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Abstract. Reliability analysis of probabilistic forecasts, in
particular through the rank histogram or Talagrand diagram,
is revisited. Two shortcomings are pointed out: Firstly, a
uniform rank histogram is but a necessary condition for re-
liability. Secondly, if the forecast is assumed to be reliable,
an indication is needed how far a histogram is expected to
deviate from uniformity merely due to randomness. Con-
cerning the first shortcoming, it is suggested that forecasts
be grouped or stratified along suitable criteria, and that reli-
ability is analyzed individually for each forecast stratum. A
reliable forecast should have uniform histograms for all in-
dividual forecast strata, not only for all forecasts as a whole.
As to the second shortcoming, instead of the observed fre-
quencies, the probability of the observed frequency is plot-
ted, providing and indication of the likelihood of the result
under the hypothesis that the forecast is reliable. Further-
more, a Goodness-Of-Fit statistic is discussed which is es-
sentially the reliability term of the Ignorance score. The dis-
cussed tools are applied to medium range forecasts for 2 m-
temperature anomalies at several locations and lead times.
The forecasts are stratified along the expected ranked prob-
ability score. Those forecasts which feature a high expected
score turn out to be particularly unreliable.

1 Introduction

Suppose the objective is to make forecasts about the possible
valuesy of a random variableY , the observation, which is
unknown by the time the forecasts have to be made, but the
actual value of which will be revealed at some future time.
The observation is often referred to as the verification. A
probability forecasts is a probability assignment to a collec-
tion of potential events. This paper focuses on forecasts for
more than just two events. The events are typically chosen

Correspondence to:J. Br̈ocker
(broecker@pks.mpg.de)

so as to be exhaustive (i.e. at least one event will happen for
sure) and mutually exclusive (i.e. if one event happens, none
of the others does). The events are defined in terms of the
observation, that is, knowing the observation is sufficient to
determine which of the events has occurred. Both the defini-
tion of the events as well as the assigned forecast probabil-
ities can (but do not necessarily have to) vary between dif-
ferent forecast instances. As an example, consider the case
whereY is a variable between zero and one, for example rel-
ative humidity. A probabilistic forecast might be specified by
assigning varying probabilities to the ten sub-intervals with
vertices k

10; k=0 . . . 10. Alternatively, a probabilistic fore-
cast might be specified by defining ten intervals of varying
length, each of which carries the forecast probability 0.1.

In very broad terms, this paper is about how to verify
whether a probabilistic forecast has “come true”. The appro-
priate answer to this question depends on the interpretation
of probability. One common (but not the only possible) in-
terpretation of probability is that of a long term observed rel-
ative frequency. If each individual forecast probability could
be compared to a large number of observations, the degree of
agreement between forecast probabilities and observed fre-
quencies could be tested. If no significant disagreement oc-
curs, the forecast is called reliable or calibrated. Reliabil-
ity relates the forecast probabilities to actually observed fre-
quencies and thus provides the forecast with a degree of ob-
jectivity. It is important to note that reliability is not the only
desirable property of a probabilistic forecast, another one be-
ing resolution. Broadly speaking, a forecast shows resolution
if different events are antedated by different forecast behav-
ior. For example, a rain forecast has resolution if forecasts
preceding rainy days are significantly different from those
preceding sunny days. This paper deals exclusively with re-
liability. For extensive discussions on resolution and ways to
quantify it, see for exampleWilks (2006); Toth et al.(2005);
Bröcker(2008).

A frequently employed tool to analyze forecast reliabil-
ity is the histogram, in particular the rank histogram or Ta-
lagrand diagram. The idea of histograms is to divide the
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662 J. Br̈ocker: Reliability analysis

observations among a limited number of categories, thereby
defining a set of exhaustive and mutually exclusive events.
Then the observed frequencies for these categories are com-
pared with the corresponding forecast probabilities. Often
the nature of the problem already suggests a set of categories,
and sometimes it is even possible to define a set of categories
with all corresponding forecast probabilities having the same
numerical value. In the latter case, the histogram of observed
frequencies is expected to be more or less uniform.

In this paper, I discuss how both information content and
reliability of histograms can be improved. As currently em-
ployed, histograms suffer from two long noted conceptual
problems. Firstly, a single histogram can only display the
observed frequencies averaged over all forecasts. Reliabil-
ity though means agreement of forecast probabilities and ob-
served frequencies for each probability forecast individually.
It might be objected that this definition of reliability is mean-
ingless if for each forecast distribution, there is at most one
observation. This is a practical difficulty, but not a conceptual
one, as will be discussed later when reliability will be for-
malized using conditional probabilities. At any rate, there is
agreement in the literature that a uniform (unconditional) his-
togram is only a necessary, but not a sufficient condition for
reliability (Hamill and Colucci, 1998; Hamill, 2001; Gneit-
ing et al., 2005). In order to alleviate this problem, the con-
cept of forecast strata is introduced. Essentially, the fore-
casts get stratified along some descriptive variable, and sub-
sequently reliability is analyzed individually for each stra-
tum. Secondly, in the past, too little attention was paid to the
question as to whether the obtained results are actually sta-
tistically significant. A forecast might show deviations from
reliable behavior simply because of random fluctuations due
to limited amounts of data, even if the forecast were reliable.
As reliability analysis attempts to compare forecasts accord-
ing to an allegedly objective criterion, any result should be
treated with the utmost care in order to avoid conclusions
which are in fact unwarranted by the data. An indication has
to be provided of the observed frequencies’ expected varia-
tions for a reliable forecast. Employing a Goodness-Of-Fit
test (in one way or another) was suggested byHamill and
Colucci (1997); Hamill (2001), but it seems that onlyEl-
more(2005) actually used them in connection with ensemble
forecasts. Both problems will be revisited in this paper, and
possible improvements will be suggested.

The remainder of this introduction gives an overview over
the paper. In Sect.1 the notion of reliability is discussed.
A general definition of reliability is provided, from which a
few commonly known conditions of reliability are derived.
Special attention is paid to ensemble forecasts. Section2
focuses on verifying reliability through histograms and re-
lated concepts. Stratification of forecasts is introduced as a
means to check reliability on a more detailed level. The de-
viations of observed frequencies from ideal behavior are an-
alyzed. A way to plot histograms is suggested that allows for
an easier and immediate check as to whether the observed

frequencies are consistent with reliability or not. A strati-
fied Goodness-Of-Fit-test is introduced as a convenient sum-
mary statistics of the histogram. The statistic employed in
this paper is similar to Pearson’s classical statistic in that it
is asymptoticallyχ2-distributed, but in addition can be in-
terpreted as the reliability term of the Ignorance score. In
Sect.3 the discussed tools are applied to a number of opera-
tional probabilistic weather forecasts. In these examples, the
forecasts are stratified along the expected ranked probability
score. The expected ranked probability score is not the true
score of the forecast but the expectation value of the score
if the verification was in fact distributed as specified by the
forecast, and hence is a property of the forecast alone. The
results indicate that the investigated forecasts are the less re-
liable, the better their expected ranked probability score. In
this example, forecasts with small expected ranked proba-
bility score appear to suffer from both bias and insufficient
spread. It seems that to rectify the problem, a de-biasing
conditionedon the expected ranked probability score is nec-
essary, since standard de-biasing would affect all forecasts at
the same time. Section4 concludes.

