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Abstract. Climate is usually considered to depend on avariations can occur due to the changes in the solar irradi-
large number of parameters, this being essentially a funcance (external forcing agent) and/or changes of the internal
tional in multi-dimensional parameter space. We propose glanetary parameters, like atmosphere composition (internal
low-dimensional model of a climate where the temperatureforcing agent). The large number of possible forcing agents
field on a thermally conducting planet depends on the exterbrings about the necessity of sophisticated numerical anal-
nal energy input and very limited number of internal param-yses (see, e.d¢dansen et al.2005 and references therein).
eters, like thermal conductivity and reflectivity. Equilibrium Lower dimensional approaches, which sometimes allow an-
temperature and quasistatic variations of climate followingalytical treatment, are based on the globally-averaged energy
slow variations of the energy input are studied. The singlebudget analysisgoer et al, 2005 or box modelsCai, 2005.
phase model exhibits adiabatic behavior and stability withModels of intermediate complexityPétoukhov et a].200Q
respect to small axisymmetric perturbation. The two phaseClaussen et gl2002 are particularly attractive since they
model shows a non-trivial response to the variations of theincorporate a reduced number of micro-processes and/or op-
external parameter. History dependence, global instabilitiegrate at a reduced level of detail for the sake of simulating
and hysteresis behavior characterize the surface temperatutiee interaction between as many components of the system
evolution. as possible. Except for the very low-dimensional and con-
ceptual models, analytical study is not possible, and time
consuming numerical simulations are necessary. Although
sophisticated models are, in a whole, quite successive in the
description of the present Earth climate there is a risk that

In a non-orthodox way we define climate as a thermal state ofh's agreement with observations might be partly a result of

a planet which is described by a number of suitable param—tunlng Raisanen 2007). Long-term predictions are still not

eters (temperature in the simplest case) and varying at thgufﬁuently certain.

time scale of larger than that of the seasons. Climate is deter- The Earth climate varies at large time scales (kyears) in a
mined by the external energy input (solar irradiance) as wellnon-adiabatic manner. Slow changes of the temperature are
as the internal parameters (like. e.g., absorption coefficientsiollowed by abrupt climate changelley et al, 2003, like

and the processes of heat transfer. Heat transfer may be a réhe Dansgaard-Oeschger osciilatioBasgaard et 8[1982

sult of a number of micro-processes like diffusion, material Rahmstorf 2001). These oscillations are clear evidence of
motion, chemical reactions, etc. These are called here microthe nonlinear dynamics of the system, possibly indicating
processes since they do not necessarily occur at the scale 870 or more (meta)stable equilibri&sfomme] 1961). A

the whole planet or at the time scale of the climate variations Simple conceptual model has been proposed receBituf

but may operate at much smaller spatial and temporal scale€t al, 2007, which postulates the existence of two climate
When speaking about climate we shall refer to the resultsStates and a threshold process. The two most central factors

of the proper averaging over these micro-processes. Climataffecting the climate variation in such systems are, in our
opinion, the oceanic heat content and hear trangahn-
storf, 2001, 2002 and the solar forcingMan Gee] 1999

