
Nonlin. Processes Geophys., 15, 435–444, 2008
www.nonlin-processes-geophys.net/15/435/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Nonlinear Processes
in Geophysics

Improved preservation of autocorrelative structure in surrogate
data using an initial wavelet step

C. J. Keylock

School of Geography, University of Leeds, Leeds, UK

Received: 28 September 2007 – Revised: 17 April 2008 – Accepted: 18 April 2008 – Published: 2 June 2008

Abstract. Surrogate data generation algorithms are useful
for hypothesis testing or for generating realisations of a pro-
cess for data extension or modelling purposes. This paper
tests a well known surrogate data generation method against
a stochastic and also a hybrid wavelet-Fourier transform vari-
ant of the original algorithm. The data used for testing vary
in their persistence and intermittency, and include synthetic
and actual data. The hybrid wavelet-Fourier algorithm out-
performs the others in its ability to match the autocorrela-
tion function of the data, although the advantages decrease
for high intermittencies and when attention is only directed
towards the early part of the autocorrelation function. The
improved performance is attributed to the wavelet step of the
algorithm.

1 Introduction

Surrogate data techniques were originally developed for test-
ing hypotheses regarding the nature of non-linearity in data
(Theiler et al., 1992; Theiler and Prichard, 1996), and they
have been used in this way in a variety of subdisciplines
in the geosciences (Ashkenazy and Tziperman, 2004; Poggi
et al., 2004). However, more recently there has been a
move to apply such methods for producing realisations of
a phenomenon for testing model performance (Venema et
al., 2006c), or increasing the number of realisations for an
experiment (Angelini et al., 2005), and it is the latter appli-
cation that is of primary concern in this study. The most
popular method for deriving such surrogates is a Fourier-
based method due to Schreiber and Schmitz (1996) known as
the Iterated Amplitude Adjusted Fourier Transform (IAAFT)
technique.

Correspondence to:C. J. Keylock
(c.j.keylock@leeds.ac.uk)

With this technique, the surrogates are constrained to the
values of the original series as well as their behaviour in the
Fourier domain. One application of this type of test in geo-
physics is to use such surrogates for studying the intermit-
tency properties of turbulence (Basu et al., 2007). Because
these surrogates only preserve the histogram and Fourier
spectrum, intermittency effects are removed, permitting a test
for the presence of intermittency in the original data.

Venema et al. (2006b) tested this algorithm and several
other surrogate-generating techniques against various geo-
physical datasets and concluded that the IAAFT method was
more effective than methods that were solely based in the
Fourier domain or fractal-based tools that gave a simplified
model for the Fourier behaviour of the signal. However,
there are convergence issues with the IAAFT algorithm and
while this can be dealt with using a method such as simulated
annealing (Schreiber, 1998), this is generally prohibitively
slow. Venema et al. (2006a) proposed a stochastic variant of
the IAAFT algorithm (the SIAAFT) where only a subset of
the original values is matched to the data in an initial rank-
ordering step. After convergence to a local minimum, the
original IAAFT algorithm is applied to recover a signal with
the same amplitude distribution as the original. The stochas-
tic first stage helps the algorithm find a local minimum that is
a more effective representation of the Fourier characteristics
of the original signal by applying the amplitude constraint
more gradually. The aim of this paper is to show how a re-
cently proposed method for surrogate generation (Keylock,
2006) is of use for improving the convergence of the IAAFT
method. As with the SIAAFT, this is a two step algorithm,
but the first stage is based on a wavelet transform (hence, the
WIAAFT). This method and the original IAAFT algorithm
are described in Sect. 2, while the data and testing procedure
are presented in Sect. 3. A comparison of the performance of
the three methods is undertaken in Sect. 4.
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2 The original and wavelet-based IAAFT algorithms

The original IAAFT algorithm is based on the following
steps:

(a) Take the Fourier transform of the original data series
and store the amplitudes;

(b) Make a random sort of the values in the original data
series;

(c) Fourier transform the random sort and replace the am-
plitudes with those from (a), while retaining the phases
from the random sort;

(d) Invert the Fourier transform to recover a surrogate data
series and use rank-order matching to map the values of
the original series onto the new series;

Step (d) will have degraded the Fourier representation of the
surrogate series so stages (c) and (d) are repeated until no fur-
ther re-ordering occurs, with (c) applied to the result from (d)
at each iteration rather than the random sort. The SIAAFT
algorithm of Venema et al. (2006a) modified step (d) in the
first stage of their algorithm by only matching selected (per-
haps randomly) values of the original data to the Fourier-
transformed data. The alternative approach tested here sup-
plements the IAAFT algorithm with an initial wavelet step.

