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Abstract. Robust variants of nonlinear canonical correlation
analysis (NLCCA) are introduced to improve performance
on datasets with low signal-to-noise ratios, for example those
encountered when making seasonal climate forecasts. The
neural network model architecture of standard NLCCA is
kept intact, but the cost functions used to set the model pa-
rameters are replaced with more robust variants. The Pearson
product-moment correlation in the double-barreled network
is replaced by the biweight midcorrelation, and the mean
squared error (mse) in the inverse mapping networks can be
replaced by the mean absolute error (mae).

Robust variants of NLCCA are demonstrated on a syn-
thetic dataset and are used to forecast sea surface temper-
atures in the tropical Pacific Ocean based on the sea level
pressure field. Results suggest that adoption of the bi-
weight midcorrelation can lead to improved performance, es-
pecially when a strong, common event exists in both predic-
tor/predictand datasets. Replacing the mse by the mae leads
to improved performance on the synthetic dataset, but not on
the climate dataset except at the longest lead time, which sug-
gests that the appropriate cost function for the inverse map-
ping networks is more problem dependent.

1 Introduction

Canonical correlation analysis (CCA) is a multivariate linear
model used to find the modes of maximum correlation be-
tween two sets of variables (von Storch and Zwiers, 1999).
CCA was first popularized as a tool for prediction in the at-
mospheric sciences byGlahn(1968) and has since been used
extensively in climatology, particularly for seasonal fore-
casting (Barnett and Preisendorfer, 1987; Barnston and Ro-
pelewski, 1992; Shabbar and Barnston, 1996).
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CCA is a linear model and is thus unable to describe non-
linear relationships between datasets. To nonlinearly gener-
alize CCA, various approaches, based on artificial neural net-
work and kernel methods, have been proposed (Lai and Fyfe,
1999; Hsieh, 2000; Lai and Fyfe, 2000; Suykens et al., 2002;
Melzer et al., 2003; Shawe-Taylor and Cristianini, 2004). For
instance,Hsieh(2000) used three feed-forward (multi-layer
perceptron) neural network mappings to perform nonlinear
CCA (NLCCA). This method has been applied to climate re-
search, for analyzing the structure of the El Niño-Southern
Oscillation (ENSO) (Hsieh, 2001; Wu and Hsieh, 2002) and
its interdecadal changes (Wu and Hsieh, 2003), and for de-
termining the midlatitude atmospheric response to tropical
Pacific sea surface temperature (SST) variability (Wu et al.,
2003). Operational NLCCA forecasts of SST in the equa-
torial Pacific Ocean are also made available by the Cli-
mate Prediction Group of the University of British Columbia
(seehttp://www.ocgy.ubc.ca/projects/clim.pred/for more de-
tails).

While able to describe coupled nonlinear variability, this
rather complicated NLCCA model is prone to overfitting
(i.e., fitting to the noise rather than the signal), particularly
when applied to the short, noisy datasets common in climate
studies. This prompted the development of simpler multi-
variate nonlinear models such as nonlinear projection (Wu
and Hsieh, 2004), which maps a univariate predictor to a
multivariate predictand dataset, and nonlinear principal pre-
dictor analysis (Cannon, 2006), which maps a multivariate
predictor dataset to a multivariate predictand dataset. While
mitigating the influence of short, noisy datasets on model
overfitting by reducing the number of neural networks in the
model, neither nonlinear projection nor nonlinear principal
predictor analysis are as general as NLCCA.

The main goal of this paper is the development of a robust
version of NLCCA that can successfully operate on datasets
with low signal-to-noise-ratios. The basic model architec-
ture chosen byHsieh(2000) is kept intact. Instead, the cost
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functions used to set the model parameters are replaced with
more robust versions. A cost function based on the biweight
midcorrelation replaces one based on the Pearson (product-
moment) correlation and cost functions based on theL1-
norm (i.e., mean absolute error, mae) replace ones based on
theL2-norm (i.e., mean squared error, mse). Robust variants
of NLCCA are demonstrated on a synthetic dataset and are
used to forecast SSTs in the tropical Pacific Ocean based on
sea level pressure (SLP) data.

2 Method

2.1 NLCCA

Consider a dataset{xi(t)} with i variables and another
dataset{yj(t)} with j variables, where each dataset has
t = 1, ..., N samples. The variables{xi(t)} can be grouped
to form the vectorx(t) and the variables{yj(t)} can be
grouped to form the vectory(t). CCA looks for the linear
combinations

u(t) = a · x(t), v(t) = b · y(t) (1)

such that the Pearson correlation between the canonical vari-
atesu andv, i.e., cor(u, v), is maximized. If, for example,
x is a gridded SLP dataset andy is a gridded SST dataset,
then the vectorsa andb represent correlated spatial patterns
corresponding to the SLP and SST fields respectively. Un-
like linear regression, which looks for relationships between
a predictor dataset (e.g.,x) and each of the predictands (e.g.,
yj) separately, CCA takes a holistic approach and looks for
relationships between each of the sets of variables in their
entirety. No distinction is made between the two fields; each
can act interchangeably as predictors or predictands.