1.1 General considerations

In this subsection, a general definition of reliability along
with its most important consequences is discussed. We will
first fix some notation which will be employed throughout
the paper. LetY be the observation, which is unknown and
to be forecast. For most of this section, in order to avoid un-
necessarily technical language and concepts, the observation
Y is assumed to take values in a (possibly infinite) interval
E of the real numbers. For example, ifY is the relative hu-
midity, thenE would be the unit interval. It will be indicated
how the stated results apply to other important types of ob-
servations. In most cases, this should be obvious. We will
explicitely mention whenever the assumptions onE are es-
sential.

Probability forecasts forY might come in a variety of dif-
ferent forms. Again for simplicity’s sake, I will assume for
the beginning that the forecasts consist of distribution func-
tions. A distribution functionG(y) is defined as the forecast
probability for the eventY<y, for any arbitraryy∈E. A dis-
tribution function is sufficient to define the forecast probabil-
ities for effectively1 any event.

There are other forms of forecasts which can provide prob-
abilistic information, most notably ensemble forecasts. Later
in this section, it is discussed how the concepts outlined for
distribution functions can be applied to ensemble forecasts.

Important for our discussion is that both the observation
and the forecast are considered random quantities. The idea
of considering the observation a random quantity should not

1The more mathematically inclined reader will be aware of the
fact that a distribution function defines a measure on theσ -algebra
of Borel sets, which, as far as I can see, contains all practically
relevant events.
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require any further comment, but taking the forecast a ran-
dom variable probably does. The concept is presumably most
easily understood for binary events. In this case, the forecast
is just a single number (namely the forecast probability that
the event occurs), hence it makes perfect sense to speak of
it, in conjunction with the observation, as a random quan-
tity (as done e.g. byWilks, 2006; Toth et al., 2003, analyzing
the Brier Score). Typically, both are strongly interdependent,
and it is exactly this dependency we are after in reliability
analysis. A random probabilistic forecast for a finite number
of categories is almost as easily contemplated as for only two
categories. Instead of a single probability, there is now a vec-
tor of probabilities. A distribution function can be thought of
as an infinite collection of probabilities. The concept of ran-
dom distribution functions obviously brings about all sorts of
mathematical difficulties, like what a distribution of distribu-
tion functions should be etc, which we however need not to
worry about here. It is of vital importance though to keep
in mind that all quantities derived from the forecast distri-
butions, such as the numberG(y) for a particulary or de-
scriptive statistics like for example the variance or interquar-
tile range of the forecast inherit randomness fromG and are
therefore random variables themselves.

Furthermore, averages over time are replaced with math-
ematical expectations. This of course imposes strong sta-
tionarity requirements on both the series of forecasts and the
series of observations (since we are interested in the aver-
age behavior of forecasts and observations over time, not
over parallel universes). Without such requirements though,
the whole notion of observed frequency and hence reliability
would cease to make sense. We can thus dispense of the no-
tational inconvenience of a time index. Since we assume the
probabilistic forecasts to be random quantities, we have to
amend the notation to distinguish between random variables
(which are functions) and a particular realization (which are
functionvalues). The probabilistic forecast as a random vari-
able will henceforth be denoted as0. Realizations of0 are
distribution functions, denoted by Roman capitalsF or G.
The observation will be denoted byY , while any particular
realization ofY will be denoted byy.

As was already mentioned in the introduction, reliability
means that for any individual forecast distribution, the limit-
ing observed frequencies of the corresponding observationY

are equal to the forecast distribution (Toth et al., 2003, 2005).
Within formulae, limiting observed frequencies are identified
with probabilities and denoted with the symbolP. Another
interpretation ofP is the probability measure on the space on
which the random variables0 andY live. Using this conven-
tion, reliability can be formulated as

P(Y < y|0 = G) = G(y) for anyy ∈ E. (1)

The following remarks might help with the interpretation of
Eq. (1).

1. To all intents and purposes, the notationP(Y<y|0=G)

might be read as “The limiting observed frequency of

the eventY<y, counted over all instances where the
random forecast0 is equal to the specific distribution
functionG”.

2. The condition “0=G” on the left hand side of Eq. (1)
involves the whole forecast distribution0, not only the
probability it assigns to the eventY<y. One might think
that the forecast0 is already reliable if for anyy held
fixed, 0(y) is a reliable forecast for the binary event
“Y<y” (i.e. for everyy, the forecastp=0(y) and the
corresponding event “Y<y” form a diagonal reliability
diagram). This condition is, in general, not sufficient,
but gives a weaker form of reliability than Eq. (1).

3. A problem of Eq. (1) is that the relation0=G might
occur with probability zero only, in which case there
are no observed frequencies to calculate. Although con-
ditional probabilities are mathematically well defined
even in this situation (Breiman, 1973), the fact remains
that Eq. (1) cannot be verified pointwise, unless the
forecast0 assumes only a finite number of valuesG

with positive probability (which is an important special
case). This problem will be further discussed in Sect.2.

4. Equation (1) is well known for the case of binary events,
where it forms the basis for reliability diagrams (Mur-
phy and Winkler, 1977; Toth et al., 2003; Wilks, 2006),
the calibration-refinement-factorization (Murphy and
Winkler, 1987) and the analysis of scoring rules, no-
tably the Brier Score (Wilks, 2006; Toth et al., 2003).
The essence of Eq. (1) in the general case can be found
verbalized inToth et al.(2003, 2005). Although he does
not explicitely say so,Hamill (2001) also seems to think
of his probabilities being conditioned on the forecast (as
on the left hand side of Eq.1), since otherwise it would
not make sense to consider “expected values of proba-
bilities”, as for example in Eq. (1) ofHamill (2001).

1.2 Ensemble forecasts

As was mentioned before, distribution functions are not the
only possible way to specify probabilistic forecasts, with en-
semble forecasts being a very important alternative. An en-
semble is a collection of random variablesX=(X1 . . . XK),
whereXk∈E for all k. A realization ofX will be denoted
by x=(x1 . . . xK). Loosely speaking, the ensemble members
are thought of as a collection of candidate values of the ob-
servationY .

This subsection discusses how reliability and in particular
Eq. (1) translate to the context of ensemble forecasts. The
first question to be answered is how to interprete ensembles
as probabilistic forecast. A common (but not the only pos-
sible) interpretation proposes that an ensemble constitutes a
draw of independent samples from an underlying or “latent”
probability forecast0 (Hamill, 2001; Talagrand et al., 1997;
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Anderson, 1996). This definition applies to multivariate en-
sembles as well.

