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Abstract. Interaction between a magnetohydrody-
namic (MHD) pulse and a charged particle is discussed
both numerically and theoretically. Charged particles can
be accelerated efficiently in the presence of spatially corre-
lated MHD waves, such as short large amplitude magnetic
structures, by successive mirror reflection (Fermi process).
In order to understand this process, we study the reflection
probability of particles by the MHD pulses, focusing on
the adiabaticity on the particle motion. When the particle
velocity is small (adiabatic regime), the probability that
the particle is reflected by the MHD pulse is essentially
determined only by the pitch angle, independent from the
velocity. On the other hand, in the non-adiabatic regime, the
reflection probability is inversely proportional to the square
root of the normalized velocity. We discuss our numerical
as well as analytical results of the interaction process with
various pulse amplitude, pulse shape, and the pulse winding
number. The reflection probability is universally represented
as a power law function independent from above pulse
properties.

1 Introduction

Since the space plasma is collisionless, various kinds of
transport and dissipations take place via wave-particle in-
teractions. In the acceleration of energetic particles or
cosmic rays, magnetohydrodynamic (MHD) waves, which
are basic low frequency waves in plasmas, play an essen-
tial role. Diffusion in the velocity space (energy diffu-
sion), transport in the real space, and the pitch angle dif-
fusion of the particles by the MHD waves have been dis-
cussed extensively, however, most of the arguments are based
on the quasi-linear theory (QL) (e.g.,Kennel and Engel-
mann, 1966; Lee, 1971; Lyons, 1974; Gary and Feldman,
1978; Lee, 1982; Schlickeiser, 1989). There are two as-
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sumptions in the quasi-linear theory; the amplitude of the
wave is small, and the random phase approximation (R.P.A),
i.e., there is no correlation between wave modes. How-
ever, the MHD waves observed in space often have large
amplitude, therefore, it is expected to have phase correla-
tion via nonlinear interaction between wave modes (Nariyuki
and Hada, 2005, 2006). In fact, large amplitude MHD
waves with pulse like structures are abundant in space plas-
mas; for instance, short large amplitude magnetic structures
(SLAMS) (Schwartz and Burgess, 1991; Schwartz et al.,
1992; Giacalone et al., 1993; Mann et al., 1994) and shock-
lets (Hoppe et al., 1981; Tsurutani et al., 1990, 1997). These
waveforms are considered as an evidence for strong spatial
phase correlation of wave modes (Koga and Hada, 2003;
Hada et al., 2003). For acceleration and thermalization of
charged particles by these waves, the assumptions of the
quasi-linear theory are not appropriate.

Kuramitsu and Hada(2000) reported the effects of the
wave large amplitude and of spatial correlation of wave
modes using test particle simulations. When the waves have
large amplitude, the energy diffusion coefficients from the
numerical experiments are larger than those of the quasi-
linear prediction. When the waves have strong spatial cor-
relation, not only the statistics or the energy diffusion co-
efficients but the scattering mechanism of particles is also
greatly different from the predictions by the quasi-linear the-
ory. In contrast to the random fields where the particles
perform resonance scattering continuously resulting in dif-
fusion in the velocity space, in the presence of waves with
strong spatial correlation, or solitary wave packets, the par-
ticles are accelerated by successive mirror reflection due to
the propagating of the wave packets to the opposite direc-
tions each other.Mann and Classen(1995) andClassen and
Mann(1998) discussed particle acceleration by SLAMS due
to mirror reflections, however, their model depends on adi-
abatic theory. InKuramitsu and Hada(2000) the particles
are non-adiabatically reflected by the spatial phase correlated
waves resunlting in efficient acceleration. In order to explain
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Gaussian pulse winding number n = lk =2

b

l

Fig. 1. A typical Gaussian pulse used in the run. The solid, broken,
and dotted lines represent theBy , Bz, and the envelope of wave
packet.

the acceleration and scattering mechanism due to the MHD
pulses, we discuss the mirror reflection of a particle by one
wave packet, paying special attention to adiabatic and non-
adibatic motion of charged particles.