Correspondence tdvl. Gedalin Paillard 200 Braun et al, 2005 Swindles et a].2007) (the
BY (gedalin@bgu.ac.il) latter is believed to be due to the Milankovich cycles of the
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Earths orbit). Numerical simulations in coupled ice-sheet2.1 The basic model
models have been used for studies of glacial climate varia-
tions Oerlemans1982 Pollard 1983 Galle2 et al, 1991; We consider an imaginary spherical planet without atmo-
Ganopolski et a).1998 Ganopolski and Rahmstg&007) sphere, covered with a thermally conductive layer of a con-
In the present paper we Suggest a low-dimensional apStant width. In order to avoid unnecessary Complications,
proach, which is based on the ideas similar to those presentedie planet is assumed to be rotating with the rotation axis
by, e.g.,Boer et al.(2009 andCai (2005, developed in the  perpendicular to the direction to the Sun. We shall describe
spirit of the nonlinear dynamics models (likerentz 1963. the planet climate with the field of the single scalar variable,
Namely, we suggest that it makes direct physical sense télaily average temperaturd,(¢), where¢ is the polar an-
start building simplified global climate models which would 9le from the north pole. By doing so we ignore the day-
allow mapping of, e.g., temperature distribution on the planethight variations of the temperature which occur on a much
surface, as a function of a small number of parameters. Sucfaster time scale than we are interested in. A number of
a model would incorporate only a very limited number of Processes and parameters which affect the temperature dis-
most important processes, with the objective to establisHribution on this planet is small. Let us consider a ring be-
whether climate is intrinsically stable and what is the influ- tweens andé+d6, with the surface are@S=2r R? sin6df.
ence of the perturbations in the external forcing or the ef-Let the temperature of the area changediy during time
fects of slow (or rapid) changes of the planet parameters (like?z. The heat amount the ring getsd®)=cdSdT, where
albedo, thermal conductivity, etc.). In the present paper wee is the specific heat of the unit area. This heat comes
propose a simplest model of this kind, where the externafffom the Sun illuminationd Q1= f sinfdS, where f is the
forcing is due to the solar heat flux, which is balanced byflux density of the solar energy, and 8irtakes into ac-
the thermal black body radiation from the planet. The only count that only the normal component of the flux is ab-
modification of the temperature distribution is due to the uni-sorbed. The (uniform) albedo of the planet surface is in-
form diffusion-like heat transfer. We study the steady climatecluded in the definition of the fluy'. Another contribution
and the response to the perturbations of the external forcings due to the thermal conductivity. Let the heat flux density
Our objectives are rather modest, and we do not attempt t&€ j=(d Q/dL)=—«xVT=—(x/R)(dT/d0). The total heat
apply the results of our analysis directly to the interpreta-flux out of the ring would be

tion of the Earth climate variations. Instead, we are aiming 40 K d o dT
on establishing the most general tendencies of the climate;,” = ~ % 75 (277135'”9%) do, (2)

evolution as depending on a small number of agents, with- hat th h in of the i :
out further complication introduced by multitude of possible so that the total heat gain of the ring area Is

micro-processes. d0, = | fsino + Kk
The proposed model is similar to the energy-balance mod- <% R2sin6 do do

els proposed first bgudyko (1969 and Sellers(1969 and Qn the other hand, the amouh® ;=0 T*d S dt is dissipated

extensively studied during last several decades (see reviews . . . S
and references imorth et al, 1981 North and Stevens Into radiation. Strictly speaking, the radiative term should be

4 4 ;
2006. In these models some terms on the energy balancéX(T )#(T)", where _the angular brackets denote averaging

i . . ver the planet rotation. For our present purposes the differ-
equations were chosen on a phenomenological basis, an

certain boundary conditions were imposed following exper-ence may be ignored since th‘.a most |mporta_nt fea_ture IS t_hat
. : . he radiative losses are a nonlinear monotonically increasing
imentally established values rather than from the physics o unction of the dailv average temperature. Eneray conserva.
the interaction. We, instead, specify a small number of phys- y 9 P ' oy

ical processes governing the system behavior. Accordingly,t'on impliesd 9=d 01~d Q2, so that

d . dT
— sm@—] dsdr. 2)

the b_ounda_ry and _interface cor_lditions are derived from thecﬂ — fsing + kﬁ% sine%T —oT4 = ©)
physics of interaction and not imposed as an external con- 0t
straint. Thus, physical conclusions derived from the model = fV1-x2+ kL1 —x)LT — 0T, (4)
should be applicable to systems with a wide range of param- )
eters. wherex=cosf, —1<x<1, andk=«/R*.
Polar regions require special treatment. Fe#0 the ra-
diative losses are9?, the incoming flux isx6® (see, how-
2 Single-phase model ever, below), and the heat fluxd® (dT/99). Therefore, one
has
In this section we develop our model for a single-phase g1 ) )
planet. Analysis of the two-phase system is delayed untileg x0°=T x0 (5)
Sect3. In other words, the boundary condition at the poles is
10T
—— <0 (6)
0 90
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The developed model should be compared to the classical
energy-balance modelB@dyka 1969 Sellers 1969 North
et al, 1981 where the black-body radiative term is substi-
tuted by a phenomenological radiative term which depends
linearly on the temperature. As a result, nonlinearity disap-
pears completely from the model.