A criterion of reliability similar to Eq. (1) using this inter-
pretation of ensembles can be formulated as follows. Let0

be the latent probability forecast, and byX(k) denote the en-
semble member of rankk when sortingX in ascending order.
Furthermore, by convention,X(0) andX(K+1) are set to the
infimum and the supremum ofE, respectively, whence al-
ways0(X(0))=0 and0(X(K+1))=1. It follows from Eq. (1)
that

P(Y<X(k)
|0=G)=

k

K+1
for all k=0 . . . K+1. (2)

Equation (2) states that the rank of the observationY among
the ensemble members is a random variable which assumes
the values 1. . . K+1 with equal conditional probability 1

K+1.
Equation (2) is in fact a slightly weaker condition than
Eq. (1), and it is possible to construct a (somewhat patholog-
ical) case where criterion (2) is fulfilled but not criterion (1).
To this end, suppose thatK=1, that is, there is only one en-
semble memberX(1), drawn from the distributionG. Now
supposeF(y) is a distribution with median zero but other-
wise arbitrary. IfY is drawn from the recentered distribution
F(y−X(1)), then an easy calculation shows that indeed

P(Y < X(1)
|0 = G) =

1

2
,

so that Eq. (2) is fulfilled, while Eq. (1) is satisfied if and only
if Y were drawn fromG.

From Eq. (2) we get the identity

P(Y < X(k)) =
k

K + 1
. (3)

This follows from the general fact that if a conditional prob-
ability of an event does not depend on the condition, then it
must be equal to the unconditional probability of the event.
Equation (3) has been the basis for most studies on the relia-
bility of ensemble forecasts so far. As already mentioned in
the introduction, Eq. (3) represents but a necessary condition
for reliability, as it follows from, but does not imply Eq. (2).

In Eq. (2), the conditioning involves the latent forecast dis-
tribution0, not the ensemble itself. This is an inconvenience,
since typically the latent forecast distribution0 is either un-
known (at least to the person doing the reliability analysis)
or a very unwieldy object, which is often the reason why en-
sembles are used in the first place. Equation (2) doesnothold
any longer if the condition “0=G” is replaced by something
like “X=x”. A simple counter-example is presented in the
Appendix. In Sect.2, I will return to this problem and discuss
its ramifications.

Assuming a latent forecast distribution as done above is
not the only way of establishing a connection between en-
sembles and probability forecasts. A different interpreta-
tion of ensembles states that for allk, the ensemble mem-
ber X(k) represents the k

K+1 quantile of the forecast distri-

bution. This definition renders Eq. (2) correct with the con-
dition “0=G” being replaced by “X=x”. In weather fore-
casting though, ensembles are produced in extremely high
dimensional spaces, and it is hard to see how this interpreta-
tion should apply to such an ensemble when projected into
one dimension. It must be said though that the standard in-
terpretation of ensembles as a sample (as employed in this
paper and in most studies elsewhere) is also but a highly ide-
alized description of currently operational ensemble genera-
tion schemes.

The present section will be finished with a few words on
multidimensional ensembles. The tools discussed in this pa-
per for analyzing reliability of ensemble forecasts crucially
rely on the assumption that ensemble members and observa-
tions can be ranked. This is obviously not the case in higher
dimensions. One possible solution is to project forecasts and
observations into one dimension, thereby effectively restrict-
ing attention to the reliability of marginal distributions.

An alternative was suggested byHansen and Smith(2004).
To explain the general features of the idea, assume thatf (x)

is a symmetric function of the ensemble, in other words a
function that stays constant if the ensemble members are
permuted. Hansen and Smith(2004) use the length of the
minimum spanning tree. Usingf , the variablesf0 and
fi; i=1 . . . K are constructed, wheref0=f (X), and fi is
similar but with thei-th ensemble member being replaced
by Y . Hansen and Smith(2004) suggest that reliability be
checked using standard tools but withf0 and thefi taking
the roles of the observation and the ensemble members, re-
spectively. It seems questionable though if reliability of the
original ensemble implies that Eq. (2) or even only Eq. (3)
holds forf0 and thefi . The difficulty is that althoughf0
and thefi all have the same distribution, they cannot be con-
sidered independent draws from a distribution. I have been
unable to either prove or disprove Eq. (2) (or Eq.3) in this
situation, but numerical investigations suggest that Eq. (3) is
not true for arbitrary symmetricf . The minimum spanning
tree might be a fortunate exception though.

2 Verifying reliability

In this section, practical aspects of reliability analysis,
or more specifically, ways to test Eq. (1) and display
the results are discussed. Suppose we have available
an archive of forecasts and corresponding observations
T :={(Gn, yn), n=1 . . . N}, where theGn are forecasts in the
form of distribution functions andyn are observations. In
order to use these data for reliability tests, two difficulties
need be addressed first. Firstly, Eq. (1), as it stands, cannot
be employed directly for reliability tests in situations where
the condition0=G occurs with probability zero (i.e. there
is a continuous range of possible forecasts), as was already
mentioned. In practical terms, it is obviously impossible to
calculate long term observed frequencies conditioned on a
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single forecast if no two forecasts will ever be the same. To
obtain testable reliability criteria in this situation, the condi-
tion “0=G” on the forecast needs being relaxed by consid-
ering entire sets of forecasts. This point will be discussed in
Sect.2.1. Secondly, limiting observed frequencies will have
to be estimated from only finite data amounts. Therefore, a
forecast system might exhibit deviations from reliable behav-
ior simply because of random fluctuations. How to take these
fluctuations into account is the subject of Sect.2.2.

2.1 Stratification of forecasts

In this section, the concept of forecast stratification is intro-
duced. Forecasts are stratified by aggregating forecasts into
different strata, where a stratum is simply a prescribed set of
forecasts. Forecast strata can be specified by means of de-
scriptive quantities, for example the forecasts’ interquartile
range, the mean, or the level of Gaussianity (according to
some measure of Gaussianity), thereby delineating the fore-
casts along that particular quantity. Individual forecast strata
will be denoted by sans serif capitalsA, B, . . .. The notation
G∈A indicates that the distribution functionG belongs to the
forecast stratumA. The motivation for forecast stratification
is to obtain a more detailed reliability assessment of the fore-
cast system than by just a single histogram, but at the same
time to aggregate enough forecast instances per forecast stra-
tum to get sufficiently accurate frequency estimates. There
is a price to pay for the advantages of forecast stratification.
Since agreement between forecast probabilities and observed
frequencies is still not required for each individual forecast,
but only on average across a forecast stratum, we still end up
testing a weaker form of reliability than required by Eqs. (1)
or (2).

Let us start carrying out this program for Eq. (2), which
covers the practically important case of ensemble forecasts.
Supposing thatA is a particular forecast stratum, we can av-
erage both sides of Eq. (2) over allG∈A. The result is

P(Y<X(k)
|0 ∈ A)=

k

K+1
for all k=0 . . . K+1, (4)

where as beforeX(k) denotes the ensemble member of rank
k when sortingX in ascending order. The left hand side of
Eq. (4) could be estimated by the corresponding observed
frequency, that is by counting the fraction of instances in the
forecast stratum for which the observation exceeds less than
k ensemble members. What has been gained so far is that ob-
served frequencies can be calculated over a larger number of
instances (depending on the number of instances in the fore-
cast stratum). But there remains a problem: as mentioned
in Sect.1, the latent forecast0 is typically inaccessible in
the case of ensemble forecasts, whence it is not clear how to
stratify the latent forecast along different forecast strata. Two
possible solutions to this problem will be suggested here.
The first solution is to use the ensemble for stratification in-
stead of the latent forecast. For example, if we want to delin-

eate forecasts along the mean of0, the ensembles could be
stratified along the ensemble mean. Thus the ensemble and
the latent forecast are identified, thereby ignoring any error
that might arise due to the fact that the ensemble is but a sam-
ple from the latent forecast. This should cause no significant
error as long as the ensemble is not too small. The feasibility
of this approach obviously depends on whether the stratum
A allows for efficient estimators of the event0∈A.