In this paper we discuss nonlinear interaction between a
charged particle and a wave packet numerically and theo-
retically. In Sect.2 we describe our model and formula-
tions. We numerically solve the particle trajectories, firstly,
when the winding number equals zero, and then when it is
finite. We calculate phase integrated and phase-pitch angle
integrated reflection probabilities. In Sect.3 we analyze the
particle motion and formulate the reflection probability func-
tions. We give conclusions in Sect.4.

2 Numerical experiment

2.1 Model and basic equations

Quite often the mirror reflection of a particle is simply ex-
plained by the adiabatic invariant of a magnetic moment
mv2

⊥
/(2B), wherem is the mass of the particle,v⊥ is the per-

pendicular component of the particle velocity to the magnetic
field, andB is the strength of the magnetic field. Introducing
the pitch angle of particle,v⊥≡V sinα, with adiabatic inter-
actionV∼const., one can write the invariance of the moment
as

sin2 α

B
=

1

Bm
, (1)

whereBm is the magnetic field where the particle is re-
flected (α → π/2). Giving a wave packet with its maximum
magnetic field strengthBmax, we define a critical pitch angle
αc by sin2 αc=B0/Bmax, whereB0 is the background mag-
netic field. Particles with pitch angle less (larger) thanαc
are transmitted to (reflected by) the wave packet. There is
no energy dependence in this argument. If the particle distri-

bution is isotropic, the reflection probability is given by the
integration of Eq. (1) as,

Pad =

(
1 −

B0

Bmax

)1/2

. (2)

In reality, the interaction between a particle and a wave
packet is not necessary to be adiabatic. For instance, SLAMS
are considered to form a transition of the quasi-parallel
shocks (Schwartz and Burgess, 1991), where energetic par-
ticles are often detected (Giacalone et al., 1993). A typi-
cal spatial scale of SLAMS is∼3×106 m, which is compa-
rable to the gyroradius (4×106m) of the energetic particles
with ∼20 keV when the magnetic field magnitude is∼5 nT
(Schwartz et al., 1992; Giacalone et al., 1993). Furthermore,
the typical gradients of magnetic field changes within the
SLAMS can be∼105 m, much shorter than the SLAMS scale
(Lucek et al., 2004). As far as energetic particles or cosmic
rays are concerned, the adiabatic assumption is not appropri-
ate. We consider neither an electrostatic potential of the wave
packet, nor the temporal and spatial change of the wave phase
or group velocity since the scale of the background change
is much larger than that of pule-particle interactions. Note
that when the group velocity of the wave packet is different
from the phase velocity of local MHD waves (e.g.,Schwartz
et al., 1992) and/or when the electrostatic potential is con-
cerned, there is a possibility of efficient particle accelera-
tion by gyroresonant surfing (Kuramitsu and Krasnoselskikh,
2005a,b,c). It will be investigated elsewhere.

We numerically calculate a trajectory of a particle using a
simple wave packet and discuss how a particle is reflected by
the wave packet. We consider the interaction in a coordinate
moving with the wave packet, where there is no wave electric
field. Therefore, the particle energy is conserved. We solve
an equation of motion of a particle,

m
dv

dt
=
e

c
v × B. (3)

The D.C. magnetic field is in thex direction and a Gaus-
sian wave packet is given by (Fig.1),

δB = By(x)+ iBz(x) = Aexp

[
−

( x
L

)2
+ ikx + iθ

]
(4)

HereA andL are the amplitude and width of wave packet,
and k and θ are the wave number and phase constant of
the carrier wave, respectively. Using the advantage of the
constant particle energy, we normalize all the quantities us-
ing the magnitude of particle velocityV , the background
magnetic fieldB0, and the gyrofrequency�≡eB0/mc.
We also define the normalized wave amplitudeb=A/B0,
the normalized wave packet widthl=L�/V=ζ−1, the
difference between particle gyrophase and a wave phase
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Fig. 2. Comparison between the particle pitch angle cosines before
and after the interaction with the Gaussian pulse withb=2 andn=0.
Each plot corresponds to different values of the normalized particle
velocity,V/L�=ζ .

ψ= arctanBy/Bz− arctanvy/vz, and the pitch angle cosine
of the particleµ= cosα. The normalized wave packet width
l (also the inverse value of itζ ) has significant physical mean-
ing. This is a ratio between the time necessary for a particle
to traverse the wave packet and the Larmor period, or the ra-
tio of Larmor radius to the scale of the width of wave packet.
Whenl is large, i.e., the wave packet width is large or equiv-
alently the particle velocity is small. In this case the particle
feels the change of the field slowly. In contrast, whenl is
small, the particle feels a rapid change of the field and the
interaction becomes non-adiabatic.

