(
Equation 8) has been the basis for most studies on the relianot true for arbitrary symmetri¢. The minimum spanning
bility of ensemble forecasts so far. As already mentioned intree might be a fortunate exception though.
the introduction, Eq.3) represents but a necessary condition
for reliability, as it follows from, but does not imply EqR)

In Eq. (), the conditioning involves the latent forecast dis- 2 Verifying reliability
tributionI", not the ensemble itself. This is an inconvenience,
since typically the latent forecast distributidnis either un-  In this section, practical aspects of reliability analysis,
known (at least to the person doing the reliability analysis)or more specifically, ways to test Eql)(and display
or a very unwieldy object, which is often the reason why en-the results are discussed. Suppose we have available
sembles are used in the first place. Equat®)mpesnothold an archive of forecasts and corresponding observations
any longer if the conditionI"'=G" is replaced by something T:={(G,, y,),n=1... N}, where th&G, are forecasts in the
like “X=x". A simple counter-example is presented in the form of distribution functions and, are observations. In
Appendix. In Sect2, | will return to this problem and discuss order to use these data for reliability tests, two difficulties
its ramifications. need be addressed first. Firstly, Et), (@s it stands, cannot

Assuming a latent forecast distribution as done above isbe employed directly for reliability tests in situations where
not the only way of establishing a connection between en-the condition[=G occurs with probability zero (i.e. there
sembles and probability forecasts. A different interpreta-is a continuous range of possible forecasts), as was already
tion of ensembles states that for &llthe ensemble mem- mentioned. In practical terms, it is obviously impossible to
ber X represents the;("Tl guantile of the forecast distri- calculate long term observed frequencies conditioned on a
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single forecast if no two forecasts will ever be the same. Toeate forecasts along the meanlgfthe ensembles could be
obtain testable reliability criteria in this situation, the condi- stratified along the ensemble mean. Thus the ensemble and
tion “I'=G" on the forecast needs being relaxed by consid-the latent forecast are identified, thereby ignoring any error
ering entire sets of forecasts. This point will be discussed inthat might arise due to the fact that the ensemble is but a sam-
Sect.2.1 Secondly, limiting observed frequencies will have ple from the latent forecast. This should cause no significant
to be estimated from only finite data amounts. Therefore, arror as long as the ensemble is not too small. The feasibility
forecast system might exhibit deviations from reliable behav-of this approach obviously depends on whether the stratum
ior simply because of random fluctuations. How to take theseA allows for efficient estimators of the evengA.

fluctuations into account is the subject of S&cp. The second solution applies if certain aspects of the latent
o forecast distribution are known. Although the latent fore-
2.1 Stratification of forecasts castI" is not accessible as a whole, the ensembles could be

] ] o stratified along various parameters which are important in the
In this section, the concept of forecast stratification is intro- generation of the forecast. In weather forecasting for ex-

duced. Forecasts are stratified by aggregating forecasts infgmpje  forecasts could be stratified along different weather
different strata, where a stratum is simply a prescribed set Ofegimes (as suggested byamill, 2003, which could be

forecasts. Forecast strata can be specified by means of dgyentified using the model analysis or even measurements at
scriptive quantities, for example the forecasts’ interquartile;y,ecast time.

range, the mean, or the level of Gaussianity (according 0 The convenient feature of ensemble forecasts is that the
some measure of Gaussianity), thereby delineating the foreﬁght hand side of Eq4) does not depend on the condition-
casts along that particular quantity. Individual forecast stratqng and hence is the same for all forecast strata. The math-
will be denoted by sans serif capitaisB, . ... The notation '

S o , ematical reason is that the events are defined in a particular
GeAindicates that the d|str_|bu_t|on functian belongS_ to the way which renders all corresponding forecast probabilities
forecast stratunh. The motivation for forecast stratification