We can further reduce the number of parameters by mak-
ing transformation

T — (k/o)Y3T, 1t (c/kn, 7)

so that Eq.4) reduces to the following one-parametric equa-
tion

oT

0 d
— —FQl-x»V2 4y —a-—xd—T1-T* 8
o 1-x9 +8x( x)ax , (8)

where F=fo1/3/k%3. This representation is useful for the
analysis of the perturbations of the forciifig
Fig. 1. Temperature distribution as a function.of cosé for vari-

2.2 Equilibrium ousK=0.01, 0.1, 1, 10, 100.
In the equilibrium temperature is time independent, so that
one has In general, it makes sense to normalize the temperature as
d d follows: T=T/To=T o ¥4 f~1/4, so that Eq.9) is rewritten
fA=xH2 4+ k—Q-x)—T -oT* =0, (9)  inthe form
dx dx
0 0 ~ =
or A-x)YV2 4+ Kk—Q1-x3—T -T*=0, (15)
. 1 d . . d i_y 10 dx o
Sing +k———sin0—T —oT" =0.
feind kg g g SN0 g —° 0 herek =k /o T3=ko Y434,

The first term in this equation is the energy input from out- _ Figurel shows distribution of the normalized temperature

side, the second one is the energy transfer to the poles, whilé s & function ok= cost for various values of the parame-
the last one is the dissipation. ff=0 the only solution is  t€rK=0.01, 0.1, 1,10, 100. HigherK correspond to higher
the trivial one,T=0. If =0 there is no equilibrium solu- heat conductivity, and, therefore, to the more homogeneous
tion. If k = O the obvious solution iF=( f sind/o)V/4 so  temperature distributions.

that the temperature on the poles is zero, while the maximu
(equatorial) temperature ®=( f/o)Y/* It is easy to see that
whenk#0, the temperatu_re on the poles cgnnot vanish SinCel'_et us assume that we succeeded to find an equilibrium so-
the nonzero energy flux into the pole region should be baI—Iution T., ). Ititis perturbed,T=T,,+T1, T1<T,y, the
anced by the radlf';\tlon. Near the pole&1, Eq. 1.0) can be equation for the perturbation takes the following form:
approximately written as

0T 1 9 . 9 2
1d,d — =K———5S8ing—T1 —4T° 11, 16
f9+k5d—99ET—O'T4:O (11) ot sing 96 Y, 1 eqll ( )

We shall seek for a solution of the form

mz.s Perturbation analysis

wheret/(c/aTO3)—>t. Putting T1oxexp(pt), we have the
equation for the eigenvalue problem:

T =To+ A10% + A0 + .., 12

oA T 2 n—pn, (17)
wherea>0. Direct substitution immediately gives=2 and

} § where
T =To+ (o T3 /4k)6% — (f/9)63 + . ... (13) 1 s 5

L=K——_—sing_— — 473
For k— oo one hasdT/d9=0 andT =T,,=const (other so- sing 06 20
i i 0 d
lutions diverge) and, therefore, _ Ka(l _ xz)5 _ 4T21 (18)
s
Ao T = Zn/ fsirtodo =72 f (14)
0

and7,,=To(rw /44,
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It is easy to find { denotes complex conjugate) 3 Two-phase model description
9 9 i i i
T{LTi + T\LT} = K — [(1 . xz)_m'z] !n this section we extend the analysis of the modgl devgloped
ox dx in Sect.2.1 onto a two-phase system. Our attention will be

s 5 5 mainly devoted to the equilibrium dependence on the planet
— 4T, |Th|” = 2Rep|T1]| (19)  parameters as well as the response of the system to slow ex-
ternal variations.

a1 |2
—K(1-x)|2

Integrating over—1<x<1 one easily gets Re<0, which

means that all perturbations damp. 3.1 The two-phase model
In the limit of zero thermal conductivitik =0 and one im-
mediately has We assume that the substance covering the surface of the
planet can exist in two phases: a) “ice” at temperat@reg,
Toy = sin/*6 (20)  (subscript “17), and b) “water” at temperaturés-7, (sub-
. o . script “2"). Each phase is characterized by its own specific
Respectively, Eq.17) is immediately solved heatc; (per unit area). The latent (melting) heatiisper

unit area. We shall also assume that different phases absorb
radiation differently, the coefficient; is the fraction of the
In the limit of the very high thermal conductivity >1, incident flux Whiph is absorbed (A is reflected). For each
one hasf,,=T,,=const, so that the equation for the pertur- phase the equation for the local temperature reads
bation reads 9T, . P y
o, Ci—— = fSINO +kigrg3g SINO 55T — 0T, (27)

0 ot
K—(1—x%— = AT3)Ty. 22
8x( x)ax (p+4T,)1 (22)