2.2 Winding numbern=0

First let the “winding number”n≡Lk=0. The winding num-
ber corresponds to the approximate number of rotations that
the transverse magnetic field makes within the wave packet.
We fix the amplitude of wave packet (b=2) and changel.
Thus the critical pitch angle cosineµc≡ cosαc=0.743 from
Eq. (1). We inject particles with various pitch angles and
gyrophases from a point sufficiently distant from the wave
packet.

Figure2 shows the comparison of pitch angle cosine be-
fore and after the interaction. Different panels correspond to
different values ofl. Linesµin= ± µout correspond to com-
plete conservation of the first adiabatic invariant. Whenµ
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Fig. 3. Phase integrated reflection probability, P (ζ, µin), calculated from Figure 2 is shown.

14

Fig. 3. Phase integrated reflection probability,P(ζ, µin), calcu-
lated from Fig.2 is shown.

change its sign, the particle is reflected by the wave packet.
On the other hand, whenµ keep its sign same, the particle
goes through the wave packet. When the winding number
n=0 (linear polarization), it is not affected by whether the
particles are injected from either side of the packet because
of the symmetry. We release particles from the positivex side
of the packet, thus the particles withµout>0 (µout<0) corre-
spond to reflected (transmitted) particles. Whenl is large
(i.e., smallζ≡l−1), the interaction is well explained by the
adiabatic theory (a). The particles withµ<µc (in loss cone)
are transmitted to the wave packet, otherwise reflected, inde-
pendent ofψ . Whenl is slightly less, the breakdown of the
adiabatic invariant is apparent; some particles in loss cone
are reflected depending onψ , and some particles outside the
loss cone are transmitted (b). Whenl is even less, it is diffi-
cult to find a trace of adiabatic interaction (c–e). With further
reducingl, particles are scarcely reflected (e–f).

Figure3 shows the phase-averaged reflection probability
againstµ, obtained by phase integration of the results of
Fig. 2. The panel (a) represents the adiabatic case; the re-
flection probability is 0 within the loss cone and 1 outside.
As ζ increases, the probability becomes finite inside the loss
cone (b). Asζ increases, the boundary between the trans-
mittion and reflection becomes obscure (c–d). With further
increasingζ , P continues to decrease and vanishes eventu-
ally.

Figure4a summarizes the reflection probability in one fig-
ure. The vertical axis denotesζ in a logarithmic scale, and a
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Fig. 4. In (a) image plot of the reflection probabilityP(ζ, µin) is
shown with the same pulse parameters as in Fig.2. In (b) pitch-
angle integrated reflection probabilityP(ζ ) is shown. Values ob-
tained from the numerical calculations are superposed in the plot as
circles. Dashed and dotted lines denote the adiabatic theory Eq. (2),
and the non-adiabatic asymptote Eq. (15), respectively.

horizontal axis isµin. It is clear that, whenζ is small, the in-
teraction is adiabatic, while the non-zero values of reflection
probability is particular enhanced aroundζ∼1. Whenζ�1,
P decreases as|µin| increases.

Further integration ofP(ζ, µin) in Fig. 4a overµin yields
the reflection probability based on the isotopic distribution,
P(ζ ) in Fig. 4b. HereP(ζ ) is plotted versusζ in logarith-
mic scales. Ifζ is small, the reflection probability is well
explained by the adiabatic theory (Eq.2). Non-adiabaticity
appears aroundζ∼1. Asζ increases, the reflection probabil-
ity decreases asζ−1/2.

We show another example withn=0. Figure5a shows
the reflection probabilityP(ζ, µin) with the wave packet
amplitudeb=6, and Fig.5b shows its integration overµin.
Note that the reflection probability is enhanced atζ∼1 with
µin∼ − 1 (beam particles) in (a). This enhancement was not
found whenb=2, although Fig.5b shows similar character-
istics to the case withb=2; the curve consists of an adiabatic
part and non-adiabatic power law decrease. The index of
power law is again−1/2.
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Fig. 5. Same as Fig.4 except that the pulse amplitude isb=6.