The second solution applies if certain aspects of the latent
forecast distribution are known. Although the latent fore-
cast0 is not accessible as a whole, the ensembles could be
stratified along various parameters which are important in the
generation of the forecast. In weather forecasting for ex-
ample, forecasts could be stratified along different weather
regimes (as suggested byHamill, 2001), which could be
identified using the model analysis or even measurements at
forecast time.

The convenient feature of ensemble forecasts is that the
right hand side of Eq. (4) does not depend on the condition-
ing, and hence is the same for all forecast strata. The math-
ematical reason is that the events are defined in a particular
way which renders all corresponding forecast probabilities
constant. If the forecast is available in the form of a dis-
tribution function, this is not automatically the case. Under
mild conditions though, it is possible to transform the ob-
servations so that all forecast distribution functions for the
transformed variables are uniform, and in particular inde-
pendent ofG, which facilitates forecast stratification. The
remainder of this section explains the “probability integral
transform” (PIT), which can be employed to this effect. Sup-
pose again that0 is our probabilistic forecast, issued in the
form of distribution functions. The PIT ofY is the random
variable0(Y ) (Devroye, 1986; Gneiting et al., 2005). We
are interested in the limiting observed frequencies of the PIT
0(Y ). First note that

P(0(Y ) < z|0 = G) = P(G(Y ) < z|0 = G), (5)

simply because if0=G, the eventsG(Y)<z and0(Y )<z are
the same. IfF(y) is an invertible distribution function, the
eventF(Y )<z is the same as the eventY<F−1(z). Applying
this toG in Eq. (5), we obtain

P(0(Y ) < z|0 = G) = P(Y < G−1(z)|0 = G). (6)

But if we assume the forecast0 to be reliable, we can employ
Eq. (1) to write the right hand side of Eq. (6) as

P(Y < G−1(z)|0 = G) = G(G−1(z)) = z. (7)

Combining Eqs. (6) and (7) we obtain

P(0(Y ) < z|0 = G) = z. (8)

Equation (8) reduces the reliability analysis of one-
dimensional observations to checking whether the PIT has
uniform conditional distributions.
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An important assumption in the derivation of Eq. (8) was
that all forecast distribution functionsG are invertible. This
seems a strong assumption at first sight, but it has to be
kept in mind that distribution functions are by construc-
tion monotonous. If the distribution functionG has jumps
though, the equationz=F(y) might not have a solutiony,
whence our derivation of Eq. (8) breaks down. In this case
the PIT might in fact have a non-uniform distribution.

As in the derivation of Eq. (4), averaging both sides of
Eq. (8) over a specific forecast stratumA gives

P(0(Y ) < z|G ∈ A) = z, (9)

Again, Eq. (9) represents a weaker reliability condition than
Eq. (8), for the same reasons that Eq. (4) presents a weaker
form of reliability than Eq. (1). A special but practically
important case of Eq. (9) obtains by choosing only a sin-
gle “forecast stratum” which in fact encompasses all possible
forecasts. The resulting equation is

P(0(Y ) < z) = z, (10)

which is the PIT-version of Eq. (3) and amounts to checking a
single distribution only. Again, it is well known that Eq. (10)
is but a necessary condition for reliability (Gneiting et al.,
2005), and examples of forecasts and observations for which
Eq. (10) holds but not Eq. (8) are easily constructed.

2.2 Estimating observed frequencies

After having stratified the forecasts, we have to compare ob-
served frequencies with forecast probabilities independently
for each forecast stratum. If the PIT is employed, then ac-
cording to Eq. (9) this amounts to checking whether the
transformed observationGn(yn) exhibits a uniform distribu-
tion. This is a standard problem of statistics and will not be
considered any further in this paper. If ensemble forecasts
are considered, then according to Eq. (4) we have to verify
that the observed frequencies

fk,A :=
#{xk−1 ≤ yn < xk; n ∈ IA}

#IA
(11)

agree with the corresponding forecast probabilities1
K+1.

Here,xk are the ensemble members fork=1 . . . K, and per
definitionx0=−∞, xK+1=∞. Furthermore,IA is the set of
instancesn for which the ensemble forecast falls into fore-
cast stratumA, and the symbol “#” in front of a set denotes
the number of elements in that set. A widely applied special
form of this procedure results by choosing the trivial forecast
stratification of considering a single stratum encompassing
all forecasts.

This subsection is devoted to testing and displaying the
agreement between forecast probabilities and observed fre-
quencies. This is one of the oldest problem of statistics, if not
the oldest. In meteorology, the most widely applied tool for
this purpose is the histogram, presumably because of its ex-
ceeding simplicity (Hamill, 2001; Hamill and Colucci, 1997,

1998; Toth et al., 2003; Talagrand et al., 1997). The his-
togram comprises a plot of the observed frequenciesfk over
k. The observed frequencies (or “height of the histogram
bars”) is subsequently compared to the corresponding fore-
cast probabilities by visual inspection. If the forecasts are
stratified, each forecast stratum requires its own histogram,
since there is a set of observed frequencies and correspond-
ing forecast probabilities per forecast stratum.

The problem with interpreting histograms is to decide
when a forecast probability and a corresponding observed
frequency should be considered “similar”. If the forecast
is reliable, a large archive of forecasts and corresponding
verifications is expected to yield better agreement between
forecast probabilities and observed frequencies than a small
archive, as in the latter case larger random variations are ex-
pected. Hence one and the same histogram has to be inter-
preted differently depending on the size of the archive. To
allow for unambiguous interpretation of the histogram, the
graphical presentation should provide guidance as to whether
the deviations from ideal behavior are within the expected
range of fluctuations. InBröcker and Smith(2007b), this
problem was considered for the case of forecasts for binary
observations. In this particular situation, reliability is often
investigated by means of reliability diagrams. Ideally, relia-
bility diagrams should be diagonal, but in practice, random
fluctuations can cause the reliability diagram to exhibit de-
viations from this behavior even if the forecast system was
reliable. In Bröcker and Smith(2007b), it was suggested
how to modify reliability diagrams so as to visualize whether
fluctuations are still consistent with reliability or not. The
aim of the present discussion is to develop similar tools for
the more general forecasts considered in this paper.