. . ) S constant. If the forecast is available in the form of a dis-
is to obtain a more detailed reliability assessment of the foresiption function. this is not automatically the case. Under

cast system than by just a single histogram, but at the samg,iy conditions though, it is possible to transform the ob-
time to aggregate enough forecast instances per forecast str@ap ations so that all forecast distribution functions for the
tum to get sufficiently accurate frequency estimates. Therggnsformed variables are uniform, and in particular inde-
is & price to pay for the advantages of forecast stratificationpenqent ofG, which facilitates forecast stratification. The
Since agreement between forecast probabilities and observed ainder of this section explains the “probability integral
frequencies is still not required for each individual forecast, {4 nsform” (PIT), which can be employed to this effect. Sup-
but only on average across a forecast stratum, we still end UBose again thaf is our probabilistic forecast, issued in the
testing a weaker form of reliability than required by Edb. ( form of distribution functions. The PIT of is the random

or (2). variableI"(Y) (Devroye 1986 Gneiting et al. 2005. We

Let us start carrying out this program for E@),(which 516 interested in the limiting observed frequencies of the PIT
covers the practically important case of ensemble forecastsF(Y)_ First note that

Supposing thad is a particular forecast stratum, we can av-
erage both sides of EqR)over allGeA. The result is P(C(Y) < zIl = G) =P(GY) < z|l = G), (5)

PY<X®|I e A)= k forall k=0...K+1 (4)  Simply because iF=G, the events;(Y) <z andl'(Y) <z are
K+1 the same. IfF(y) is an invertible distribution function, the
eventF (Y)<z is the same as the evelik F~1(z). Applying

(k)
where as befor&'*) denotes the ensemble member of rankthiS t0G in Eq. (5), we obtain

k when sortingX in ascending order. The left hand side of
Eq. @) could be estimated by the corresponding observeqp(r(y) <ZF=G) =P <G L@l =G). (6)
frequency, that is by counting the fraction of instances in the

forecast stratum for which the observation exceeds less thaBut if we assume the forecastto be reliable, we can employ
k ensemble members. What has been gained so far is that olq. (1) to write the right hand side of Eg6) as

served frequencies can be calculated over a larger number of

instances (depending on the number of instances in the fordf(Y < G *@)IT = G) = G(G(2)) ==z )
cast stratum). But there remains a problem: as mentione
in Sect.1, the latent forecas is typically inaccessible in
the case of ensemble forecasts, whence it is not clear how tp(yy < ;i = G) = 2. 8)
stratify the latent forecast along different forecast strata. Two

possible solutions to this problem will be suggested hereEquation 8) reduces the reliability analysis of one-
The first solution is to use the ensemble for stratification in-dimensional observations to checking whether the PIT has
stead of the latent forecast. For example, if we want to delin-uniform conditional distributions.

%ombining Eqgs.®) and () we obtain
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An important assumption in the derivation of E§) (vas 1998 Toth et al, 2003 Talagrand et al.1997. The his-
that all forecast distribution functiong are invertible. This  togram comprises a plot of the observed frequengjesver
seems a strong assumption at first sight, but it has to b&. The observed frequencies (or “height of the histogram
kept in mind that distribution functions are by construc- bars”) is subsequently compared to the corresponding fore-
tion monotonous. If the distribution functioi has jumps  cast probabilities by visual inspection. If the forecasts are

though, the equatiop=F(y) might not have a solutiom, stratified, each forecast stratum requires its own histogram,
whence our derivation of Eg8) breaks down. In this case since there is a set of observed frequencies and correspond-
the PIT might in fact have a non-uniform distribution. ing forecast probabilities per forecast stratum.