2.3 Winding numbern 6=0

Here we discuss non-zero winding number (we chosen=2
with amplitudeb=2) . In this case the particles withv‖<0
can resonate with the wave, while the particles withv‖>0
cannot. Note that we consider particles with positive charge
here, however, the resonance condition also depends on the
sign of the particle charge. When negative charged particles
are concerned, one has to simply change the sign of the res-
onance condition. Figures6 and9 show the results plotted
in the same formats as Figs.2 and4b. The only difference
in the parameter isn=2. In Fig.6a, the interaction between
the wave packet and the particle can be well explained by the
adiabatic theory. The interaction does not depend on from
which side the particle collides the wave packet. Asζ in-
creases (b–e), the scattering shows some deviation from the
adiabatic line as already shown in Fig.2, and moreover the
right and left symmetry is broken. In particular, the deviation
from the adiabatic line (µin=±µout) is larger for the particles
with resonant sense (µin<0) than the others. The scattering
of particles becomes symmetric with respect toµin in the
regimeζ�1 (e–f).

Figure7 shows the phase integrated reflection probability
calculated from Fig.6. We confirm that there is a breakdown
of the adiabaticity and the symmetry. The reflection proba-
bility is complex, especially forµin<0.
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Fig. 6. Same as Fig.2 except that the pulse winding number isn=2.
Initial particle pitch angle cosine ranges fromµ= − 1 toµ=1, i.e.,
the plots represent particles injected from either side of the pulse.

This is more clearly represented in Fig.8. The enhance-
ment of the probability, as seen whenn=0 andb=6 (Fig.5a),
appears only when the particles can resonate with the waves.
On the other hand, as for the non-resonant particles, the en-
hancement of probability is in the adiabatic domain.

The pitch angle integrated reflection probability (corre-
sponding to Fig.8) is shown in Fig.9. The reflection prob-
ability is close to the prediction of adiabatic theory when
ζ is small, and it decreases with power law with largeζ
asymptotically. Here the index of the power law is again
−1/2. The numerical runs with other winding numbers and
the wave amplitude show qualitatively similar results (not
shown). Furthermore, similar results (not shown) are ob-
tained when we use sech2 type wave packet. In all cases
the pitch angle integrated probability has the common char-
acteristics;P∼const. for smallζ andP∼ζ−1/2 for largeζ .

3 Theoretical analysis

It is easy to physically understand that the interaction is adi-
abatic whenζ is small; when the particle velocity is small or
the wave packet width is large, the change of the field that a
particle “sees” is small. Then how about the non-adiabatic
regime?

Using µ(= cosα, the pitch angle cosine of the particle)
andψ(= arctanBy/Bz−arctanvy/vz, the difference between
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Fig. 7. Same as Figure 3 except that the pulse winding number is n = 2.
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Fig. 7. Same as Fig.3 except that the pulse winding number is
n=2.

particle gyrophase and a wave phase), we can rewrite Eq. (3)
as follows (cf, Kuramitsu and Krasnoselskikh, 2005a,b),

dµ

dt
= (1 − µ2)1/2bw sinψ (5a)

dψ

dt
= kµ+ 1 −

µ

(1 − µ2)1/2
bw(x) cosψ, (5b)

wherebw(x) gives the wave envelope,

bw(x) = be−( xl )
2
. (6)

Equations (5a), (5b), and the following equation make a
closed set of equations,

dx

dt
= µ. (7)

Since the above equations is highly nonlinear, it is difficult
to find an exact set of general solutions, therefore, we seek
for an approximate solution by iteration.

The zeroth order trajectory without perturbation isµ=µ0,
ψ=(kµ0 + 1)t + ψ0, andx=x0 + µ0t wherex0, µ0, and
ψ0 are constants determined by the initial conditions. Let
µ=µ0 + δµ, and we integrate Eq. (5a) along the zeroth order
trajectory,

www.nonlin-processes-geophys.net/15/265/2008/ Nonlin. Processes Geophys., 15, 265–273, 2008
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Fig. 8. Image plots of the reflection probabilityP(ζ, µin) are
shown whenb=2 andn=2. Panel(a) and (b) represent particles
with −1<µin<0 (i.e., the particles can be cyclotron resonant with
the carrier wave) and 0<µin<1 (i.e., the particles cannot be cy-
clotron resonant with the carrier wave).