In NLCCA, the nonlinear analog of linear CCA, the linear
mappings in Eq. (1) are replaced with nonlinear mappings
performed by neural networks. The neural network architec-
ture for NLCCA is shown in Figure 1. The double-barreled
network on the left-hand side nonlinearly mapsx to u andy

to v by

h
(x)
k = tanh[(W(x)x + b(x))k], u = w̃(x) · h(x) + b̃(x)

h
(y)
l = tanh[(W(y)y + b(y))l], v = w̃(y) · h(y) + b̃(y)

(2)

whereh
(x)
k andh

(y)
l are the hidden-layer nodes;tanh(·) is

the hyperbolic tangent function;W(x) and W(y) are the
hidden-layer weight matrices;b(x) andb(y) are the hidden-
layer bias vectors;̃w(x) andw̃(y) are the output-layer weight
vectors; b̃(x) and b̃(y) are the output-layer biases; andk
and l are indices of the vector elements. The number of
hidden-layer nodes controls the overall complexity of the
network; the hidden-layer must contain more than one node

Fig. 1. Neural network architecture used to perform NLCCA.

(2 ≤ k ≤ K and2 ≤ l ≤ L) to obtain a nonlinear solution
(Hsieh, 2001).

Weight and bias parameters in the double-barreled net-
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where〈·〉 denotes the sample or temporal mean. The first
term maximizes the correlation between the canonical vari-
atesu andv; the second, third, fourth, and fifth terms are
normalization constraints that forceu and v to have zero
mean and unit variance; the sixth term is a weight penalty
whose relative magnitude is controlled by the parameterP1.
Larger values ofP1 lead to smaller weights (i.e., fewer effec-
tive model parameters), which results in a more linear model.
If tanh(·) is replaced by the identity function, then Eq. (2)
reduces to Eq. (1) and the network performs linear CCA.

Once the canonical variatesu andv have been found, the
inverse mappings tôx and ŷ are given by the two neural
networks on the right-hand side of Figure 1:

h
(u)
k = tanh[(w(u)u + b(u))k], x̂ = W̃(u)h(u) + b̃(u) (4)

h
(v)
l = tanh[(w(v)v + b(v))l], ŷ = W̃(v)h(v) + b̃(v). (5)

Fig. 1. Neural network architecture used to perform NLCCA.
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where〈·〉 denotes the sample or temporal mean. The first
term maximizes the correlation between the canonical vari-
atesu andv; the second, third, fourth, and fifth terms are
normalization constraints that forceu and v to have zero
mean and unit variance; the sixth term is a weight penalty
whose relative magnitude is controlled by the parameterP1.
Larger values ofP1 lead to smaller weights (i.e., fewer effec-
tive model parameters), which results in a more linear model.
If tanh(·) is replaced by the identity function, then Eq. (2) re-
duces to Eq. (1) and the network performs linear CCA.
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Fig. 2. Empirical comparison between the Pearson correlation (cor)
and the biweight midcorrelation (bicor) on random variables x and
y, each with samples drawn from a standard normal distribution,
andx

′ andy, wherex
′ is the same asx but with one case replaced

with an outlier. Panel (a) shows sample time series ofx
′ (solid)

andy (dashed); (b) compares cor(x, y) and bicor(x, y); (c) com-
pares cor(x, y) and cor(x′

, y); and (d) compares bicor(x, y) and
bicor(x′

, y). Plots are for 1000 randomly generated datasets.

values of cor(x′, y′) and bicor(x′, y′) are found to be 0.71
and 0.68 respectively. Now, consider values of cor(u, v) and
bicor(u, v), whereu = x′p, v = y′p, andp is an odd integer
(Figure 3a). Increasing the value ofp effectively increases
the separation between the outlier and the non-outliers (Fig-
ure 3b). Values of cor(u, v) and bicor(u, v) for values of
p from 1 to 9 are shown in Figure 3c. The Pearson cor-
relation can be increased simply by increasingp, whereas
the biweight midcorrelation decreases asp increases. This
case illustrates how increasing the nonlinearity of the map-
ping functionsu and v (by increasingp) can lead to very
high Pearson correlation.

In the context of NLCCA, spuriously high values of
cor(u, v) can be found by the double-barreled network when
the nonlinear neural network mapping greatly magnifies an
outlier in bothx andy. This artifact can be particularly dan-
gerous when NLCCA is applied to datasets that are affected
by strong, concurrent climate signals, for example those with
large El Niño or La Niña anomalies, as shown by Hsieh
(2001). NLCCA performed worse than CCA when weight
penalty terms were not used to reduce the nonlinearity of the
double-barreled network. Based on results shown in Figure
3, adopting bicor in the cost function should prevent this ar-
tifact.