The wavelet transform of a signal gives a decomposition
both in terms of time/space as well as frequency (see Mallat,
1999, for a review of wavelet analysis methods). Hence, it
was used by Keylock (2006) to generate surrogates that pre-
serve the local mean and variance of a non-intermittent signal
in the surrogates, while still randomising the intermittency
or regularity of the signal (defined in Sect. 3). In general, in
the geophysics literature, two types of wavelet transform are
used: continuous, and discrete. The latter is extremely use-
ful for data compression purposes because it is invertible, the
dynamic range of the coefficients within a scale is less than
for the whole signal and, for a signal of lengthN , it is de-
fined overJ scales, where 2J =N , and as the scalej=1, . . . ,
J increases by 1, the number of coefficients decreases by∼2
(depending on the form of the mother wavelet). Wavelet-
based surrogate algorithms such as Angelini et al. (2005)
are based on the discrete transform. The continuous trans-
form, while slower and more redundant, is often preferable
for data analysis becauseN coefficients are retained at each
scale. Furthermore, wavelet filters based on the Gaussian
distribution and its derivatives, which have useful properties
in wavelet analysis, are admissible in the continuous frame-
work, allowing the development of, for example, modulus
maxima based methods for multifractal analysis (Muzy et al.,
1991) or estimates of intermittency (Nicolleau and Vassili-
cos, 1999). However, the wavelet coefficients are not robust
to translation of the data and may also lack exact invertibility
due to aliasing errors (Simoncelli et al., 1992).

Consequently, a useful wavelet transform in this respect
is the stationary wavelet transform or Maximal Overlap
Discrete Wavelet Transform (MODWT) of Percival and
Walden (2000). This transform is invertible while also pro-
ducingN coefficients per scale (an undecimated transform).
In addition, a circularly shifted version of a signal will have
the same coefficients as the original signal with the MODWT,
which is not the case for continuous methods, and analy-
sis using this wavelet transform is less sensitive to the ex-
act form of the wavelet used than continuous wavelet analy-
sis. These properties mean that the MODWT is very useful
for wavelet covariance and correlation analyses (Whitcher et
al., 2000), as well as a tool for data visualisation (Keylock,
2007a). Its invertibility, coupled to its undecimated nature,
the proportionality of the variance of the coefficients to the
Fourier spectrum, and its robustness to when one begins to
analyse the signal, make it a powerful analytical tool.

The WIAAFT algorithm has the following steps:

(a) Take the MODWT using a wavelet with a high number
of vanishing moments to deal with any potential non-
stationarity in the series (Percival and Walden, 2000);

(b) Apply the IAAFT algorithm to the wavelet detail coef-
ficients at each scalej to generate a constrained reali-
sation of the original detail coefficients, preserving the
original values (hence, variance, hence, spectrum to a
reasonable approximation) and their periodicity (hence,
temporal structure);

(c) Transpose this realisation so that the first detail coeffi-
cient in the transposed case is the last in the new variant;

(d) Find the best match between the original detail coeffi-
cients at a particular scale and the two variants gener-
ated in (b) and (c) by circularly rotating until an error
function (least-squares, penalised least-squares etc.) is
minimised;

(e) This will mean that the positions with high energies in
the original data are mimicked in the surrogates, so we
can invert the MODWT (using the original approxima-
tion coefficients) to yield a surrogate dataset;

(f) Perform the rank-order matching described for the
IAAFT method;

(g) Use the output of (f) as initialisation of the standard
IAAFT algorithm.