The idea is to plot the histogram “on probability paper”:
instead of the actual observed frequency, we show how prob-
able that observed frequency would be if the forecast was
reliable. To explain what this means, assume first the gen-
eral situation in which there areL distinct events possible.
(The predominant example we have in mind is that there
areK ensemble members and the events are defined as the
possible ranks of the verification among the ensemble mem-
bers; in this particular case, there areK+1 possible events,
whenceL=K+1.) Suppose the forecast probability for the
event labeledl is pl , and the total number of trials isN , then
– assuming that the forecast probability represents the true
chance of events – the numbernl of instances exhibiting the
event is of binomial distribution with parameterspl andN .
If B(nl, pl, N) denoted the cumulative binomial distribution
function, then the number

νl = B(nl, pl, N) (12)

gives the probability that, for a reliable forecast, an observed
frequencysmaller thannl/N occurs. The interpretation of
theνl is that for reliable forecasts, theνl are expected to be
smaller than a given numberq with a probabilityq. In other
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with equality if and only ifpl = ql for all l = 1 . . . L. Set-
ting ql = nl/N demonstrates that theR–statistic is positive
definite, which justifies interpreting it as a contrast function
quantifying the discrepancy between forecast probabilities
and observed frequencies. The overall score of the forecast
as defined by Equation (14) can be decomposed as follows

∑

l

− log(pl)nl/N =
∑

l

− log(nl/N)nl/N + R, (16)

where the first term on the right hand side is the skill of the
“forecast”nl/N . SinceR is positive definite, Equation (16)
seems to suggest a fool–proof way of improving forecast
skill: We simply adoptnl/N as our new forecast probabil-
ity for categoryl. Equation (16) ensures that a thus “recal-
ibrated” forecast cannot have a skill worse than the original
forecast. This conclusion is faulty though, since the recali-
brated forecast is evaluated “in sample”, which means on the
same data already used to re-calibrate the forecast. This isa
grave violation of the principles of statistical good practice.
The conclusionis justified though ifR is not merely posi-
tive but unusually large, that is larger than would normally
be expected if the forecast was reliable. What should be con-
sidered an unusually large value forR is quantified by the
χ2–distribution.

A problem of the discussed Goodness–Of–Fit test (and, in
fact, of any other Goodness–Of–Fit test) is that it is always
possible to construct histograms which will perfectly passthe
test, despite exhibiting obvious pathologies that are unlikely
to arise by mere randomness. For example, histograms often
display a clear trend or are convex. A trend upwards indicates
that higher categories are assigned too small forecasts proba-
bilities to, or in other words, they verify too often. In the case
of ensemble forecasts, this indicates under-forecasting of the
ensembles. Convex histograms can arise for two reasons.
Either the ensembles exhibit systematically too small spread,
and thus the extreme ranks verify too often. Or the histogram
in fact confounds two forecast strata, one containing over-
forecasting and one containing under-forecasting ensembles.
Since theR–statistic is invariant against re–ordering of the
categories though, forecasts with convex or tilted histograms
might pass the Goodness–Of–Fit test undetected.

There are numerous other statistics suitable for Goodness–
Of–Fit tests which, other than Pearson’s classical statistic,
are sensitive to the ordering of the categories (Elmore, 2005),
such as the Cramér–von–Mises statistic. Apart from theR–
statistic though, I have been unable to relate any of the com-
mon Goodness–Of–Fit statistics to the reliability term of a
proper score.

4 Numerical Examples

In this section, the discussed tools are applied to ensemble
forecasts of two–meter temperature anomalies. Results are
presented for five different locations (see Table 1 for details).
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Fig. 1. Stratifiedνl–diagram for London Heathrow. Forecasts are
stratified along the ERPS and distributed among five strata sothat
each stratum contains 20% of all instances. Going from the top to
the bottom viewgraph, the ERPS increases (i.e. the expectedskill
becomes worse). Theνl–diagrams are fairly uniform for all strata,
except for the second one.

The forecasts consist of the 50 (perturbed) member ensem-
ble produced by the ECMWF ensemble prediction system.
Station data of two–meter temperature was kindly provided
by ECMWF as well. Forecasts were available for the years
2001–2005, featuring lead times from one to ten days. All
data verified at noon. The observations from years previous
to 2001 were used to fit a temperature normal, consisting of
a fourth order trigonometric polynomial. The normal was

Fig. 1. Stratifiedνl-diagram for London Heathrow. Forecasts are
stratified along the ERPS and distributed among five strata so that
each stratum contains 20% of all instances. Going from the top to
the bottom viewgraph, the ERPS increases (i.e. the expected skill
becomes worse). Theνl-diagrams are fairly uniform for all strata,
except for the second one.

words, if the forecast was reliable and we could repeat the re-
liability test an infinite number of times with new data each
time, then for anyq, a fractionq of all test runs would exhibit
a νl smaller thanq. Therefore, theνl provide direct quanti-
tative information as to whether the deviations from reliable
behavior are systematic or merely random. Hence theνl are
more easy to interprete than thenl as used in standard his-
tograms. In all other respects, the interpretation of theνl is
exactly the same as that of thenl . For these reasons, it is
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Fig. 2. Stratifiedνl–diagram for Helgoland Düne. Forecasts are
stratified along the ERPS and distributed among five strata sothat
each stratum contains 20% of all instances. Going from the top to
the bottom viewgraph, the ERPS increases (i.e. the expectedskill
becomes worse). Theνl–diagrams are generally less uniform for
smaller ERPS (upper viewgraphs).

Figure 3 shows the unstratifiedνl–diagrams for lead time
48h, 96h, 168h, and 240h (in columns 1–4, respectively),
while diagrams of the stratifiedR–statistics are shown in Fig-
ure 4. As can be discerned from both diagnostics, the relia-
bility seems to improve for higher lead times. The unstrati-
fiedνl–diagrams indicate too frequent occurrences of the ex-
treme ranks (the diagram is convex). An overall bias seems
to be present as well, as the diagrams seem to be tilted down

to the left. Unstratifiedνl–diagrams can confound bias and
insufficient spread and do not allow to discern any possible
connections between these deficiencies and ERPS. For lead
time 240h, the unstratifiedνl diagram for London Heathrow
(first row, last column of Figure 3) indicates an overpopula-
tion of the highest ranks, which, at first sight, seems not to be
present at the corresponding stratifiedνl diagram (Fig. 1). It
should be noted though that the stratified observed frequen-
cies of the highest rank all happen to be comparably high at
the same time, causing the unstratified observed frequency
(just being the average of the stratified ones) to be signifi-
cantly too high.

The stratifiedR–statistic (Fig. 4) helps to clarify the situ-
ation somewhat. Forecasts with small ERPS are, in general,
significantly less reliable than forecasts featuring largeval-
ues of ERPS. Forecasts generally become more reliable with
increasing lead time. For short lead times though, almost
all R–statistics are beyond the 90% quantiles, with some of
them even being off the axis scale, indicated by triangles
pointing down. For London Heathrow, this phenomenon is
evident for small lead times, while for large lead times, fore-
casts of different ERPS seem to be more or less equally re-
liable. For location WMO10015, again there is a significant
discrepancy in reliability between forecasts with large and
small ERPS, but here this phenomenon is present even at lead
time 240h (second row of Figure 4).