When NLCCA models are used for multivariate predic-
tion, a regression model is needed to estimatev from u (and
vice versa). For the standard NLCCA model, the linear least
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Fig. 3. Time series ofu with (a) p = 1 and (b)p = 9; outliers in
v occur at the same time as those inu. (c) The effect on cor(u, v)
(solid line) and bicor(u, v) (dashed line) from increasing the sepa-
ration between common outlier and non-outlier points by increasing
p.

squares estimate for the regression coefficient is given by Eq.
(9). Similarly, the biweight midcorrelation is associatedwith
a robust regression model that can be used to predict val-
ues of one canonical variate from the other. Following Lax
(1985) and Hou and Koh (2004), the biweight midregression
solution is given by

v̂ = u bicor(u, v) (14)

for canonical variates normalized to unit variance and zero
mean.

2.3 Lp-norm

Now consider the inverse maping fromu andv back tox̂

andŷ (i.e., the networks on the right hand side of Figure 1).
TheLp-norm given in Eq. (8) forms the basis for a class of
cost functions used in regression models (Bishop, 1995). Of
these, theL2-norm, which leads to the mse cost function, is
commonly used in statistical models. Models that minimize
the mse are optimal if the data are generated from a deter-
ministic function corrupted by a normally distributed noise
process with constant variance. However, a potential prob-
lem exists with cost functions based on theL2-norm (e.g.,
C2 andC3 defined in Eqs. 6 and 7). Samples with the great-
est errors exert disproportionately large influence on the cost
function. Thus, a small number of outliers can come to dom-
inate the solution. Adopting theL1-norm, which leads to the
mae cost function, reduces the influence of outliers.

Fig. 2. Empirical comparison between the Pearson correlation (cor) and the biweight midcorrelation (bicor) on random variablesx andy,
each with samples drawn from a standard normal distribution, andx′ andy, wherex′ is the same asx but with one case replaced with an
outlier. Panel(a) shows sample time series ofx′ (solid) andy (dashed);(b) compares cor(x, y) and bicor(x, y); (c) compares cor(x, y) and
cor(x′, y); and(d) compares bicor(x, y) and bicor(x′, y). Plots are for 1000 randomly generated datasets.

Weight and bias parameters in these two networks are
found by minimizing the cost functions
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respectively, where‖·‖2 is the square of theL2-norm, with
theLp-norm given by
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=
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. (8)

C2 andC3 thus give the mse between the neural network pre-
dictions and the observedx andy variables subject to weight
penalty terms whose magnitudes are controlled by the param-
etersP2 andP3. Once the first mode has been extracted from

the data, the next leading mode can be extracted from the
model residuals, and so on for higher modes.

For seasonal climate prediction tasks, where the goal is
to predict values of a multivariate predictand dataset from a
multivariate predictor dataset, e.g.,ŷ=f (x), values of the
canonical variatev must be predicted from values of the
canonical variateu. For canonical variates normalized to unit
variance and zero mean, the linear least-squares regression
solution is given by

v̂ = u cor(u, v) (9)

(von Storch and Zwiers, 1999, pg. 325).

2.2 Biweight midcorrelation

The Pearson correlation is not a robust measure of associa-
tion between two variables, as its estimates can be affected
by the presence of a single outlier (Wilcox, 2004). For short,
noisy datasets the cost functionC1 Eq. (3) in the NLCCA
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Fig. 3. Time series ofu with (a) p=1 and(b) p=9; outliers inv oc-
cur at the same time as those inu. (c) The effect on cor(u, v) (solid
line) and bicor(u, v) (dashed line) from increasing the separation
between common outlier and non-outlier points by increasingp.

model may lead to overfitting as the model attempts to max-
imize the correlation between the canonical variates by gen-
erating mappings betweenx andu andy andv that are more
complicated than necessary due to outliers. Rather than us-
ing the Pearson correlation, a more robust measure of asso-
ciation could instead be adopted in the cost function to avoid
this problem.

Robust correlation coefficients, including commonly used
functions like the Spearman rank correlation, are reviewed by
Wilcox (2004). Trials with the Spearman rank correlation re-
sulted in models with poor convergence properties and incon-
sistent performance on real-world climate datasets. Instead,
the biweight midcorrelation (Wilcox, 2004) was selected as
a robust alternative to the Pearson correlation. The biweight
midcorrelation is calculated in the same manner as the Pear-
son correlation coefficient, except non-robust measures (the
mean, expected deviation from the mean, and covariance) are
replaced by robust measures. The biweight midcorrelation
can also be used to predictv from u (and vice versa) in a
manner similar to Eq. (9) for the standard NLCCA model,
which is not possible with the Spearman rank correlation.