As in the derivation of Eq.4), averaging both sides of ~ The problem with interpreting histograms is to decide
Eq. (8) over a specific forecast stratudngives when a forecast probability and a corresponding observed
P(I(Y) < 2|G € A) =z, ) frequency should be considered “similar”. If the forecast

is reliable, a large archive of forecasts and corresponding
Again, Eq. Q) represents a weaker reliability condition than verifications is expected to yield better agreement between
Eqg. @), for the same reasons that E4) presents a weaker forecast probabilities and observed frequencies than a small
form of reliability than Eqg. {). A special but practically archive, as in the latter case larger random variations are ex-
important case of Eq.9] obtains by choosing only a sin- pected. Hence one and the same histogram has to be inter-
gle “forecast stratum” which in fact encompasses all possiblepreted differently depending on the size of the archive. To
forecasts. The resulting equation is allow for unambiguous interpretation of the histogram, the
graphical presentation should provide guidance as to whether
PI(¥) <2 =2z (10) the deviations from ideal behavior are within the expected
which is the PIT-version of Eq3}J and amounts to checkinga range of fluctuations. lBrocker and SmitH2007h, this
single distribution only. Again, it is well known that EQL@) problem was considered for the case of forecasts for binary

is but a necessary condition for reliabilit@eiting et al, observations. In this particular situation, reliability is often
2009, and examples of forecasts and observations for whicHnvestigated by means of reliability diagrams. Ideally, relia-
Eq. (10) holds but not Eq.8) are easily constructed. bility diagrams should be diagonal, but in practice, random
fluctuations can cause the reliability diagram to exhibit de-
2.2 Estimating observed frequencies viations from this behavior even if the forecast system was

reliable. InBrocker and Smith(20078, it was suggested

After having stratified the forecasts, we have to compare obhow to modify reliability diagrams so as to visualize whether
served frequencies with forecast probabilities independentlyjyctuations are still consistent with reliability or not. The
for each forecast stratum. If the PIT is employed, then ac-ajm of the present discussion is to develop similar tools for
cording to Eq. 9) this amounts to checking whether the the more general forecasts considered in this paper.
transformed observatioi, (y,) exhibits a uniform distribu- The idea is to plot the histogram “on probability paper”:
tion. This is a standard problem of statistics and will not be j,stead of the actual observed frequency, we show how prob-
considered any further in this paper. If ensemble forecastge that observed frequency would be if the forecast was
are considered, then according to E4). (e have to verify  rgjiaple. To explain what this means, assume first the gen-

that the observed frequencies eral situation in which there arg distinct events possible.
Hxi_1 < yn < xx;n € Ip) (The predominant example we have in mind is that there
Jia = #in (11) are K ensemble members and the events are defined as the
possible ranks of the verification among the ensemble mem-

agree with the corresponding forecast probabilitigs;.  bers; in this particular case, there d@e-1 possible events,

Here, x; are the ensemble members feel... K, and per  whenceL=K+1.) Suppose the forecast probability for the
definition xo=—00, xx +1=00. Furthermore/, is the set of  event labeled is p;, and the total number of trials i§, then
instances: for which the ensemble forecast falls into fore- — assuming that the forecast probability represents the true
cast stratunA, and the symbol “#” in front of a set denotes chance of events — the numbgrof instances exhibiting the
the number of elements in that set. A widely applied specialevent is of binomial distribution with parametessand N.

form of this procedure results by choosing the trivial forecastif B(n;, p;, N) denoted the cumulative binomial distribution
stratification of considering a single stratum encompassingunction, then the number

all forecasts.

This subsection is devoted to testing and displaying they, = B(n;, p;, N) (12)
agreement between forecast probabilities and observed fre-
quencies. This is one of the oldest problem of statistics, if notgives the probability that, for a reliable forecast, an observed
the oldest. In meteorology, the most widely applied tool for frequencysmallerthann;/N occurs. The interpretation of
this purpose is the histogram, presumably because of its exthe v; is that for reliable forecasts, the are expected to be
ceeding simplicity Hamill, 2001, Hamill and Coluccj1997, smaller than a given numberwith a probabilityg. In other
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2m Temp. at WMO 03772, Lead Time 240 h