Ty o exp(—4T2 1) (21)

wherek; are the properly normalized specific thermal con-
It has the solutions in the form of Legendre polynomials ductivities. If the temperature everywhere is too 16w T,
with (p+4Ta3U)/K:—n(n+l), n>0 and integer. The small- for all 6, the planet is covered be ice. Tt>T, for all 6 the

est damping rate is achieved fa=0 and iSp=—4Te3;, as planet is covered by water. In both cases the single phase

above. model is applicable.
. If there are regions witl'=T, a mixed state is possible.
2.4 Perturbed forcing We shall assume that such mixed can be represented as two

) icy polar caps, 80<6, and r—6,<6<m, and water be-
Let us now consider the response of the system to small forcpyeen themg, <6 <7 —6,,. In what follows we shall restrict
of the stationary Eq.9) and we seek for the solution of the  symmetry. In each region, icy or watery, the temperature dis-
time-dependent equation tribution is described the EqR7).
At the boundary =6, the temperatures should be equal to
oT 21/2, 0 2, 0 4 : P
—=1+ent)A—x)7+K—1—-x°)—T-T",(23)  the melting temperaturd; =T, unless heat transfer between
ot ax ax . L
ice and water is inhibited (see below).
wheree is the smallness parameter. Assuming7,,+€7”, In general, the boundary may be movir@ﬁéo. Let
one gets the ice-water boundary move b§v,=6,dt toward the
, equatorial plane. The amount of energy added to the
oT —Ki(l — xz)iT/+4Te‘°;]T/=n(t)(1— 212 (24) ring with the radius Rsing, and the width Ré6) is
ot ox dx 8 0=—rdS=—2m R?\siné,0,dt, wherex is the specific la-
Since this equation is linear, one may put tentheat. This energy is due to the difference between the
n(t)=noexp(—iot), and T'=T exp(—iwt). One im-  fluxes from the both sides of the boundary

mediately gets

T JT: .
(SQ:[—kl—l T2 ]ZnRsmG,,dt

T = LT + o1 — x)V2. (25) 30 9=, ' ° 00 o0,

Expanding 7’ in terms of orthonormal eigenfunctions Wwhich gives
LTy=pT,, T'=3_,apT), One has

. B 0
ARO, = — |:k2—T2 — kl—T1i| (28)
o ! 2)3/2 96 90" lo=,
oy =— —i—ia)/ (1 —x9)¥Tpdx (26) !
P -1 It is worth noting that the change of the absorbed power
Sincep is real, the response is always nonresonant. SP'=(a1—a) f :sine,,(ZnR2 sind,)-6,dt gives the energy
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change only in the second ordéQ’ ~ §P’St. Inthe sta- 3.2 No heat conductance

tionary stated, =0 and
In the absence of heat conductaniges0, the local tempera-

d d . .
[kzﬁ T — klﬁTl] =0 (29) ture is determined by the local energy balance,
0=0,
It is instructive to arrive at the equation for the boundary ci% =a; fsing —oT? (36)
motion from the consideration of the “total heat content” t

0. Op i Absence of the heat flux across the ice-water boundary al-
27R2 /0 c1T1sindo lows jump of the temperature at the boundary, which, in turn,
72 permits stationary solutions of the form
+/ (c1T. + c2(To — T,.) + A) Sinfdo (30)
Op
where Th=T1(9), To=T>(9), 0,=60,(1), and
T1(6,)=T2(6,)=T.. Here A is the latent heat neces-
sary to melt the ice to water at the melting temperatQre
The heat content change rate due to solar irradiance an

T; = (o; f sing /o) /4 37)

Such solution is possible only fer; <oz (“normal” case),
since only in this case it is possible to achieve the necessary
[jelation

radiative Iossees is T1(6)) = (a1 f sine,,/g)l/“ <T,
. 2 .
anﬁI’e =o1f [o” Sir? 0do + az f fej;/ sir?6do (31) < (azf Siﬂ@,,/a)l/4 =T2(0)) (38)

e (O Tag o (T2 b
o Jo Ty'SIN0d6 —o o, 12 sin6do The polar cap sizé,, is not determined unambiguously by