This method is illustrated in Keylock (2007b). Simi-
lar to the SIAAFT, the first stage assists the IAAFT algo-
rithm in choosing an appropriate local minimum. Applying
the IAAFT algorithm to the coefficients of an undecimated
wavelet transform has the advantage over block resampling
methods used in other wavelet-based methods (Breakspear
et al., 2003; Angelini et al., 2005) that the structure of the
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wavelet coefficients is preserved more precisely. In addi-
tion, the degrees of freedom in the IAAFT step (b) do not
change with scale because the number of coefficients is con-
stant. While wavelet versions of the IAAFT algorithm that
fix in place the largest absolute wavelet coefficients may be
useful for replicating the major singularities between data
and surrogate (Keylock, 2007b), the algorithm used here was
designed to be able to detect changes in the regularity of
a signal. Because the local mean and variance for a non-
intermittent signal are aligned between data and surrogate
when using the WIAAFT algorithm, intermittency can be de-
tected either through a direct comparison of local Hurst ex-
ponents (for slightly intermittent signals) or through a degra-
dation in the preservation of the local mean and variance (for
highly intermittent signals).

The overall degrees of freedom of the differing surrogate
algorithms is an issue that is difficult to assess in practice
or even define because the results are dependent on the na-
ture of the data. For example, one can construct extreme
cases of a single value or an infinitely long series of the
same value where surrogates and data are always identical.
In practice, the main constraint is the length of the series and
in this study there are sufficient degrees of freedom avail-
able for WIAAFT surrogates relative to IAAFT surrogates,
if circularly rotated versions of the latter are not considered
to be independent (because random rotations could also be
applied to the WIAAFT surrogates if required). To demon-
strate this, 100 WIAAFT surrogates for a realisation of the
data described below (with a value for the parametera, as
defined in Eq. 3, of 0.21) were generated and there was a
median value of 5 exact matches between data and surrogate
for a data series of 512 values (with a maximum of 10 exact
matches). That is,∼1% to 2% of values in the data series
were replicated exactly in a surrogate. One hundred IAAFT
surrogates were also generated and then circularly rotated to
find the maximum number of matches of individual values in
the data and surrogate. The median over all surrogates was
also 5 exact matches, with a maximum of 8.

3 The data and testing procedures

The properties of stationary geophysical signals can vary
from signals with high degrees of persistence and approxi-
mately constant regularity (annual maxima river discharges
have a Hurst exponent of∼0.7) to signals that vary in their
persistence, implying intermittency (such as the change from
background seismicity to an earthquake or no rainfall to a
thunderstorm). Here we define a persistent signal as one with
a Hurst exponentH between 0.5 and 1.0 (withH=0.5 the
value for Brownian motion) and anti-persistence for a value
of H between 0.0 and 0.5. In order to define intermittency,
it is useful to move away from consideration ofH , which is
derived from a rescaled range analysis of a whole (fractal)
signal and, consequently, takes a single value (see Abaimov

et al., 2007, for a recent discussion). Instead, we need a no-
tion of a “local value forH ” that can vary over a signal. This
measure of signal regularity is the Hölder/Lipshitz exponent
αp (Mallat, 1999; Kolwankar and Ĺevy-Véhel, 2002).

The definition ofαp at a particular time of interestt0 for
some functionf measured over timet , follows from consid-
eration of a polynomialG of degree less thans (wheres>0)
and a constantC. A search is undertaken for the cases where
the following inequality holds:

|f (t) − G (t − t0)| ≤ C |t − t0|
s (1)

We can define the setCs
G (t0) as all the cases where Eq. 1

holds and our value forαp at t0 is given by the largest value
for s in this set. More formally,

αp (t0) = sup
{
s : f ∈ Cs

G (t0)
}

(2)

Hence,s represents the smoothest fit to the data about this
point, as the higher the value fors, the greater its differen-
tiability. A signal whereαp is constant is equivalent to one
characterised by a single value forH . Variability in αp intro-
duces intermittency. In order to study signals with a range of
intermittency and, thus, varying persistence, our initial anal-
ysis is based on data signalsX where the Ḧolder characteris-
ticsαp(t) are prescribed according to:

αp (a, t) = 0.5 + a sin(4πt) (3)

where a ∈{0.00, 0.01, 0.05, 0.09, 0.13, 0.17, ..., 0.41}.
This choice results in a signal that is at the boundary of
persistence/anti-persistence because when intermittency is
removed (a=0), we recover a Brownian motion. However,
we recognise that the degree of persistence in geophysi-
cal data varies, with, for example, turbulence data anti-
persistent, and river discharge series persistent. Hence, we
also study:

αp (b33, t) = 0.33+ b33 sin(4πt) (4)

and

αp (b66, t) = 0.66+ b66 sin(4πt) (5)

where bothb33 andb66 are given by{0.00, 0.01, 0.05, 0.09,
0.13, 0.17, ..., 0.29}. We also examine two geophysical
datasets described in more detail below. The algorithm used
to deriveαp(t) is based on that of Wood and Chan (1994)
and Chan and Wood (1997) as implemented in theFracLab
toolbox (see Acknowledgements).

We adopted two general approaches to testing the algo-
rithms. Initially, we generated 100 surrogates for two differ-
ent realisations of the 12 signals given by Eq. (3). Although
this testing procedure is akin to the way in which real data
are tested (where one only has a single realisation of the phe-
nomenon) the interpretation of the results was somewhat de-
pendent upon the realisations (see below). Hence, we also
used an approach where 100 realisations were generated for
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Fig. 1. Example signals with varying levels of persistence and inter-
mittency. The signals in each plot are displaced vertically by –1.5
for clarity, with the lower signal the more intermittent. In 1a signals
are generated using Eq. 3 with values fora of 0.00 (upper signal)
and 0.41 (lower). In 1b signals are generated using Eq. 4 with val-
ues forb33 of 0.00 (upper signal) and 0.29 (lower). In 1c signals
are generated using eq. 5 with values forb66 of 0.00 (upper signal)
and 0.29 (lower).
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Fig. 2. Surrogates for the upper signal from Fig. 1a (black line in
both panels). Figure 2a shows two IAAFT surrogates as grey lines,
while 2b shows two WIAAFT surrogates as grey lines. Surrogates
are displaced vertically for clarity.

each case, with one surrogate produced for each. This latter
method was applied to the data generated using Eqs. (3), (4)
and (5). Figure 1 shows realisations with values fora of 0.00
(1a, top) and 0.41 (1a, bottom), forb33 of 0.00 (1b, top) and
0.29 (1b, bottom) and forb66 of 0.00 (1c, top) and 0.29 (1c,
bottom). A visual comparison of the difference between the
IAAFT and WIAAFT algorithms for these signals is given
in Figs. 2 and 3. While neither methods preserves the local
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Fig. 3. Similar to Fig. 2 but for the bottom signal in Fig. 1a.

Hölder characteristics (by design), which makes represent-
ing the extremely intermittent signals in Fig. 3 problematic,
the improved matching of the local mean and variance by
the WIAAFT method is clear. However, there is a deterio-
ration in the matching between Figs. 2 and 3, meaning that
given a multifractal signal or one with sequential variation in
the Hölder exponents, the WIAAFT method can be used to
detect changes inαp. This is because variation in the local
mean or variance is similar between data and surrogates for
the case of constantαp, meaning that significant variation
in αp or the local mean/variance must be due to the chang-
ing roughness characteristics of the signal and not due to the
lack of alignment of the two signals as could be the case for
IAAFT methods (Keylock, 2006). This provides a suitable
null hypothesis for testing for the presence of intermittency.

All three algorithms (the original IAAFT method, the
SIAAFT and WIAAFT) preserve the actual values in the data
and try to retain the Fourier amplitudes as precisely as pos-
sible. In order to test these methods, we use three related
metrics. The autocovarianceγ at lagτ for a mean-subtracted
time seriesX(t) is given by:

γ (τ) = [X (t) − X (t)][X
(
t + τ̂

)
− X (t)] (6)

where an overbar indicates an average,τ ranges from 0 to
N–1 andτ̂ is τ /N . In this studyN=512 for all signals. The
autocorrelation functionR(τ ) is then:

R (τ) = γ (τ)
/
γ (0) = γ (τ)