2m Temp. at WMO 10015, Lead Time 240 h
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Fig. 1. Stratifiedv;-diagram for London Heathrow. Forecasts are Fig. 2. Stratifiedv;-diagram for Helgoland Dne. Forecasts are
stratified along the ERPS and distributed among five strata so thastratified along the ERPS and distributed among five strata so that
each stratum contains 20% of all instances. Going from the top toeach stratum contains 20% of all instances. Going from the top to
the bottom viewgraph, the ERPS increases (i.e. the expected skilhe bottom viewgraph, the ERPS increases (i.e. the expected skill
becomes worse). The-diagrams are fairly uniform for all strata, becomes worse). Thg-diagrams are generally less uniform for
except for the second one. smaller ERPS (upper viewgraphs).

words, if the forecast was reliable and we could repeat the resuggested to plot diagrams of therather than the;. Note
liability test an infinite number of times with new data each that if the forecasts have been stratified, tAea#l, (as in
time, then for any;, a fractiong of all test runs would exhibit  Eq.11). If furthermore the events are defined by ranking the
av; smaller thary. Therefore, the; provide direct quanti-  verification in an ensemble forecasts, thgp=n;/N (again
tative information as to whether the deviations from reliable as in Eq.11).

behavior are systematic or merely random. Hencesitlare | found that the readability of thg-diagram is further im-
more easy to interprete than theas used in standard his- proved by scaling the ordinate by the logit-transformation
tograms. In all other respects, the interpretation ofithis log(1=;). This has the effect of displaying the small proba-
exactly the same as that of the. For these reasons, it is bilities 0.1, 0.01, 0.001, . .. as well as the large probabilities
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Fig. 3. Unstratifiedv;-diagrams for 2 m-temperature ensemble forecasts for various locations (rows) and lead times (columns). The ordinates
display the probability of the observed frequency (seel2jjon a Iogiﬁ—v)-scale. The abscissa shows the ranks, binned into 17 bins (3
ranks per bin).

0.9,0.99,0.999 ... equidistantly. In Sect3, the reliability  of any particular ordinate being below the valyés indeed

of some ensemble weather forecasts will be analyzed using, the probability of all ordinates being below the valye
the v;-diagram. In Figsl and 2, ensemble forecasts have is smaller, namely;1’ (since there are 17 bins). This so-
been stratified along five forecast strata. The correspondealled Bonferroni-correction needs to be applied if the whole
ing v;-diagrams are displayed in five individual viewgraphs. histogram is considered. In alj-diagrams shown in this
The verification was distributed among 17 possible eventspaper, Bonferroni-quantiles for 5% and 95% are shown as
whence there are 17 bars in each viewgraph. Unstratified black horizontal lines. A detailed explanation as to the data
diagrams are shown in Fi®. These plots are part of the underlying these figures is given in Segt.

results to be discussed in Se8t. When interpreting these

diagrams, it is important to note that while the probability =~ Obviously, plotting ay;-diagram for each forecast stratum
requires plenty of space and might be unnecessarily detailed,
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whence it would be convenient to have a summary statistiand observed frequencies. The overall score of the forecast
which allowed for condensing a-diagram into one num- as defined by Eq1¥) can be decomposed as follows

ber. Thus, a single graph can contain summary statistics for,

different forecast strata. This section will be finished with Z —log(p)ni/N = Z —log(n;/N)n;/N + R, (16)
discussing such a summary statistic. The general idea of ! !

Goodness-Of-Fit tests is to measure the similarity of the foreyynhere the first term on the right hand side is the skill of the
cast probabilitiep; and the observed frequencieg’ N by “forecast’n;/N. SinceRr is positive definite, Eq.16) seems
means of a suitable contrast function. The contrast function suggest a fool-proof way of improving forecast skill: We
should vanish ifp;=n; /N for all / but otherwise be positive.  simply adopts;/N as our new forecast probability for cate-
Furthermore, in order to decide when the contrast should bgory ;. Equation £6) ensures that a thus “recalibrated” fore-
considered large, the distribution of the constrast function hag.ast cannot have a skill worse than the original forecast. This
to be known (at least asymptotically for largg. A partic-  conclusion is faulty though, since the recalibrated forecast is
ular example is Pearson’s origingf Goodness-Of-Fit test.  evaluated “in sample”, which means on the same data already
For unstratified forecasts, employing thé Goodness-Of-  ysed to re-calibrate the forecast. This is a grave violation of
Fit test was suggested blamill (2001 andAnderson(1999  the principles of statistical good practice. The conclusion
in the context of ensemble weather forecasts. In the preseng justified though ifR is not merely positive but unusually
paper, it is proposed to perform a Goodness-Of-Fit test indiiarge, that is larger than would normally be expected if the
vidually for each forecast stratum. For the contrast function,fgrecast was reliable. What should be considered an unusu-