I the equations and may be within the limits restricted by

= Z[(glrr + (a2 — a1)(w —2291, +sin2,)] (32) Eq. 39):
—o o' T{'sin6do — o [/ T} sinodo
4 4
Energy conservation requires (in what follows we omit the ol <sing, < ol (39)
constant non-essential factar R?) oz f orf
Oc= 0. (33)  providedo T#/ay f <1. Wheno T#/a; f>1 the whole planet

is covered by ice. The opposite (whole planet covered by

Using Eq. 27) one arrives again to E28). - ) } N .
water) is impossible since the radiation flux is always zero at

Additional boundary conditions read

1 07y the pole.
——— =0 6-0, (34) The casex1>ap (“abnormal” case) does not allow station-
Sing 39 ary solutions, since at the ice-water boundary one would have
2 _o g=ns2 (35) [1>Tawhichisimpossible. _
a0 Let us now consider the adiabatic switch-on of the radi-
the first of which have been obtained earlier while the secondation in the normal case;<ap. For very low f the whole
follows from the symmetry <> —0. planet is covered with ice. With the increasefothe temper-

The derived equations for the temperature evolution to-ature increases. It first reach®s=7, at the equator, where
gether with the condition at the ice-water boundary give athe ice starts to melt. Once melted the absorbed energy in-
complete description of the system. In what follows we startcreases so that the temperature jump$,te=T, (a2/a1)Y4.
the analysis of the set with simple limiting cases. We will be With the further increase of the irradiation the ice-water
mostly interested in stationary states and their perturbationsboundary moves poleward with the ice temperature at the

It is worth noting that previous energy-balance modelsboundary equal to the melting temperature while the water
(Budyko, 1969 Sellers 1969 Cahalan and North1979 temperaturel’,>T.. If we now start to decreasg adiabat-
North et al, 1981, North, 1984 North and Stevens2006 ically, the temperature starts to decrease on both sides until
Wu and North 2007 treated the two-phase system with the water begins to freeze. Eventually the boundary moves to-
use of the temperature-dependent albedo (and possibly sp&ard equator and the water temperature at the bounddpy is
cific heat and thermal conductivity), where the albedo abovewhile the ice temperature B=T.(a1/a0)/*<T.,.
the critical temperature corresponds to that of the water, and In the abnormal case the beginning of melting results in
below the critical temperature corresponds to that of the icethe decrease of energy absorption which should stop the
The boundary condition at the ice cap boundary has beemelting. A quasi-stationary state cannot be achieved and a
imposed phenomenologically (see, eNprth et al, 1987) time-dependent state is developing. With the increasg¢ of
by specifyingT (6,). The melting-freezing process was not the planet develops into a three-zone system: a watery zone
considered. Here we explicitly introduce teh latent heat foraround the equatorial plane, icy polar caps, and an intermedi-
the ice melting, and derive the boundary conditions from theate zone with time-dependent melting and freezing. We shall
first principles. not devote more time to the abnormal case here.

www.nonlin-processes-geophys.net/15/541/2008/ Nonlin. Processes Geophys., 53952008
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2 3.3.1 Normal case
(11=0.8
80r ] In this cases>1 and f><f1. The mixed state exists for
70- i f2<f<f1,and Eq. 42) immediately gives
1

sor ] ¢=—7U/f-D (46)
- S0 1 Sinced¢/df <0 andd¢/d6, <0, one hasld,, /df >0, which

aof 1 means that when the irradiance increases the icy polar cap

increases too! This happens because the increase of the po-

30 lar cap reduces the absorption of the incoming heat which is

20 , necessary to maintain the same temperafurand the bal-
ance between the energy income and outcome (the latter re-
mains constant). We show below, however, that this quasi-
0 ‘ ‘ stationary behavior is unstable and cannot be observed.
nfac T Let us now consider the adiabatic (slow) changes of the
‘ heat flux f. Let us start withf < f> and T <T, (ice only).
Gradual increase of results in the gradual increase of the
Fig. 2. Dependence of the angular size of the ice@apn the solar  temperature until the melting poifit=T7,v is achieved when
radiation constanf for «1=0.4, 0.6, 0.8, whenay=1. f=/1. At this point the ice melts completely, the radiation
absorption becomes stronger, and the temperature jumps to
. Tw,=T.s¥/*. Slow decrease of the flux results in the grad-
3.3 Uniform temperature ual decrease of the water temperature down to the freezing
. oint at f=f» where the temperature falls ©=7.s /4.
If ky=ka=00 the temperature should be uniform all over the 'FI)'hus, ajr:isg(c)ry dependent hypsteresis behavior of the planet