The results are in general confirmed by the other inves-
tigated locations. Location WMO10488 is rather similar to
WMO03772 in that for longer lead times, all forecasts be-
come more reliable, while for WMO94610 and WMO72503,
low ERPS forecast tend to be unreliable throughout.

We can conclude that the small ERPS forecasts have a ten-
dency to under-forecast. This problem cannot be removed
by a simple bias correction, as this would affect all forecasts
equally. It seems that small ERPS forecasts need different
(stronger) de-biasing than large ERPS forecasts. As an oper-
ational recommendation, the present study suggests that fore-
casts be stratified first, with different de–biasing being subse-
quently applied to each stratum. If for this purpose forecasts
should be stratified along the ERPS or rather somehow else
requires further investigation.

5 Conclusions

In this paper, the reliability of probabilistic forecasts,in par-
ticular ensemble forecasts, was revisited. A general mathe-
matical definition of reliability was given, formalizing defi-
nitions of reliability given earlier by several authors. A fre-
quently employed tool for reliability analysis, the rank his-
togram or Talagrand diagram, was discussed, and two short-
comings were pointed out. A long noted fact is that a uniform
rank histogram is but a necessary condition for reliability. To
obtain a more detailed picture of the reliability of the fore-
casting systems in different situations, it was suggested that
forecasts be grouped, forming so–called forecast strata, and

Fig. 2. Stratifiedνl-diagram for Helgoland D̈une. Forecasts are
stratified along the ERPS and distributed among five strata so that
each stratum contains 20% of all instances. Going from the top to
the bottom viewgraph, the ERPS increases (i.e. the expected skill
becomes worse). Theνl-diagrams are generally less uniform for
smaller ERPS (upper viewgraphs).

suggested to plot diagrams of theνl rather than thenl . Note
that if the forecasts have been stratified, thenN=#IA (as in
Eq.11). If furthermore the events are defined by ranking the
verification in an ensemble forecasts, thenfl,A=nl/N (again
as in Eq.11).

I found that the readability of theνl-diagram is further im-
proved by scaling the ordinate by the logit-transformation
log( ν

1−ν
). This has the effect of displaying the small proba-

bilities 0.1, 0.01, 0.001, . . . as well as the large probabilities
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Fig. 3. Unstratifiedνl–diagrams for 2m–temperature ensemble forecasts for various locations (rows) and lead times (columns). The ordinates
display the probability of the observed frequency (see Equation 12) on alog( ν

1−ν
)–scale. The abscissa shows the ranks, binned into 17 bins

(3 ranks per bin).
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0.9, 0.99, 0.999, . . . equidistantly. In Sect.3, the reliability
of some ensemble weather forecasts will be analyzed using
the νl-diagram. In Figs.1 and 2, ensemble forecasts have
been stratified along five forecast strata. The correspond-
ing νl-diagrams are displayed in five individual viewgraphs.
The verification was distributed among 17 possible events,
whence there are 17 bars in each viewgraph. Unstratifiedνl-
diagrams are shown in Fig.3. These plots are part of the
results to be discussed in Sect.3. When interpreting these
diagrams, it is important to note that while the probability

of any particular ordinate being below the valueq is indeed
q, the probability of all ordinates being below the valueq

is smaller, namelyq17 (since there are 17 bins). This so-
called Bonferroni-correction needs to be applied if the whole
histogram is considered. In allνl-diagrams shown in this
paper, Bonferroni-quantiles for 5% and 95% are shown as
black horizontal lines. A detailed explanation as to the data
underlying these figures is given in Sect.3.

Obviously, plotting aνl-diagram for each forecast stratum
requires plenty of space and might be unnecessarily detailed,
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whence it would be convenient to have a summary statistic
which allowed for condensing aνl-diagram into one num-
ber. Thus, a single graph can contain summary statistics for
different forecast strata. This section will be finished with
discussing such a summary statistic. The general idea of
Goodness-Of-Fit tests is to measure the similarity of the fore-
cast probabilitiespl and the observed frequenciesnl/N by
means of a suitable contrast function. The contrast function
should vanish ifpl=nl/N for all l but otherwise be positive.
Furthermore, in order to decide when the contrast should be
considered large, the distribution of the constrast function has
to be known (at least asymptotically for largeN ). A partic-
ular example is Pearson’s originalχ2 Goodness-Of-Fit test.
For unstratified forecasts, employing theχ2 Goodness-Of-
Fit test was suggested byHamill (2001) andAnderson(1996)
in the context of ensemble weather forecasts. In the present
paper, it is proposed to perform a Goodness-Of-Fit test indi-
vidually for each forecast stratum. For the contrast function,
the choice taken here is the statistic

R :=

∑
l

− log

(
pl

nl/N

)
nl/N, (13)

henceforth referred to asR-statistic, which is motivated by a
coincidence of two interesting facts. The first fact about the
R-statistic is that 2N ·R is asymptotically ofχ2-distribution
with K−1 degrees of freedom (see e.g.Mood et al., 1974).
Hence, rather thanR itself, we considerPχ2(R), wherePχ2

is the cumulativeχ2-distribution function withK−1 degrees
of freedom. The second fact of theR-statistic is an interest-
ing connection to the Ignorance score. The quality of prob-
abilistic forecasts is most appropriately measured by means
of proper scores (Gneiting and Raftery, 2007; Bröcker and
Smith, 2007a), of which the Ignorance is one example. The
Ignorance score is defined as follows: for each observation
yn there is a corresponding verifying probability, which is
the forecast probability assigned to the event which even-
tually occurs. The verifying probability is denoted bypyn .
Note that in our case, due to the stratification, the forecast
probabilities do not depend explicitely on time.

The Ignorance is defined as

1

N

∑
n

− log(pyn) =

∑
l

− log(pl)nl/N. (14)

The Ignorance is a proper score, which means that for any
two probability assignmentspl, ql, l=1 . . . L,

∑
l

− log

(
pl

ql

)
ql ≥ 0 (15)

with equality if and only ifpl=ql for all l=1 . . . L. Set-
ting ql=nl/N demonstrates that theR-statistic is positive
definite, which justifies interpreting it as a contrast function
quantifying the discrepancy between forecast probabilities

and observed frequencies. The overall score of the forecast
as defined by Eq. (14) can be decomposed as follows∑

l

− log(pl)nl/N =

∑
l

− log(nl/N)nl/N + R, (16)

where the first term on the right hand side is the skill of the
“forecast”nl/N . SinceR is positive definite, Eq. (16) seems
to suggest a fool-proof way of improving forecast skill: We
simply adoptnl/N as our new forecast probability for cate-
gory l. Equation (16) ensures that a thus “recalibrated” fore-
cast cannot have a skill worse than the original forecast. This
conclusion is faulty though, since the recalibrated forecast is
evaluated “in sample”, which means on the same data already
used to re-calibrate the forecast. This is a grave violation of
the principles of statistical good practice. The conclusion
is justified though ifR is not merely positive but unusually
large, that is larger than would normally be expected if the
forecast was reliable. What should be considered an unusu-
ally large value forR is quantified by theχ2-distribution.