To calculate the biweight midcorrelation function bi-
cor(x,y), first rescalex andy by

p =
x − Mx

9 MADx

, q =
y − My

9 MADy

(10)

whereMx and My are the median values ofx and y re-
spectively and MADx and MADy are the median values of

|x − Mx | and
∣∣y − My

∣∣ respectively. Next, the sample bi-
weight midcovariance is given by

bicov(x, y) =

N
∑

t a(t)b(t)c(t)2d(t)2(x(t) − Mx)(y(t) − My)

(
∑

t a(t)c(t)(1 − 5p(t)2))(
∑

t b(t)d(t)(1 − 5q(t)2))
(11)

where a(t)=1 if −1≤p(t)≤1, otherwisea(t)=0; b(t)=1
if −1≤q(t)≤1, otherwiseb(t)=0; c(t)=(1−p(t)2); and
d(t)=(1−q(t)2). The biweight midcorrelation is then given
by

bicor(x, y) =
bicov(x, y)

√
bicov(x, x) bicov(y, y)

. (12)

The biweight midcorrelation, like the Pearson correlation,
ranges from−1 (negative association) to +1 (positive associ-
ation).

Figure2 shows estimates of the Pearson correlation and
the biweight midcorrelation between normally distributed
random variablesx∼N(0, 1) and y∼N(0, 1) and between
x′ andy, wherex′ is the same asx but with one case re-
placed by an outlier (Fig.2a). On the outlier-free dataset,
both cor(x, y) and bicor(x, y) give approximately equal es-
timates of the strength of association between the variables
(Fig. 2b). Estimates of cor(x′, y) are strongly affected by
the outlier, showing almost no association between values
calculated with and without the outlying data point (Fig.2c),
whereas estimates of bicor(x′, y) are essentially unaffected
by the outlier (Fig.2d).

NLCCA with the Pearson correlation cost function may
fail when outliers occur simultaneously in both datasets. To
illustrate, consider two identical sinusoidal series, each with
a common outlier

x(t) = y(t) = sin(0.5t) + δ(t), where

δ(t) =

{
6 at t = 150
0 elsewhere

(13)

wheret = 1, 2, ..., 300. Next, create new seriesx′ andy′ by
adding noise drawn fromN(0, 0.5) to x andy. The expected
values of cor(x′, y′) and bicor(x′, y′) are found to be 0.71
and 0.68 respectively. Now, consider values of cor(u, v) and
bicor(u, v), whereu = x′p, v = y′p, andp is an odd integer
(Fig. 3a). Increasing the value ofp effectively increases the
separation between the outlier and the non-outliers (Fig.3b).
Values of cor(u, v) and bicor(u, v) for values ofp from
1 to 9 are shown in Fig.3c. The Pearson correlation can
be increased simply by increasingp, whereas the biweight
midcorrelation decreases asp increases. This case illustrates
how increasing the nonlinearity of the mapping functionsu

andv (by increasingp) can lead to very high Pearson cor-
relation. In the context of NLCCA, spuriously high values
of cor(u, v) can be found by the double-barreled network
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Bishop (1995, Sec. 6.1-6.2) showed that in the limit of in-
finite samples and with a flexible enough model (e.g., a neu-
ral network with enough hidden nodes), the model converges
to the conditional mean if the mse is used and the conditional
median if the mae is used. The median is robust to outliers
whereas the mean is not.

2.4 Robust NLCCA

Robust variants of NLCCA use the model architecture shown
in Figure 1 but with the cost functionsC1, C2, andC3 re-
placed by the robust versions described in Sections 2.2 and
2.3. The biweight midcorrelation replaces the Pearson corre-
lation inC1 and the mae replaces the mse inC2 andC3.

3 Synthetic test problem

3.1 Data

To illustrate the effect of the changes to the NLCCA cost
functions, consider the three dimensional synthetic test prob-
lem used by Hsieh (2000) to introduce the standard NLCCA
model. The first correlated mode (x andy) is given by

x1 = t − 0.3t2, x2 = t + 0.3t2, x3 = t2 (15)

y1 = t3, y2 = −t + 0.3t3, y3 = t + 0.3t2 (16)

wheret is a uniformly distributed random number in[−1, 1].
The second correlated mode (x′ andy′) is given by

x′

1 = −s − 0.3s2, x′

2 = s − 0.3s3, x′

3 = −s4 (17)

y′

1 = sech(4s), y′

2 = s + 0.3s3, y′

3 = s − 0.3s2 (18)

wheres is a uniformly distributed random number in[−1, 1].
The shapes described byx andx′ are shown in Figure 4a and
those described byy andy′ are shown in Figure 4b.