the choice taken here is the statistic ally large value forr is quantified by thex 2-distribution.
o A problem of the discussed Goodness-Of-Fit test (and, in
R = Z —log ( /N) ni/N, (13) fact, of any other Goodness-Of-Fit test) is that it is always
7 "

possible to construct histograms which will perfectly pass the
test, despite exhibiting obvious pathologies that are unlikely
to arise by mere randomness. For example, histograms often
display a clear trend or are convex. A trend upwards indicates
that higher categories are assigned too small forecasts proba-
bilities to, or in other words, they verify too often. In the case
of ensemble forecasts, this indicates under-forecasting of the
is the cumulative; *-distribution function withk —1 degrees  gnsembles. Convex histograms can arise for two reasons.
of freedom. The second fact of thestatistic is an interest-  Ejtner the ensembles exhibit systematically too small spread,
ing connection to the Ignorance score. The quality of prob-nq thus the extreme ranks verify too often. Or the histogram
abilistic forecasts is most appropriately measured by meang, tact confounds two forecast strata, one containing over-
of proper scores@neiting and Raftery2007 Brocker and  forecasting and one containing under-forecasting ensembles.
Smith 20073, of which the Ignorance is one example. The gince thegr-statistic is invariant against re-ordering of the
Ignorance score is defined as follows: for each observationaieqgories though, forecasts with convex or tilted histograms
ya there is a corres.p_onding. verifying probability, v_vhich is might pass the Goodness-Of-Fit test undetected.

the forecast probability assigned to the event which even- There are numerous other statistics suitable for Goodness-
tually occurs. The verifying probability is denoted by,.  of.Fit tests which, other than Pearson’s classical statistic, are
Note that in our case, due to the stratification, the forecastgnsitive to the ordering of the categori@&nfore 2005,
probabilities do not depend explicitely on time. such as the Craér-von-Mises statistic. Apart from the-

henceforth referred to a&-statistic, which is motivated by a
coincidence of two interesting facts. The first fact about the
R-statistic is that &'-R is asymptotically ofy 2-distribution
with K —1 degrees of freedom (see eMood et al, 1974).
Hence, rather thar itself, we consider,2(R), whereP, .

The Ignorance is defined as statistic though, | have been unable to relate any of the com-
1 mon Goodness-Of-Fit statistics to the reliability term of a
v XH: —log(py,) = Xl: —log(pp)ni/N. (14)  proper score.

The Ignorance is a proper score, which means that for any3  Numerical examples
two probability assignmentg;, ¢;,[=1... L,
In this section, the discussed tools are applied to ensemble
Z ~log <ﬂ> g >0 (15) forecasts of two-meter temperature anomalies. Results are
qi - presented for five different locations (see Tabfer details).

The forecasts consist of the 50 (perturbed) member ensem-
with equality if and only if pj=¢; for all I=1...L. Set-  ble produced by the ECMWF ensemble prediction system.
ting ¢;/=n;/N demonstrates that thg-statistic is positive  Station data of two-meter temperature was kindly provided
definite, which justifies interpreting it as a contrast function by ECMWEF as well. Forecasts were available for the years
quantifying the discrepancy between forecast probabilities2001-2005, featuring lead times from one to ten days. All

1

www.nonlin-processes-geophys.net/15/661/2008/ Nonlin. Processes Geophys., 83368063



670 J. Brocker: Reliability analysis

Table 1. Locations and beginning of the data record for the studied data sets.