A problem of the discussed Goodness-Of-Fit test (and, in
fact, of any other Goodness-Of-Fit test) is that it is always
possible to construct histograms which will perfectly pass the
test, despite exhibiting obvious pathologies that are unlikely
to arise by mere randomness. For example, histograms often
display a clear trend or are convex. A trend upwards indicates
that higher categories are assigned too small forecasts proba-
bilities to, or in other words, they verify too often. In the case
of ensemble forecasts, this indicates under-forecasting of the
ensembles. Convex histograms can arise for two reasons.
Either the ensembles exhibit systematically too small spread,
and thus the extreme ranks verify too often. Or the histogram
in fact confounds two forecast strata, one containing over-
forecasting and one containing under-forecasting ensembles.
Since theR-statistic is invariant against re-ordering of the
categories though, forecasts with convex or tilted histograms
might pass the Goodness-Of-Fit test undetected.

There are numerous other statistics suitable for Goodness-
Of-Fit tests which, other than Pearson’s classical statistic, are
sensitive to the ordering of the categories (Elmore, 2005),
such as the Craḿer-von-Mises statistic. Apart from theR-
statistic though, I have been unable to relate any of the com-
mon Goodness-Of-Fit statistics to the reliability term of a
proper score.

3 Numerical examples

In this section, the discussed tools are applied to ensemble
forecasts of two-meter temperature anomalies. Results are
presented for five different locations (see Table1 for details).
The forecasts consist of the 50 (perturbed) member ensem-
ble produced by the ECMWF ensemble prediction system.
Station data of two-meter temperature was kindly provided
by ECMWF as well. Forecasts were available for the years
2001–2005, featuring lead times from one to ten days. All
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Table 1. Locations and beginning of the data record for the studied data sets.

WMO Number Name Location Data Record starting

03772 London Heathrow AP 51◦29′ N 000◦27′ W 1 Jan 1981
10015 Helgoland D̈une 54◦11′ N 007◦54′ E 1 Jan 1981
10488 Dresden Klotzsche AP 51◦08′ N 013◦47′ E 1 Sep 1991
72503 NY La Guardia AP 40◦46′ N 073◦54′ W 1 Apr 1981
94610 Perth Intl. AP 31◦56′ S 115◦57′ E 1 Jan 1981

data verified at noon. The observations from years previous
to 2001 were used to fit a temperature normal, consisting of
a fourth order trigonometric polynomial. The normal was
subtracted from both ensembles and observations. Further-
more, the ensembles were de-biased, using the years 2001
and 2002.

Generally, the ensembles display significant deviations
from reliability, in particular for short lead times. Plots
were produced for three different diagnostics: Stratifiedνl-
diagrams (Figs.1, 2), unstratifiedνl-diagrams (Fig.3), and
stratifiedR-statistics (Fig.4). Due to lack of space, only two
stratifiedνl-diagrams (Figs.1 for London Heathrow and2 for
Helgoland D̈une), lead time 240 h, are shown here. The strat-
ified νl-diagrams andR-statistics were produced by grouping
the forecasts according to their expected ranked probability
score (ERPS), as will be explained below. Although there are
51 ranks, only 17 bins were used rather than 51, in order to
avoid overly cluttered plots. Since 17 divides 51, there are
no aliasing effects (i.e. each bin contains the observed fre-
quencies of exactly 3 of the 51 possible ranks). Unstratified
νl-diagrams are shown in Fig.3. Without exception, the cor-
responding (unstratified)R-statistics (not shown) exceeded
the 95% quantile, indicating significant deviation from re-
liable behavior. Finally, stratifiedR-statistics are shown in
Fig. 4. The configuration for the bins and forecast strata for
theR-statistics was exactly like for the unstratified and strat-
ified νl-diagrams.

A general result of the present study is that ensembles
which “pretend” to have a good score are particularly un-
reliable, as will be demonstrated by stratifying the fore-
casts along the expected ranked probability score. To de-
fine the expected ranked probability score (ERPS), consider
the ranked probability score (Epstein, 1969; Murphy, 1971)
(RPS), defined via the scoring rule

S(y, G) :=

∫
(G(η) − H(η − y))2dη, (17)

whereG is the forecast distribution andH is the Heaviside
function, which is one for positive arguments and zero other-
wise. Note that the scoring rule (Eq.17) gives a small value
if the forecast is concentrated neary, which implies that a
small RPS indicates a good score. The RPS is known to
be a proper scoring rule (Gneiting et al., 2005; Bröcker and
Smith, 2007a). The expected RPS (ERPS) is the mathemati-

cal expectation value ofS(Y, G) whenY is assumed to be of
distributionG, that is

ERPS(G) :=

∫
S(y, G)dG(y). (18)

In other words, the ERPS is the score we would obtain on av-
erage if the verification were in fact drawn from the forecast.
The ERPS is a function of the forecasts alone. To compute
the ERPS, no observations are required. Of course, the ERPS
does not provide the true score of the forecast, but rather a
self-rating of the forecast distributionG, similar to, but more
comprehensive than for example the variance ofG. In the
present situationG is not available explicitely, whence the
ERPS has to be estimated from the ensemble. This is done
here by first computingS(xi, F−i) for all ensemble members
xi , whereF−i is the empirical distribution function of the
ensemble without thei’th member. The eventual estimate of
the ERPS is obtained by averaging thus:

ERPS(x) :=
1

K

∑
i

S(xi, F−i)

It turns out that for the forecasts used in this study, the ERPS
correlates very strongly with the ensemble standard devia-
tion. In general, this need not be so. All forecasts were
stratified according to their EPRS and ranked so that each
forecast stratum contained 20% of all time instants.

In Figs.1 and2, stratifiedνl-diagrams are shown for Lon-
don Heathrow and Helgoland Düne, respectively, for lead
time 240 h. In both figures, the five viewgraphs represent
νl-diagrams for the five forecast strata. The uppermostνl-
diagram corresponds to forecast with very small ERPS (i.e.
the self-rating is high), while lower diagrams correspond to
forecasts with increasingly larger ERPS (i.e. the self-rating
is low). Observed frequencies for forecasts with large ERPS
are in general more uniform than for the smaller ERPS fore-
casts. Furthermore, for Helgoland Düne the diagrams for
small ERPS seem to be tilted down to the left, unlike as
for large ERPS, for which no such trend is apparent. The
corresponding unstratifiedνl-diagrams (Fig.3) or stratified
R-statistics (Fig.4) provide less specific information, albeit
focusing on different aspects. As to the precise deficiency of
the high ERPS forecasts, the full stratifiedνl-diagrams would
need to be consulted (similar to Figs.1 and2, but for shorter
lead times).
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Fig. 4. StratifiedR–statistic for 2m–temperature ensemble forecasts for various locations (rows) and lead times (columns). The ordinates
display the p–values of theR–statistic (which has aχ2–distribution) on alog( ν

1−ν
)–scale. The abscissa shows the ERPS, binned into 5 bins

with an equal number of instances in each bin. The ERPS increases when going from left to right (i.e. the expected skill of the forecasts
decreases).