To test the performance of the NLCCA models, 50 training
and test datasets, each with 500 samples, were randomly gen-
erated from Eqs. (15)-(18). The signal in each dataset was
produced by adding the second mode to the first mode, with
the variance of the second equal to one third that of the first.
Normally distributed random noise with standard deviation
equal to 50% of the signal standard deviation was added to
the data. The variables were then standardized to zero mean
and unit standard deviation.

3.2 Training and testing procedure

NLCCA models with different combinations of the non-
robust (cor and mse) and robust (bicor and mae) cost func-
tions were developed on the training datasets and applied to
the test datasets. Following Hsieh (2000), all neural networks
had three nodes in their hidden-layers and were trained with-
out weight penalty terms. A quasi-Newton nonlinear opti-
mization scheme with finite-difference approximations of the

Fig. 4. Synthetic test datasets used to evaluate the performance of
the standard and robust NLCCA models. The first mode is shown
by the thick black curve and the second mode is shown by the thin
black curve. Test samples with added noise are shown as asterisks.

gradient and Hessian was used to minimize the cost func-
tions. While theL1 norm is not continuously differentiable,
convergence problems were not noted during optimization.
TheL1 norm can, however, be approximated by the Huber
norm, which is continuously differentiable, if issues with
convergence are found (Panayiotis et al., 2006). To avoid
local minima in the error surface, each network in Figure 1
was trained 30 times, each time starting from a different ran-
domly selected set of initial weights and biases. The network
with the lowest value of its associated cost function was then
selected for use and applied to the test data.

3.3 Model performance

Root mse (rmse) values between the first synthetic mode
and the first mode extracted by NLCCA models with dif-
ferent combinations of non-robust and robust cost functions
are shown in Figure 5 for the 50 test datasets. On average,
all models performed approximately the same, although, for
the leading NLCCA mode of thex dataset, NLCCA with

Fig. 4. Synthetic test datasets used to evaluate the performance of
the standard and robust NLCCA models. The first mode is shown
by the thick black curve and the second mode is shown by the thin
black curve. Test samples with added noise are shown as asterisks.

when the nonlinear neural network mapping greatly magni-
fies an outlier in bothx andy. This artifact can be particu-
larly dangerous when NLCCA is applied to datasets that are
affected by strong, concurrent climate signals, for example
those with large El Nĩno or La Nĩna anomalies, as shown
by Hsieh(2001). NLCCA performed worse than CCA when
weight penalty terms were not used to reduce the nonlinear-
ity of the double-barreled network. Based on results shown
in Fig. 3, adopting bicor in the cost function should prevent
this artifact.

When NLCCA models are used for multivariate predic-
tion, a regression model is needed to estimatev from u (and
vice versa). For the standard NLCCA model, the linear least
squares estimate for the regression coefficient is given by
Eq. (9). Similarly, the biweight midcorrelation is associated
with a robust regression model that can be used to predict val-
ues of one canonical variate from the other. FollowingLax
(1985) andHou and Koh(2004), the biweight midregression
solution is given by

v̂ = u bicor(u, v) (14)
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Fig. 5. Boxplots showing the distribution of rmse between the first synthetic mode and the first mode extracted by NLCCA models for(a)x
and (b)y with different combinations of non-robust and robust cost functions over 50 trials. Boxes extend from the 25th to 75th percentiles,
with the line indicating the median. Whiskers represent themost extreme data within±1.5 times the interquartile range (i.e., the box height);
values outside this range are plotted as dots. The dashed line indicates a rmse equal to one. The ordinate is log-scaled toaccomodate the
large range in rmse.
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Fig. 6. Diagram showing how data were split into training (light
gray) and validation (dark gray) segments for the first (CV1)and
second (CV2) cross-validation procedures.

recorded, neural networks were retrained on all 10 segments
combined using these penalties. Ten models were trained in
this manner to assess sensitivity to initial weights and biases.

A second round of cross-validation was used to estimate
out-of-sample forecast performance of the models (CV2 in
Figure 6). The historical record was split into 5 contiguous
segments (each approximately 11 years in length). Models
were trained on 4 of the 5 segments using the cross-validation
procedure outlined above. Forecasts on the remaining seg-
ment were then recorded. These steps were repeated 4 times,
each time making forecasts on a different segment. Finally,
forecasts for all 5 segments were combined and compared
with observations.

4.3 Skill for models with one mode

Results from NLCCA models with one mode are shown in
Figure 7. For reference, results from linear CCA models are
also shown. Cross-validated Pearson correlation skill is aver-
aged over the entire domain following reconstruction of the
SST field from the predicted SST PC scores. Values of rmse
were also calculated, but are not shown as relative perfor-
mance between models was the same as for correlation skill.
Results with weight penalty are only given for the NLCCA
model with cor/mse cost functions as the addition of penalty
terms to models with the bicor cost function did not generally
lead to significant changes in skill.