/
σ 2 (7)

which is the first measure used in this study. Using the
Wiener-Khintchine theorem, the power spectral density func-
tion f (ω) is given by:

f (ω) =
1

π

∞∑
τ=−∞

γ (τ)e−iωτ (8)

Nonlin. Processes Geophys., 15, 435–444, 2008 www.nonlin-processes-geophys.net/15/435/2008/



C. J. Keylock: Autocorrelative structure in surrogate data 439

−1

0

1

R
(t

au
) 

IA
A

F
T

−1

0

1

R
(τ

) 
S

IA
A

F
T

0 100 200 300 400 500
−1

0

1

τ

R
(τ

) 
W

IA
A

F
T

(a)

(b)

(c)

Fig. 4. A comparison of the autocorrelation functionsR(τ ) for the
data in Fig. 2 (black dotted line) along with 5 surrogates (red lines).
IAAFT surrogates are in(a), SIAAFT in (b) and WIAAFT in (c).

whereω is frequency over the range 0 toπ . An estimate
for f (ω) can be obtained directly from the data by taking
the square of the Fourier transform to give the periodogram
estimatorP (ω):

P (ω) =
1

N2π

∣∣∣∣∣ N∑
τ=1

X (τ) e−iωτ

∣∣∣∣∣
2

(9)

and this forms our second measure. Venema et al. (2006b)
note that the periodogram is a noisy estimate and adopt a
test statistic similar to the Kolmogorov-Smirvov test by ex-
pressingP (ω) in a cumulative form, normalised between 0
and 1 and then looking for the maximum distance,D, be-
tween these histograms for data and surrogates. We use this
approach, but also study the standard deviation normalised
Root-Mean-Squared Error (RMSE) between the original re-
alisation,X, and a surrogate of that data,r, as an error mea-
sure, which we apply to bothR (τ ) andP (ω):

RMSE=
1

σX

√√√√ N∑
k=1

(
MX

k − Mr
k

)2

/
hN (10)

whereM is the measure used [R(τ ) or P (ω)], h=1 for R (τ )
and 0.5 forP (ω) as analysis of the latter is curtailed at the
Nyquist frequency, andσ is the standard deviation.

In a well-known paper on surrogate data generation,
Schreiber and Schmitz (2000) note that the most important
parts of the autocorrelation function to be replicated are those
at short lags. Furthermore, from a statistical perspective, as
the lag increases, the significance of a particular value forR

declines due to the reduced number of samples at this lag.
Hence, an alternative means of implementing Eq. (10) is to
curtail the testing at either the first zero-crossing or where
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Fig. 5. Similar to Fig. 4 but for the data series used in Fig. 3.

a t-test based on the null hypothesis thatR is not signifi-
cantly to zero first changes from significant to insignificant.
In this study, we test our geophysical data using the first zero-
crossing ofR approach, but because of the long-range corre-
lations that exist by definition in fractional Brownian mo-
tions, zero is not necessarily crossed. Hence, for these data,
the lag at whichR is first insignificant at the 5% level is also
used.

Venema et al. (2006a) suggest a variety of ways of im-
plementing the SIAAFT. Their favoured approach is the par-
tially stochastic variant, where the algorithm chooses at ran-
dom one vector from five to update, where the vectors are
given by: {1, 6, 11, ...}, {2, 7, 12, ...}, {3, 8, 13, ...}, {4, 9,
14, ...}, {5, 10, 15, ...}, and the values in each correspond
to the positions of the rank-ordered data. Their convergence
criterion for the first part of their algorithm is to accept a
minimum if it is not superceded in 1000 additional itera-
tions. We adopt these methods in this study and for each
algorithm, the convergence criterion for the IAAFT stage
of the algorithm (i.e. the second steps of the WIAAFT and
SIAAFT methods and the whole of the IAAFT method) is
identical. No additional adjustments were made such as the
end-point matching that is often applied to improve conver-
gence of the IAAFT algorithm. This is because this tech-
nique can be costly in terms of information loss for relatively
short geophysical data series. To test the effect of this on
our results, we generated 100 surrogates for sine waves sam-
pled at 256 points with periods of 8π and 8.117π , the mean
RMSE values for theR statistic were 0.071 (IAAFT) and
0.017 (WIAAFT) for the 8.1π data, and 0.033 (IAAFT),
and 0.002 (WIAAFT) for the 8π data. Hence, end-matching
improves convergence for the IAAFT algorithm, but not rel-
ative to the WIAAFT method, which supports the hypothesis
that better methods than the IAAFT approach are needed for
working with (pseudo)periodic data (Keylock, 2007b).
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Fig. 6. The mean(a) and standard deviation(b) over 100 surro-
gates of the RMSE statistic forR (τ ) over all lags obtained for two
different signals with the same value fora. Circles are for IAAFT
surrogates, triangles for SIAAFT and squares for WIAAFT surro-
gates.
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Fig. 7. The mean(a) and standard deviation(b) over 100 surrogates
of the RMSE statistic forR (τ ) curtailed at the lag whereR was no
longer significant at the 5% level. The two signals for each value
of a are those used in Fig. 6. Circles are for IAAFT surrogates,
triangles for SIAAFT and squares for WIAAFT surrogates.