Fig. 4. StratifiedR-statistic for 2 m-temperature ensemble forecasts for various locations (rows) and lead times (columns). The ordinates
display the p-values of theR-statistic (which has aχ2-distribution) on a log( ν

1−ν
)-scale. The abscissa shows the ERPS, binned into 5 bins

with an equal number of instances in each bin. The ERPS increases when going from left to right (i.e. the expected skill of the forecasts
decreases).

Figure3 shows the unstratifiedνl-diagrams for lead time
48 h, 96 h, 168 h, and 240 h (in columns 1–4, respectively),
while diagrams of the stratifiedR-statistics are shown in
Fig. 4. As can be discerned from both diagnostics, the re-
liability seems to improve for higher lead times. The unstrat-
ified νl-diagrams indicate too frequent occurrences of the ex-
treme ranks (the diagram is convex). An overall bias seems
to be present as well, as the diagrams seem to be tilted down
to the left. Unstratifiedνl-diagrams can confound bias and
insufficient spread and do not allow to discern any possible

connections between these deficiencies and ERPS. For lead
time 240 h, the unstratifiedνl diagram for London Heathrow
(first row, last column of Fig.3) indicates an overpopulation
of the highest ranks, which, at first sight, seems not to be
present at the corresponding stratifiedνl diagram (Fig.1). It
should be noted though that the stratified observed frequen-
cies of the highest rank all happen to be comparably high at
the same time, causing the unstratified observed frequency
(just being the average of the stratified ones) to be signifi-
cantly too high.
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The stratifiedR-statistic (Fig.4) helps to clarify the situ-
ation somewhat. Forecasts with small ERPS are, in general,
significantly less reliable than forecasts featuring large val-
ues of ERPS. Forecasts generally become more reliable with
increasing lead time. For short lead times though, almost all
R-statistics are beyond the 90% quantiles, with some of them
even being off the axis scale, indicated by triangles pointing
down. For London Heathrow, this phenomenon is evident
for small lead times, while for large lead times, forecasts of
different ERPS seem to be more or less equally reliable. For
location WMO10015, again there is a significant discrepancy
in reliability between forecasts with large and small ERPS,
but here this phenomenon is present even at lead time 240h
(second row of Fig.4).

The results are in general confirmed by the other inves-
tigated locations. Location WMO10488 is rather similar to
WMO03772 in that for longer lead times, all forecasts be-
come more reliable, while for WMO94610 and WMO72503,
low ERPS forecast tend to be unreliable throughout.

We can conclude that the small ERPS forecasts have a ten-
dency to under-forecast. This problem cannot be removed
by a simple bias correction, as this would affect all forecasts
equally. It seems that small ERPS forecasts need different
(stronger) de-biasing than large ERPS forecasts. As an oper-
ational recommendation, the present study suggests that fore-
casts be stratified first, with different de-biasing being subse-
quently applied to each stratum. If for this purpose forecasts
should be stratified along the ERPS or rather somehow else
requires further investigation.

4 Conclusions

In this paper, the reliability of probabilistic forecasts, in par-
ticular ensemble forecasts, was revisited. A general mathe-
matical definition of reliability was given, formalizing defi-
nitions of reliability given earlier by several authors. A fre-
quently employed tool for reliability analysis, the rank his-
togram or Talagrand diagram, was discussed, and two short-
comings were pointed out. A long noted fact is that a uniform
rank histogram is but a necessary condition for reliability. To
obtain a more detailed picture of the reliability of the fore-
casting systems in different situations, it was suggested that
forecasts be grouped, forming so-called forecast strata, and
that individual histograms be plotted for all forecast strata.
For a reliable forecast system, all forecast strata should ex-
hibit uniform histograms. Secondly, histograms computed
from limited data amounts are never exactly uniform, even
for reliable forecast systems. Hence, an indication is needed
how far a histogram is expected to deviate from uniformity
merely due to randomness. One possible solution is to plot
the probability of the observed frequency, instead of the ob-
served frequency itself, thereby providing an indication of
the likelihood of the result under the hypothesis that the fore-
cast is reliable. Another advantage is that this plot is expected

to be uniform even if the forecast probabilities are different
for different categories. Furthermore, a slightly nonstandard
Goodness-Of-Fit statistic was discussed. The employed con-
trast function relates directly to the reliability term of the
Ignorance score. Again, Goodness-Of-Fit tests can be sep-
arately applied to individual forecast strata. The discussed
tools are applied to 2 m-temperature anomalies for several
locations and lead times. In addition to demonstrating the
tools at work, the results suggest that the forecasts are par-
ticularly unreliable if they are expected to have high skill. It
seems that the forecasts are both biased and under-disperse.
To rectify this problem, different amounts of bias correction
would need to be applied to different forecast strata, as a stan-
dard (indiscriminate) bias correction would affect all fore-
casts similarly.

Appendix A

In this appendix, it is shown (by means of a simple counter-
example) that Eq. (2) generally does not hold if the condition
“0=G” is replaced by “X=x”. To recall the statement, ifY
is the observation andX is an ensemble forecast forY with
K members, then in general

P(Y < X(k)
|X) 6=

k

K + 1
, (A1)

even if Y andX are independent draws from the same un-
derlying distribution. Here is a simple example. Suppose
the underlying or latent forecast distributionG is a normal
distribution with standard deviationσ and a meanµ. We as-
sumeµ to be random too, with a standard normal distribution
(i.e. with mean zero and standard deviation one), thus giving
rise to randomness of the forecastG, while σ is known and
fixed. In other words, for the verificationY and the ensemble
membersX1 . . . XK , we assume the model

Y = µ + σr0,

X1 = µ + σr1,

...

XK = µ + σrK , (A2)

whereµ; r0 . . . rK are independent random variables with
standard normal distribution. For simplicity, let us assume
there is only one ensemble member, that is,K=1. We claim
that even though the verification is smaller than the ensemble
member with probability 0.5 on average, this is not true for
each individual forecast instance. To see this, we investigate
the distribution

8(y|x) = P(Y < y|X1 = x),

which is the distribution of the verification given the ensem-
ble (or the single ensemble member in this case). We will
demonstrate that8(y|x) is not equal to 0.5 fory=x, or in
other words that the median of8(y|x) is not equal tox.
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An easy calculation shows that8(y|x) is a normal distri-
bution as a function ofy with mean (and also median) equal
to E(Y |X1=x). But it follows from the relations (A2) that

E(Y |X1 = x) = E(µ|X1 = x) =
1

1 + σ 2
x.

Hence the median of8(y|x) is equal to 1
1+σ2 x, which is dif-

ferent fromx. In other words,

P(Y < X1|X1 = x) = 8(x|x) 6= 0.5.

For the unconditional probabilityP(Y<X1) however, we
get

P(Y < X1) = E(P(Y < X1|µ))

= E(P(r0 < r1))

=

∫
∞

−∞

F(r)dF(r)

=
1

2

(
F 2(∞) − F 2(−∞)

)
=

1

2
, (A3)

whereF(r) is the distribution of theri in Eq. (A2). This
calculation shows that indeed on average, the verification is
smaller than the ensemble member with probability 0.5. This
is, of course, a particular case of Eq. (3).
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