Without weight penalty, the NLCCA model with cor/mse
cost functions performed poorly, exhibiting mean skills
worse than CCA at all lead times. Even with concurrent
predictor/predictand fields, the mean correlation skill was
lower than 0.2. NLCCA with bicor/mse cost functions and
bicor/mae cost functions performed much better, with mean
correlation skills exceeding 0.5 at the 0-month lead time.
Over the 10 trials, minimum skills from models incorpo-
rating the bicor cost function were higher than maximum
skills from the corresponding cor/mse models without weight
penalty.

For NLCCA with cor/mse cost functions, minimum corre-
lations were lower than zero (i.e., no cross-validation skill)

Fig. 5. Boxplots showing the distribution of rmse between the first
synthetic mode and the first mode extracted by NLCCA models for
(a)x and(b) y with different combinations of non-robust and robust
cost functions over 50 trials. Boxes extend from the 25th to 75th
percentiles, with the line indicating the median. Whiskers represent
the most extreme data within±1.5 times the interquartile range (i.e.,
the box height); values outside this range are plotted as dots. The
dashed line indicates a rmse equal to one. The ordinate is log-scaled
to accomodate the large range in rmse.

for canonical variates normalized to unit variance and zero
mean.

2.3 Lp-norm

Now consider the inverse maping fromu and v back to x̂

and ŷ (i.e., the networks on the right hand side of Fig.1).
The Lp-norm given in Eq. (8) forms the basis for a class of
cost functions used in regression models (Bishop, 1995). Of
these, theL2-norm, which leads to the mse cost function, is
commonly used in statistical models. Models that minimize
the mse are optimal if the data are generated from a deter-
ministic function corrupted by a normally distributed noise
process with constant variance. However, a potential prob-
lem exists with cost functions based on theL2-norm (e.g.,
C2 andC3 defined in Eqs.6 and7). Samples with the great-
est errors exert disproportionately large influence on the cost
function. Thus, a small number of outliers can come to dom-
inate the solution. Adopting theL1-norm, which leads to the
mae cost function, reduces the influence of outliers.

Bishop(1995, Sects. 6.1–6.2) showed that in the limit of
infinite samples and with a flexible enough model (e.g., a
neural network with enough hidden nodes), the model con-
verges to the conditional mean if the mse is used and the
conditional median if the mae is used. The median is robust
to outliers whereas the mean is not.
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2.4 Robust NLCCA

Robust variants of NLCCA use the model architecture shown
in Fig. 1 but with the cost functionsC1, C2, andC3 replaced
by the robust versions described in Sect.2.2 and2.3. The
biweight midcorrelation replaces the Pearson correlation in
C1 and the mae replaces the mse inC2 andC3.

3 Synthetic test problem

3.1 Data

To illustrate the effect of the changes to the NLCCA cost
functions, consider the three dimensional synthetic test prob-
lem used byHsieh(2000) to introduce the standard NLCCA
model. The first correlated mode (x andy) is given by

x1 = t − 0.3t2, x2 = t + 0.3t2, x3 = t2 (15)

y1 = t3, y2 = −t + 0.3t3, y3 = t + 0.3t2 (16)

wheret is a uniformly distributed random number in[−1, 1].
The second correlated mode (x′ andy′) is given by

x′

1 = −s − 0.3s2, x′

2 = s − 0.3s3, x′

3 = −s4 (17)

y′

1 = sech(4s), y′

2 = s + 0.3s3, y′

3 = s − 0.3s2 (18)

wheres is a uniformly distributed random number in[−1, 1].
The shapes described byx andx′ are shown in Fig.4a and
those described byy andy′ are shown in Fig.4b.

To test the performance of the NLCCA models, 50 train-
ing and test datasets, each with 500 samples, were randomly
generated from Eqs. (15–18). The signal in each dataset was
produced by adding the second mode to the first mode, with
the variance of the second equal to one third that of the first.
Normally distributed random noise with standard deviation
equal to 50% of the signal standard deviation was added to
the data. The variables were then standardized to zero mean
and unit standard deviation.

3.2 Training and testing procedure

NLCCA models with different combinations of the non-
robust (cor and mse) and robust (bicor and mae) cost func-
tions were developed on the training datasets and applied to
the test datasets. FollowingHsieh(2000), all neural networks
had three nodes in their hidden-layers and were trained with-
out weight penalty terms. A quasi-Newton nonlinear opti-
mization scheme with finite-difference approximations of the
gradient and Hessian was used to minimize the cost func-
tions. While theL1 norm is not continuously differentiable,
convergence problems were not noted during optimization.
The L1 norm can, however, be approximated by the Hu-
ber norm, which is continuously differentiable, if issues with

convergence are found (Panayiotis et al., 2006). To avoid lo-
cal minima in the error surface, each network in Fig.1 was
trained 30 times, each time starting from a different randomly
selected set of initial weights and biases. The network with
the lowest value of its associated cost function was then se-
lected for use and applied to the test data.