WMO Number Name Location Data Record starting
03772 London Heathrow AP 829 N 000°27 W 1Jan 1981
10015 Helgoland Dne 54211 N 00754 E 1Jan 1981
10488 Dresden Klotzsche AP ®18 N 013’47 E 1 Sep 1991
72503 NY La Guardia AP 4016 N 07354 W 1 Apr 1981
94610 Perth Intl. AP 356 S 11857 E 1Jan 1981

data verified at noon. The observations from years previougal expectation value (Y, G) whenY is assumed to be of
to 2001 were used to fit a temperature normal, consisting oflistributionG, that is
a fourth order trigonometric polynomial. The normal was

subtracted from both ensembles and observations. FurtheERPSG) := / S(y, G)dG (y). (18)
more, the ensembles were de-biased, using the years 2001
and 2002. In other words, the ERPS is the score we would obtain on av-

Generally, the ensembles display significant deviationserage if the verification were in fact drawn from the forecast.
from reliability, in particular for short lead times. Plots The ERPS is a function of the forecasts alone. To compute
were produced for three different diagnostics: Stratifigd  the ERPS, no observations are required. Of course, the ERPS
diagrams (Figsl, 2), unstratifiedv;-diagrams (Fig3), and  does not provide the true score of the forecast, but rather a
stratified R-statistics (Fig4). Due to lack of space, only two  self-rating of the forecast distributia®, similar to, but more
stratifiedv;-diagrams (Figsl for London Heathrow and for comprehensive than for example the variance&ofIn the
Helgoland Dine), lead time 240 h, are shown here. The strat-present situatiorG is not available explicitely, whence the
ified v;-diagrams and-statistics were produced by grouping ERPS has to be estimated from the ensemble. This is done
the forecasts according to their expected ranked probabilithere by first computing (x;, F_;) for all ensemble members
score (ERPS), as will be explained below. Although there arex;, Where F_; is the empirical distribution function of the
51 ranks, only 17 bins were used rather than 51, in order t&nsemble without théth member. The eventual estimate of
avoid overly cluttered plots. Since 17 divides 51, there arethe ERPS is obtained by averaging thus:
no aliasing effects (i.e. each bin contains the observed fre- 1
guencies of exactly 3 of the 51 possible ranks). UnstratifiedERPSx) := — Z S(xi, F-i)

. A . - K <=
v;-diagrams are shown in Fi§. Without exception, the cor- i

responding (unstratifiedg-statistics (not shown) exceeded |t turns out that for the forecasts used in this study, the ERPS
the 95% quantile, indicating significant deviation from re- correlates very strongly with the ensemble standard devia-
liable behavior. Finally, stratifie®-statistics are shown in  tion. In general, this need not be so. All forecasts were

Fig. 4. The configuration for the bins and forecast strata for s¢ratified according to their EPRS and ranked so that each
the R-statistics was exactly like for the unstratified and strat- fgrecast stratum contained 20% of all time instants.
ified v;-diagrams. In Figs.1 and2, stratifiedy;-diagrams are shown for Lon-

A general result of the present study is that ensemblegjon Heathrow and Helgolandibe, respectively, for lead
which “pretend” to have a good score are particularly un-time 240h. In both figures, the five viewgraphs represent
reliable, as will be demonstrated by Stratifying the fore- w_diagrams for the five forecast strata. The uppermmpst
casts along the expected ranked probability score. To degiagram corresponds to forecast with very small ERPS (i.e.
fine the expected ranked probability score (ERPS), consideghe self-rating is high), while lower diagrams correspond to
the ranked probability scord&pstein 1969 Murphy, 1971)  forecasts with increasingly larger ERPS (i.e. the self-rating