4 Algorithm testing

Figures 4 and 5 compare values forR(τ ) for five randomly
selected surrogates of the data shown in Figs. 2 and 3. While
the SIAAFT appears to give improved estimates over the
original algorithm, in agreement with Venema et al. (2006a),
the WIAAFT algorithm gives a better fit. This is assessed us-
ing the mean and standard deviation of the RMSE over 100
surrogates for 2 different realisations of the process at a cho-
sen value fora in Fig. 6. The advantage of the WIAAFT
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Fig. 8. The mean and standard deviation for the RMSE statistic
applied to theP (ω) measure. The two signals for each value ofa

are those used in Fig. 6. Circles are for IAAFT surrogates, triangles
for SIAAFT and squares for WIAAFT surrogates.

method is clear, especially for signals with low intermit-
tency. However, even at higher intermittencies, the WIAAFT
method is still four times more accurate in the average for
a=0.41. Results when the RMSE statistic is only calculated
over the statistically significant part of the autocorrelation
function are shown in Fig. 7. While the differences between
the algorithms is less marked, the WIAAFT algorithm still
outperforms the other algorithms, and again, the contrast is
greater for signals with lower intermittencies.

Owing to the noisy nature of the periodogram estima-
tor, the RMSE statistic forP (ω) is not a particularly ro-
bust measure as noted by Venema et al. (2006b). Based on
this statistic, there is less to choose between the SIAAFT
and WIAAFT methods (Fig. 8), with the former perform-
ing better at high intermittency. However, both methods
outperform the IAAFT technique across the range of val-
ues fora. Note that fora>0.1, the results are dataset de-
pendent with the statistics for the IAAFT algorithm for one
dataset better than those for the SIAAFT and WIAAFT for
a different dataset with the samea. Using theD statistic,
the SIAAFT and WIAAFT methods again outperform the
IAAFT (Fig. 9), which is consistent with the analysis of Ven-
ema et al. (2006b). For low intermittencies, the mean differ-
ence between the IAAFT and WIAAFT methods can be in
excess of an order of magnitude. However, fora>0.25, the
SIAAFT appears to converge more successfully.

The alternative approach to testing was to generate 100
realisations of the process and one surrogate for each case
and examine the distribution of the errors over all 100 re-
alisations. Boxplots of the results for the RMSE of theR,
P statistics and theD statistic are shown in Figs. 10 to 12.
The central line of the boxplot indicates the median with up-
per and lower quartiles giving the upper and lower edges of
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Fig. 9. The mean(a) and standard deviation(b) over 100 surrogates
of theD error statistic forP (ω). The two signals for each value ofa

are those used in Fig. 6. Circles are for IAAFT surrogates, triangles
for SIAAFT and squares for WIAAFT surrogates.

the box. The whiskers extend up to 1.5 times the interquar-
tile range from the top and bottom of the boxes. Note the
difference in the y-axis scaling in Fig. 10c and in Figs. 11a
and 12a. These results are consistent with the earlier analy-
sis, with WIAAFT surrogates out-performing the other tech-
niques by an order of magnitude forR, and WIAAFT and
SIAAFT surrogates out-performing the original Schreiber
and Schmitz IAAFT algorithm by a factor of 4 forP andD,
with SIAAFT surrogates offering a greater advantage relative
to WIAAFT surrogates forP andD statistics asa increases.
Figures 13 and 14 show the results for theR statistic for the
anti-persistent and persistent data series given by Eqs. 4 and
5. Again, the WIAAFT algorithm outperforms the others
over all values fora, while a comparison between Figs. 10,
13 and 14 shows that the algorithms perform less effectively
on smoother data (higher mean value forαp).