3.3 Model performance

Root mse (rmse) values between the first synthetic mode
and the first mode extracted by NLCCA models with dif-
ferent combinations of non-robust and robust cost functions
are shown in Fig.5 for the 50 test datasets. On average,
all models performed approximately the same, although, for
the leading NLCCA mode of thex dataset, NLCCA with
bicor/mse cost functions yielded the lowest median rmse
(0.44), followed by NLCCA with bicor/mae (0.45) and NL-
CCA with cor/mse (0.45). NLCCA with cor/mae performed
worst with a median rmse of 0.47. Median rmse values and
relative rankings of the models were the same for the leading
NLCCA mode of they dataset.

Of the four models, NLCCA with the robust cost functions
(bicor/mae) was the most stable. No trial yielded an rmse in
excess of the series standard deviation of one, with the max-
imum value under 0.6 for thex mode. The other models had
at least one trial with an rmse value greater than one, which
is indicative of severe overfitting. Maximum values for the
x mode ranged from 1.8 for NLCCA with bicor/mse, to 47.4
for NLCCA with cor/mse, and 49.6 for cor/mae. NLCCA
with bicor/mae performed similarly for they mode, although
two trials with rmse greater than 20 were found for NLCCA
with bicor/mse cost functions.

Overall, results for the synthetic dataset suggest that re-
placing the cor/mse cost functions in NLCCA with bicor/mae
cost functions leads to a more stable model that was less sus-
ceptible to overfitting and poor test performance. All models
were run without weight penalty terms in this comparison.
In practice, the non-robust models will need weight penalty
terms to reduce overfitting, as is done in our next test, where
NLCCA models are applied to a real-world climate predic-
tion problem.

4 Seasonal prediction

4.1 Data

As the primary goal of the study is to investigate the effect of
the robust cost functions on performance, and not to build an
operational forecast model, predictor/predictand fields were
selected as inHsieh(2001).

SST data were obtained from the second version of the
NOAA Extended Reconstructed SST (ERSST.v2) dataset
(Smith and Reynolds, 2004). Monthly data on a 2◦×2◦ grid
were extracted for a spatial domain covering the tropical Pa-
cific Ocean (22◦S−22◦N, 122◦E−288◦E) for the time period
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Fig. 5. Boxplots showing the distribution of rmse between the first synthetic mode and the first mode extracted by NLCCA models for(a)x
and (b)y with different combinations of non-robust and robust cost functions over 50 trials. Boxes extend from the 25th to 75th percentiles,
with the line indicating the median. Whiskers represent themost extreme data within±1.5 times the interquartile range (i.e., the box height);
values outside this range are plotted as dots. The dashed line indicates a rmse equal to one. The ordinate is log-scaled toaccomodate the
large range in rmse.
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Fig. 6. Diagram showing how data were split into training (light
gray) and validation (dark gray) segments for the first (CV1)and
second (CV2) cross-validation procedures.

recorded, neural networks were retrained on all 10 segments
combined using these penalties. Ten models were trained in
this manner to assess sensitivity to initial weights and biases.

A second round of cross-validation was used to estimate
out-of-sample forecast performance of the models (CV2 in
Figure 6). The historical record was split into 5 contiguous
segments (each approximately 11 years in length). Models
were trained on 4 of the 5 segments using the cross-validation
procedure outlined above. Forecasts on the remaining seg-
ment were then recorded. These steps were repeated 4 times,
each time making forecasts on a different segment. Finally,
forecasts for all 5 segments were combined and compared
with observations.

4.3 Skill for models with one mode

Results from NLCCA models with one mode are shown in
Figure 7. For reference, results from linear CCA models are
also shown. Cross-validated Pearson correlation skill is aver-
aged over the entire domain following reconstruction of the
SST field from the predicted SST PC scores. Values of rmse
were also calculated, but are not shown as relative perfor-
mance between models was the same as for correlation skill.
Results with weight penalty are only given for the NLCCA
model with cor/mse cost functions as the addition of penalty
terms to models with the bicor cost function did not generally
lead to significant changes in skill.

Without weight penalty, the NLCCA model with cor/mse
cost functions performed poorly, exhibiting mean skills
worse than CCA at all lead times. Even with concurrent
predictor/predictand fields, the mean correlation skill was
lower than 0.2. NLCCA with bicor/mse cost functions and
bicor/mae cost functions performed much better, with mean
correlation skills exceeding 0.5 at the 0-month lead time.
Over the 10 trials, minimum skills from models incorpo-
rating the bicor cost function were higher than maximum
skills from the corresponding cor/mse models without weight
penalty.

For NLCCA with cor/mse cost functions, minimum corre-
lations were lower than zero (i.e., no cross-validation skill)

Fig. 6. Diagram showing how data were split into training (light
gray) and validation (dark gray) segments for the first (CV1) and
second (CV2) cross-validation procedures.