(RPS), defined via the scoring rule is low). Observed frequencies for forecasts with large ERPS
are in general more uniform than for the smaller ERPS fore-
S(y,G) = /(G(ﬂ) — H(n — y))%dn, (17)  casts. Furthermore, for HelgolandiBe the diagrams for

small ERPS seem to be tilted down to the left, unlike as
whereG is the forecast distribution anHl is the Heaviside for large ERPS, for which no such trend is apparent. The
function, which is one for positive arguments and zero other-corresponding unstratifieg-diagrams (Fig3) or stratified
wise. Note that the scoring rule (Efj7) gives a small value  R-statistics (Fig4) provide less specific information, albeit
if the forecast is concentrated negrwhich implies that a  focusing on different aspects. As to the precise deficiency of
small RPS indicates a good score. The RPS is known tdhe high ERPS forecasts, the full stratifigediagrams would
be a proper scoring rulésheiting et al. 2005 Brocker and  need to be consulted (similar to Figsand2, but for shorter
Smith, 20073. The expected RPS (ERPS) is the mathemati-lead times).
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Fig. 4. Stratified R-statistic for 2 m-temperature ensemble forecasts for various locations (rows) and lead times (columns). The ordinates
display the p-values of the-statistic (which has agz-distribution) ona Ioglﬂv)-scale. The abscissa shows the ERPS, binned into 5 bins
with an equal number of instances in each bin. The ERPS increases when going from left to right (i.e. the expected skill of the forecasts

decreases).

Figure 3 shows the unstratified;-diagrams for lead time  connections between these deficiencies and ERPS. For lead
48h, 96 h, 168 h, and 240 h (in columns 1-4, respectively)time 240 h, the unstratifieg diagram for London Heathrow
while diagrams of the stratifie®-statistics are shown in (first row, last column of Fig3) indicates an overpopulation
Fig. 4. As can be discerned from both diagnostics, the re-of the highest ranks, which, at first sight, seems not to be
liability seems to improve for higher lead times. The unstrat- present at the corresponding stratifiedliagram (Fig1). It
ified v;-diagrams indicate too frequent occurrences of the exshould be noted though that the stratified observed frequen-
treme ranks (the diagram is convex). An overall bias seemgies of the highest rank all happen to be comparably high at
to be present as well, as the diagrams seem to be tilted dowthe same time, causing the unstratified observed frequency
to the left. Unstratified;-diagrams can confound bias and (just being the average of the stratified ones) to be signifi-
insufficient spread and do not allow to discern any possiblecantly too high.
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The stratifiedR-statistic (Fig.4) helps to clarify the situ- to be uniform even if the forecast probabilities are different
ation somewhat. Forecasts with small ERPS are, in generafpr different categories. Furthermore, a slightly nonstandard
significantly less reliable than forecasts featuring large val-Goodness-Of-Fit statistic was discussed. The employed con-
ues of ERPS. Forecasts generally become more reliable wittrast function relates directly to the reliability term of the
increasing lead time. For short lead times though, almost allgnorance score. Again, Goodness-Of-Fit tests can be sep-
R-statistics are beyond the 90% quantiles, with some of therarately applied to individual forecast strata. The discussed
even being off the axis scale, indicated by triangles pointingtools are applied to 2 m-temperature anomalies for several
down. For London Heathrow, this phenomenon is evidentlocations and lead times. In addition to demonstrating the
for small lead times, while for large lead times, forecasts oftools at work, the results suggest that the forecasts are par-
different ERPS seem to be more or less equally reliable. Foticularly unreliable if they are expected to have high skill. It
location WMO10015, again there is a significant discrepancyseems that the forecasts are both biased and under-disperse.
in reliability between forecasts with large and small ERPS, To rectify this problem, different amounts of bias correction
but here this phenomenon is present even at lead time 240lould need to be applied to different forecast strata, as a stan-
(second row of Fig4). dard (indiscriminate) bias correction would affect all fore-