Our final two cases are geophysical datasets with con-
trasting characteristics. The first case is 256 years of an-
nual sunspot data from 1700 to 1955 collected by the Solar
Influences Data analysis Centre (SIDC, 2007) illustrated in
Fig. 15a. The second set of data are 214 daily river discharge
measurements from 29 March, 1904 to 17 February 1959 on
the San Pedro river at Charleston, Arizona (USGS site num-
ber 09471000) downloaded from the USGS National Water
Information System athttp://nwis.waterdata.usgs.gov/nwis/
and shown in Fig. 15b. Thirty nine surrogates were generated
for each case, which is the minimum number for hypothesis
testing at the 5% level using a two-tailed test. The nature of
these signals again varies with the sunspot data showing a
relatively smooth, periodic behaviour and the discharge data
showing a great deal of variability on top of the annual peri-
odicity. In agreement with earlier results, Fig. 16 shows that
all algorithms perform better on the rougher discharge data.
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Fig. 10.Results for theR statistic based on generating one surrogate
for 100 different realisations of the process given by Eq. 3. The
subscriptsi, s, andw in (a), (b), and(c), respectively, refer to the
IAAFT, SIAAFT and WIAAFT methods. The subscriptw/ in (d)
refers to the WIAAFT algorithm without the matching step that is
discussed at the end of the paper. The central line of the boxplot
indicates the median with upper and lower quartiles giving the upper
and lower edges of the box. The whiskers extend up to 1.5 times
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outside this range are not shown.
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Fig. 11. Results for theP statistic based on generating one surro-
gate for 100 different realisations of the process given by Eq. 3. The
definition for the boxplots is given in Fig. 10.

However, the difference in performance between the algo-
rithms is also clearest in this case, with the WIAAFT method
outperforming the others by more than a factor of 5 on aver-
age (medians of 6.9×10−4, 5.7×10−4, and 1.0×10−4 for the
RMSE of theR statistic for IAAFT, SIAAFT and WIAAFT,
respectively).

As a further check on our results, we calculated the RMSE
for R over the number of lags that equate to the first zero
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Fig. 12. Results for theD statistic based on generating one surro-
gate for 100 different realisations of the process given by Eq. 3. The
definition for the boxplots is given in Fig. 10.
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Fig. 13.Results for theR statistic based on generating one surrogate
for 100 different realisations of the process given by Eq. 4 (the anti-
persistent process). The subscriptsi, s, andw in (a), (b), and(c),
respectively, refer to the IAAFT, SIAAFT and WIAAFT methods.
The definition for the boxplots is given in Fig. 10.

crossing ofR (4 years for the sunspot data and 50 days for the
discharge data). As shown in Fig. 17, this greatly improves
the performance of the SIAAFT algorithm for the discharge
data, although the WIAAFT still has the lowest average error
for both sunspot and discharge datasets and also gives a low
error more consistently.

5 Discussion of the testing and conclusion

A surrogate generating algorithm that was proposed by Key-
lock (2006) has been tested against the well known IAAFT
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Fig. 14.Results for theR statistic based on generating one surrogate
for 100 different realisations of the process given by eq. 5 (the
persistent process). The subscriptsi, s, andw in (a), (b), and(c),
respectively, refer to the IAAFT, SIAAFT and WIAAFT methods.
The definition for the boxplots is given in Fig. 10.
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Fig. 15. The annual sunspot number(a) and daily river discharge
data(b) examined in this study.