glz;ne; Itth>TC thfn thfe Wh.0|e planle: 'T‘ c_ove[re: V:\',Eh Wster’ temperature should be observed while the planet should be
W I'<1c he panet surface IS completely ice. he tWo phases,q areq by a single phase (either ice of water), except for the
may coexist ifT =T. In this case the total heat content is

transient periods of melting and freezing. A quasi-stationary

10

Q. = c1T. + 1.cos0, (40)  Mixed state cannot be achieved.
Let us now assume that a mixed state is somehow achieved
and the integral energy conservation gives as an initial condition. A small increase of the flux would the
_ ) xf result in melting of a small part of the ice, which would re-
—Asing,6, = T[al sult in the increase of the radiation absorption, further melt-

) 4 ing, and so on, until all ice would melt and the planet would
+oz — 1)1 =20, /m +SiN D) /m)] — o T; (41)  switch into a single phase. Similar reduction of the flux
Stationary state is achieved when would result in the freezing of the whole planet. Thus, the

mixed state is unstable. This can be shown quantitatively.
fIl4+ (G —Do@p] = f (42) Let us start with a mixed-state equilibrium, whefe: fy and

6,=0p are related by the relatiofp[1+(s—1)¢ (6o)]=f+1.

where we introduced the notation Let us consider small perturbationfs= fo+381, 6,=60+36,

s =az/a1, fi=40T ma, (43)  thenone has
J2 =401 /maz = fi/s. (42)  —sin0oss = o TS/ fo — 12(s — 13, (47)
$p0)=1—-20/n +sinY/x (45) w? = — (7 foar/H) (dp/dO)g—g, (48)

The functiong (9) is a monotonically decreasing function !t i easily seen that the homogeneous part of the equation
of the angle withg (0)=1 and¢ (x/2)=0. Figure2 shows has exponentially growing solutions

the dependence @f, on f for severala; (for convenience 59 « exp(pt), p = u?(s — 1)/ sinbg (49)
az=1). _ ) ) _
We shall analyze in detail all options. Tf<T, the whole ~ Eduation &7) is easily solved:
planet is covered with ice. In this casg¢ a1 /4=0T* <o T# oTA i ety
which is possible only forf < 1. If T>T. the whole planet  %¢ = _m/o 8f(1)e dt (50)

is covered with water which is possible onlyfit- f>. In the ¢ 8¢ vari lowl he ti | h
mixed regimeT'=T, and mir( 1, f2)< f < max f1, f2). Let If §f varies slowly at the time scalg g one has
us consider separately the normal casé and the abnormal aTC“Sf

cases<1. Mo Y (51)

Nonlin. Processes Geophys., 15, 5849 2008 www.nonlin-processes-geophys.net/15/541/2008/
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that is, exponentially fast contraction of the polar cap (for 4.1 High finite thermal conductivity
8f>0) at the time scale/pp.
We are unable to solve analytically the set of the EQ3), (

3.3.2 Abnormal case (28), (34) and B5). However, analysis is possible for high

] ] (but finite) thermal conductivities. Indeed, Fidj.shows
In this cases<1 and f1<f2. As a result, melting starts at  that the temperature profile for largé does not vary much
lower fluxes, and a stable mixed state exists fo€ f<f1,  around an average value. We can, therefore, assume that
wheredé,/df <0. The latter means that gradual increaseTi:Tch,i, wheret;x1/k;. In the stationary case, substi-

of the radiation flux results in the gradual melting of the ice yting into Eq. 7), in the lowest nontrivial order one has
and gradual contraction of the polar cap. Same analysis as

above shows that the state is stable: perturbations decay ex-1 d . 9 d 74 £ sing 57
ponentially and the system falls back into a quasi-stationarysing 46 sin %T’ =0l —aifsin (57)

regime. o .
Taking into account the boundary conditions Eg4)(and

Eqg. 35), one has
4 Global stability: general approach

d . .
o o k1sind—rt1 = foe(aTc4 — a1 f sinx) sinxdx, (58)
For finite nonzero values of the thermal conductivity coef- do
ficients analysis is more difficult. We are interested here in, _. . d 0 4 . .
. . ko SING—1o = T — sinx) sinxd 59
the global stability: let us assume that the ice-water bound- 2 do 2 f”/z(a ¢ o2f sinx) sinxdx (59)

ary moves by and infinitesimal displacemé#}, during the

infinitesimal timest. The energy conservation EG3) gives The boundary conditions at the ice-water interface give