The results are in general confirmed by the other inves-casts similarly.
tigated locations. Location WMQ10488 is rather similar to
WMOO03772 in that for longer lead times, all forecasts be- .
come more reliable, while for WM094610 and WMQO72503, Appendix A

low ERPS forecast tend to be unreliable throughout. In this appendix, it is shown (by means of a simple counter-

We can conclude that the small ERPS forecasts have a te;é'xample) that Eq2) generally does not hold if the condition

dency to under-forecast. This problem cannot be remove I'=G" is replaced by X=x". To recall the statement, if

by a simple bias correction, as this would affect all forecas:tsiS the observation and is an ensemble forecast f&rwith
equally. It seems that small ERPS forecasts need diﬁerenk members, then in general

(stronger) de-biasing than large ERPS forecasts. As an oper-

ational recommendation, the present study suggests that for%ﬁ(y < x®)x) £ k (A1)
casts be stratified first, with different de-biasing being subse- K+1

quently applied to each stratum. If for this purpose forecastsyen ity and X are independent draws from the same un-
shou_ld be stratif_ied alpng_the ERPS or rather somehow 3|58erlying distribution. Here is a simple example. Suppose
requires further investigation. the underlying or latent forecast distributighis a normal
distribution with standard deviatian and a meam. We as-
sumeyu to be random too, with a standard normal distribution
(i.e. with mean zero and standard deviation one), thus giving

. L . , rise to randomness of the forec#st while o is known and
In this paper, the reliability of probabilistic forecasts, in par- fixed. In other words, for the verification and the ensemble
ticular ensemble forecasts, was revisited. A general mather"nembersxl X, we assume the model

matical definition of reliability was given, formalizing defi-

nitions of reliability given earlier by several authors. Afre- Y = u+ oy,

quently employed tool for reliability analysis, the rank his- x, — w4 or,

togram or Talagrand diagram, was discussed, and two short-

comings were pointed out. A long noted fact is that a uniform

rank histogram is but a necessary condition for reliability. To x , — ;1 + o7, (A2)
obtain a more detailed picture of the reliability of the fore-

casting systems in different situations, it was suggested thahere u; ro...rg are independent random variables with
forecasts be grouped, forming so-called forecast strata, angtandard normal distribution. For simplicity, let us assume
that individual histograms be plotted for all forecast strata.there is only one ensemble member, thakiss1. We claim

For a reliable forecast System, all forecast strata should exthat even thOUgh the verification is smaller than the ensemble
hibit uniform histograms. Secondly, histograms computedmember with probability 0.5 on average, this is not true for
from limited data amounts are never exacﬂy uniform, eveneaCh individual forecast instance. To see this, we inV@Stigate
for reliable forecast systems. Hence, an indication is neede#he distribution

how far a histogram is expected to de\_/late from un_n‘ormlty O(ylx) = P(Y < y|X1 = x),

merely due to randomness. One possible solution is to plot
the probability of the observed frequency, instead of the ob-which is the distribution of the verification given the ensem-
served frequency itself, thereby providing an indication of ble (or the single ensemble member in this case). We will
the likelihood of the result under the hypothesis that the fore-demonstrate thab (y|x) is not equal to 0.5 foy=x, or in
castis reliable. Another advantage is that this plot is expecteather words that the median d@f(y|x) is not equal tox.

4 Conclusions
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An easy calculation shows thdi(y|x) is a normal distri-
bution as a function of with mean (and also median) equal
to E(Y|X1=x). But it follows from the relationsA2) that

E(Y|X]_ = X) = E([L|X]_ = x) = mx.
Hence the median ab (y|x) is equal torlgzx, which is dif-

ferent fromx. In other words,
P(Y < X1|X1 =x) = &(x|x) # 0.5.

For the unconditional probabilit]f’(Y <X1) however, we
get

PY < X1) = EPY < X1|u))
E(P(ro < 1))

= % (Fz(oo) — F2(—oo)>
1

F@)dF(r)

> (A3)

where F(r) is the distribution of the; in Eq. (A2). This
calculation shows that indeed on average, the verification i
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