δµ =

∫ t2

t1
dt

b(1 − µ2
0)

1/2 exp

[
−

(
x0 + µ0t

l

)]
sin(kµ0t + t + ψ0).

(8)

Equation (8) is expressed using the error function (Aki-
moto, 1997).

δµ =bl
(1 − µ2

0)
1/2

µ0
exp

[
−

1

4

(
n+

l

µ0

)2
]

×

√
π

2
[erf(ξ(t2))− erf(ξ(t1))] sin8,

ξ(t) =
x0 + µ0t

l
−
i

2

(
n+

l

µ0

)
,

(9)

where8=ψ0−kx0−x0/µ0 is another constant determined
by the initial conditions. The first term of Eq. (9) has a factor
of (1−µ2

0)
1/2, representing that beam particles (µ=±1) are

not influenced by the wave packet. Furthermore, the index
part of Eq. (9) is more interesting; the zero point of the ar-
gument of the exponential function corresponds to the linear
cyclotron resonance condition, which is written as below in
original variables in the plasma frame,

ω − kvx −� = 0. (10)

Therefore, the particles satisfying the linear resonance
condition undergo strong scattering. This solution is correct
within a short time scale, in which a particle begins to inter-
act with the wave packet.

We consider whether a particle can be reflected after a long
time. Although the deviation from the real trajectory grows,
we can still discuss whether a particle will be reflected after
a long time in the following way. By lettingt2= − t1=∞ in
Eq. (9), we have,

µout = µ0+
√
πbl

(1 − µ2
0)

1/2

µ0
exp

[
−

1

4

(
n+

l

µ0

)2
]

sin8.

(11)

A necessary condition for the particle to be reflected by the
wave packet isµout<0(>0) for µ0>0(<0). The ratio that
µout changes the sign for particles with various gyrophase
(0<8<2π ) with a certainµ0 gives the reflection probability
P(ζ, µ0).

P(ζ, µ0) =

2
∫ 8c
−π/2 d8∫ 2π
0 d8

=
8c

π
+

1

2
,

(12)

where8c is the value of8 atµout=0, which is written as

8c = − arcsin

{
µ2

0
√
πbl(1 − µ2

0)
1/2

exp

[
1

4

(
n+

l

µ0

)2
]}

.

(13)

Since the maximum value of8c is 0, the reflection proba-
bility P(ζ, µ0) in Eq. (12) is 1/2 at most.

This is plotted in theµ0−ζ phase space in Fig.10. In
all the plots,b=2, and (a)n=0, (b) n=2 resonant, and (c)
n=2 non-resonant. The theoretical values can explain the nu-
merically obtained reflection probability (Fig.4a and8), es-
pecially whenn=0, except that the probability is estimated
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slightly smaller. During the adiabatic mirror reflection, the
pitch angle changes the sign while conserving the energy.
Therefore, it is necessary to include all the higher order terms
in Eqs. (5a) and (5b). In our formulations the adiabatic mir-
ror reflection is not treated. Whenn6=0, we can understand
the qualitative behavior of the probability function such as
the breakdown of the symmetry by the effect of the linear
cyclotron resonance. When the resonance exists, the scatter-
ing is strong in the region where the index of Eq. (9) is close
to 0. When the resonance does not exist, the index will not
become 0, thus the scattering is small. The reflection prob-
ability Eq. (12), which is obtained theoretically, explains the
dependence on the winding number.

We consider the power law type decay of the pitch angle
integrated reflection probability in the non-adiabatic regime.
When ζ�1, only particles with pitch angle not close to
0 or π can be reflected by the wave packet (|µ0|�1),
and the interaction time between the particle and the wave
packet (L/µ0V ) is much shorter than the Larmor period
(|µ0|/l�1). Then Eq. (11) can be rewritten asµout∼µ0 +
√
πblµ−1

0 e−n2/4 sin8. Whenn=0, a necessary condition
for the particle to be reflected by the wave packet is rewritten
as follows.