. 9,,
Q. ig@p — &591). (52) / (cTTC4 — a1 f sinx) sinxdx
860, dt 860, 0 .
y4

Itis clear that if = / (0T} — apf sinx) sinxdx (60)

. /2
§Qc 80, o _ _
50 80. 0 (53)  which is equivalent to Eq.4Q). Integrating Eqs.8) and

p P

(59) further and taking into accoufit=7, at=6,, one has

the system is unstable since the displacement will exponen-

tially grow. T =T+ fﬂi oy Jo (0T — a1 f sinx) sinxdx,  (61)
Since the functional form of the temperature depends on 0 1 y 4 . .

0, we shall WriteTy=T1(0. 6,), To=T2(6,.0), and denote 12 = Te + [y, sy Jaj2(0 T’ — 02f sinx) sinxdx.  (62)

8T Respectively,
5T = 256, (54) pectively
86,
Sh_ 1 o (oT* — ay f sinx) sinxdx (63)
Now the variational derivatives can be expressed as follows:s,, ~ fasing, JO ¢ ! ’
0 8T 1 0 4 : :
% = —Asing _|_/ ' 01& sin6deo 50, kzsing, fnfz(aTc —ap f sinx) sinxdx (64)
86, L R r
T2 §5T, 046 - and do not depend ah
+ 6, 250, sinvav., (55) In the equilibrium one has
GP
50, / (an — a1 f sind) sinddo
—L = — f(az — a1) Sirt 6, 0
59p /2
o 8Ty +/ (0T — azf sind) sinddd = 0 (65)
—40/ T, —= sinfdo Op
o 136,
2 ST, which gives in the lowest order
—do / 73— sinbdo (56)
0, 80,

6
Xp = / (0T~ a1 f sind) sinodo
Unfortunately, 716, 6,), T2(6,,6) cannot (at least, at the 0
present stage) be found explicitly in general case. We shall
consider the case of high but finite thermal conductivities.

0,
= | (0T} azfsinb)singds > 0, (66)
/2
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and In the above analysis we have shown that the climate of
5Ty o _the planet cove_red by a s:ingle phase of a thermally po_nduct—
S0~ Fising, < 0, (67)  ing substance is stable, in the sense that small variations of
P the external energy input results in small variations of the
T2 ——_X _ _0 (68) planet temperature. However, when the substance can ex-
86 k236 ist in two different phases, the situation changes drastically.
Eventually, There exists a range of parameters for which the planet is in
) an unstable state, when a small and slow variation of the so-
80, — F(az — a1) Sin 0 lar flux may result in a large global response of the planet.
860, 2— 4 P In this case the typical time of the changes on the planet sur-

(69) the temporal scale of the solar irradiance variations. Simply
speaking, when the solar constant drops below some thresh-
The obtained relation shows that temperature inhomogeneitpld and ice age develops quickly (we warn the reader to not
improves stability, since termg1/k are positive while the take this words as a direct application to the Earth ice ages).
instability causing termx(azo—a1) is negative. We have seen The equilibrium state of the planet becomes history depen-
earlier that in the cask— oo the mixed state is unstable, dent and exhibits a hysteresis behavior. The unstable behav-
while for k=0 it is stable. The transition occurs when ior of the climate and rapid transitions following long pe-
) riods of slow adiabatic variations resembles the Dansgaard-
f ez = ay) sir? Op Oeschger events. The bistable regime and bifurcations of the
— 4T3 (1 —cosf, ~ cosf, ) (70) Stommel type are also the intrinsic features of the proposed
<P\ Ky sing, kosing, model, albeit at this stage verified only for the limiting cases.

Sincey, andd+p depend ory the derived condition for the To summarize, we have developed a simple low-
change of stability is a very nonlinear condition ¢n Fur- dimensional model of the planet climate from the first phys-

ther analysis is beyond the framework of the present papelc@ Principles, not invoking any heuristic ingredients. We
and will be published elsewhere. have shown that the climate of a two-phase planet is intrinsi-

cally unstable. Slow and weak variations of the forcing trig-
ger fast and large changes of the climate, like drastic increase
5 Discussion and conclusions or decrease of the surface area covered with ice. We suggest

that this intrinsic instability is the basic feature of most, if not
It is quite clear that the proposed model cannot properlyy||, climate systems.
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