method and a stochastic variant of that method recently pro-
posed in this journal by Venema et al. (2006a). Testing has
been undertaken systematically using artificial data of vary-
ing persistence and intermittency, as well as with two geo-
physical datasets. Although the WIAAFT method was not
developed with improved convergence of the IAAFT method
in mind (in contrast to SIAAFT), it yields a better replica-
tion of the autocorrelation function and is at least as effective
as the SIAAFT method using Fourier-based error criteria,
especially for low intermittencies. The reason for this im-
proved performance for the autocorrelation is that in the first
stage of the WIAAFT algorithm, the approximate tempo-
ral behaviour of the wavelet coefficients is mimicked, while
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Fig. 16. Boxplots of results for tests using the RMSE for theR

statistic over all lags for the sunspot(a) and discharge(b) data
shown in Fig. 14 for the three algorithms. The definition for the
boxplots is given in Fig. 10 but this figure also shows outliers that
exceed the length of the whiskers as crosses.

the other algorithms have no similar constraint. To demon-
strate unambiguously that the matching step explains the im-
proved performance, Fig. 10d shows results for theR mea-
sure but for WIAAFT surrogates produced with no matching
step (i.e. the wavelet coefficients are randomised using the
IAAFT algorithm but are not rotated to optimally match the
original coefficients). The results are virtually identical to
those for the IAAFT and SIAAFT in Fig. 10a and b. Hence,
the capability to introduce temporal alignment when using a
time-frequency transform such as wavelets provides a means
of improving algorithm convergence.

Greater insight into how the WIAAFT algorithm improves
performance can be seen in Fig. 18 where the correlation
between a realisation of a process (given by Eq. 3) and a
surrogateR (0) is plotted against the RMSE for the com-
plete autocorrelation function (shown in Fig. 10). Results
are shown fora=0 (black) anda=0.41 (red). Because nei-
ther of these algorithms is designed to preserve intermittency,
the (unsigned) correlations are higher fora=0. Furthermore,
the alignment steps of the WIAAFT algorithm ensure that
R(0)w is generally of a high positive value. For IAAFT sur-
rogates, there is a reduction in RMSE (R) as the correlation
tends to±1 indicating that those surrogates that (by chance)
are highly correlated to the original data are likely to yield
a lower error. WIAAFT surrogates are highly correlated by
design and there is a clear trend in the RMSE (R) relation
with R(0)w whena=0. However, whena=0.41 not only does
R(0)w decrease, but the trend is destroyed. Thus, the con-
sequences of failing to preserve intermittency over-ride the
RMSE(R) − R(0)w correlation and the results reflect the ac-
curacy in representing the underlying process (Eq. 3).

IAAFT SIAAFT WIAAFT
0

2

4

6

8
x 10

−4

R
M

S
E

(R
)

IAAFT SIAAFT WIAAFT
0

0.5

1

1.5

2

x 10
−3

R
M

S
E

(R
)

algorithm

(a)

(b)

Fig. 17. Boxplots of results for tests using the RMSE for theR

statistic defined until the first zero crossing for the sunspot(a) and
discharge(b) data shown in Fig. 14 for all three algorithms. The
definition for the boxplots is given in Fig. 10 but this figure also
shows outliers that exceed the length of the whiskers as crosses.
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Fig. 18. The relation between RMSE (R) and the linear correlation
R(0) between a realisation and its surrogate for the 100 realisations
generated to produce Fig. 10. Results are shown for IAAFT surro-
gates (i subscript and circles) and WIAAFT surrogates (w subscript
and squares). Values in black are fora=0 (no intermittency) while
values in red are fora=0.41 (high intermittency).

The main use for the WIAAFT algorithm in the context of
this paper is for data simulation, similar to that of Angelini et
al. (2005) or Venema et al. (2006b, 2006c). In the context of
hypothesis testing for nonlinearity, the IAAFT and SIAAFT
algorithms are designed to produce constrained, linear real-
isations of a process that can be contrasted with the actual
data on some measure (and hence, test for nonlinearity). The
WIAAFT algorithm restricts the possible class of realisations
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to those that retain some aspect of the local mean and vari-
ance of a non-intermittent variant of the original data, which
means that it cannot be used for the same type of testing.
However, this algorithm can be used for testing for a change
in signal intermittency, which is a specific type of nonlinear-
ity. New algorithms are required to undertake simulation that
preserves the underlying intermittency.
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