µ2
0 < −

√
πbl sin8 (14)

Above argument is appropriate since the upper boundary
on which the reflection probability becomes 0 is written as
µ0∝ζ

−1/2 in Fig. 10a. On the other hand, the lower bound-
ary representing the adiabatic limit is expressed asµ0∝ζ

−1.
The latter relation represents the ratio between gyroperiod
and the interaction time between the particle and the wave
packet. Whenµ0ζ=Vµ0/L��1, i.e., whenµ0�1, even if
ζ>1, the interaction is still adiabatic. Forµ0<0, letting in-
tegration domain to−(

√
πbl)1/2<µ0<0 from Eq. (14) (be-

cause of−1< sin8<1), the pitch angle integrated reflection
probability is written in the non-adiabatic limit as,

P(ζ ) ∼

∫ 0
−(

√
πbl)1/2

P(ζ, µ0)dµ0∫ 0
−1 dµ0

∼

∫ 0

−(
√
πbl)1/2

(
−1

π
arcsin

(
µ2

0
√
πbl

)
+

1

2

)
dµ0

=2π−3/4(bl)1/2E
(π

4
,2
)
,

(15)

where E is the elliptic function of the second kind. One
can get the same result forµ0>0. It is shown thatP(ζ ) is
proportional toζ−1/2 as the asymptotic behavior in the non-
adiabatic limit. Whenn=0,P(ζ )∼0.50774×

√
bζ−1/2. This

is shown in Fig.4b and in Fig.5b. The analytical estimations
explain the numerical results well. Whenn 6=0 we simply

3

4

5
6
7

0.1

2

3

4
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6
7

1

P(
ζ)

0.1 1 10 100 1000
ζ

 Eq. (2)
 Resonance
 Non-resonance

Fig. 9. Same as Fig.4b except thatn=2. Circles and squares
denote results from numerical simulation with initial particles rang-
ing within 0<µin<1 and−1<µin<0, respectively. The dotted line
corresponds to the value expected from the adiabatic theory, Eq. (2).

need to multiply the estimation above by e−n2/8. The re-
flection probability from numerical experiments withn=10
(not shown) are smaller than the cases ofn=0 andn=2.
The above discussion is correct qualitatively, but not quan-
titatively. The reason of the underestimation comes from
the approximation on non-adiabaticity, which is not satisfied
aroundµ0∼0.

4 Conclusions

We have discussed the interaction between a charged particle
and an MHD wave packet numerically and theoretically.

When the scale of the particle is smaller than the wave
packetζ(≡ V/L�)�1, the reflection can be well explained
by the adiabatic theory. The transition from reflection to
transmission is well described by the critical pitch angle; the
phase integrated probability functionP(ζ, µin) is unity or
zero depending on whether the particles are outside or in-
side of the loss cone. The pitch angle integrated reflection
probability functionP(ζ ) agrees with the prediction of adi-
abtic theory Eq. (2) whenζ�1. When the particle scale is
comparable to the wave packet widthζ∼1, non-adiabaticity
appears. The first adiabatic invariant does not conserve any
more and the reflection probability can be non-zero in the
loss cone. The probability functionP(ζ ) decreases as the
particle scale increases and approaches a asymptotic line
ζ−1/2.

We calculate the probability functionsP(ζ, µin) analyti-
cally and show that the cyclotron resonance between the par-
ticle and the wave packet can explain non-adiabatic mirror
reflection and the breakdown of symmetry regarding the in-
jection pitch angle cosine,µin. The reason why the particles
in resonant sense greatly deviate from the adiabatic theory is
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Fig. 10. Contour plots of the analytically obtained reflection prob-
ability function P(ζ, µin). The pulse amplitude isb=2, and the
pulse winding number isn=0 (a), n=2 with resonant sense of po-
larity (b), andn=2 with non-resonant sense of polarity(c).

that those particles can resonant with the inner structure of
wave packet. The reflection probabilityP(ζ, µin) estimated
by Eq. (12) explains the reflection probability obtained by
the numerical experiment.

Integration of Eq. (12) overµ0 gives the pitch angle inte-
grated reflection probability functionP(ζ ). The assimptotic
value of this function tends to beζ−1/2. Note that the pitch
angle used in this paper is in the wave packet frame, rather
than, e.g., a plasma bulk frame.

The power law index−1/2 shows universality; the power
law index is−1/2 independent of winding number, wave am-

plitude, and whether or not particles can resonant with waves.
Even when we apply the other type of wave packets such as
sech2, the reflection probability function decrease asζ−1/2.
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