1948 to 2003. The climatological seasonal cycle was re-
moved, data were detrended, and a 3-month running mean
filter was applied. Principal component analysis (PCA) was
applied to the data; the first 6 modes accounting for 73% of
the total SST variance were retained for further analysis. PC
scores (i.e., the time series for the leading PCA modes) were
scaled according to the amount of variance explained by each
mode.

SLP data from the NCEP/NCAR Reanalysis (Kalnay et al.,
1996) were obtained for the same region and period. Data
on a 2.5◦×2.5◦ grid had the climatological seasonal cycle
removed, the data were detrended, and then smoothed by a
3-month running mean filter. PCA was applied to the data
and the first 6 modes, accounting for 80% of the total SLP
variance, were retained for further analysis.

4.2 Training and testing procedure

Three variants of the NLCCA model were applied to the
SST and SLP datasets. The first, representing the standard
NLCCA model, incorporated both non-robust cost functions
(cor/mse). The second and third used the bicor cost function
to train the double-barreled network and either the mae or
mse cost function to train the inverse mapping networks. For
brevity, the model with cor/mae cost functions was dropped
from consideration.

To assess the usefulness of the three variants of NLCCA
for seasonal forecasting, models were validated on the basis
of their forecast performance. PC scores from the 6 leading
PCs of the SLP dataset were used to predict PC scores from
the 6 leadings PCs of the SST dataset at lead times of 0, 3,
6, 9, and 12-months. (Lead times are defined as the number
of months from the predictor observation to the predictand
observation, e.g., a forecast with a 3-month lead time from
January would be for April.) Takingx to be historical val-
ues of the SLP PC scores andy to be historical values of
the SST PC scores, forecasts for a new caseŷ(tn) at time
tn were made as follows. First, the double-barreled network
was trained withx andy as inputs and the resulting values
of u andv were used to train the inverse mapping networks.
Given a new SLP data pointx(tn), a new value of the canon-
ical variateu(tn) was obtained from the double-barreled net-
work. Regression equations (Eq.9 or Eq.14) were then used
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Fig. 7. Cross-validated correlation skill for NLCCA models trained
with cor/mse, bicor/mse, and bicor/mae cost functions. Weight
penalty was applied to the model denoted cor/mse(p). Bars show
the mean correlation over the spatial domain, averaged overthe 10
trials. Vertical lines extend from the minimum to the maximum
spatial mean correlation from the 10 trials. Horizontal lines show
correlation skill from the CCA model. The ordinate is limited to
showing positive cross-validated skill.

for 6, 9, and 12-month lead times. All NLCCA models with
bicor/mse and bicor/mae cost functions, even those at a 12-
month lead time, showed positive skill. In general, NLCCA
models with bicor exhibited the least variability in skill be-
tween repeated trials. In no case was the range between min-
imum and maximum skill greater than 0.2. For NLCCA with
cor/mse cost functions, the range in skill exceeded 0.2 at all
lead times, indicating a very unstable model.

Little difference in skill was evident between bicor/mse
and bicor/mae models, which suggests that the switch from
cor to bicor in the double-barreled network cost function was
responsible for most of the increase in skill relative to the
standard NLCCA model. Inspection of the canonical variates
shows that this was due to the insensitivity of the bicor cost
function to the common outlier artifact described in Section
2.2 and illustrated in Figure 3.

Plots of the canonical variatesu andv for the first mode of
NLCCA models with cor/mse and bicor/mse cost functions
at the 0-month lead time are shown in Figure 8 along with
PC scores from the leading SST and SLP PCA modes. For
these series, values of cor(u, v) and bicor(u, v) were 1.00
and 0.96 respectively. The high correlation betweenu andv

for the NLCCA model with the cor cost function was driven
almost exclusively by the common outliers present during
1997-1998. With the 1997-1998 outliers removed, cor(u, v)
dropped to 0.28. On the other hand, the high correlation be-
tweenu and v for the NLCCA model with the bicor cost
function was indicative of the strong relationship betweenthe
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Fig. 8. Plots of (a) PC scores from the leading SST (solid line) and
SLP (dashed line) PCA modes; (b) the canonical variateu for the
leading NLCCA mode from a model with cor/mse cost functions
(dashed line) and one with bicor/mse cost functions (solid line);
and (c) canonical variatev for the leading NLCCA mode from a
model with cor/mse cost functions (dashed line) and bicor/mse cost
functions (solid line).

SLP and SST series, as evidenced by the Pearson correlation
of 0.91 between the leading SST and SLP PCs.

Results discussed to this point have been for NLCCA mod-
els without weight penalty. Hsieh (2001) found that the addi-
tion of weight penalty to the standard NLCCA model lead to
improvements in performance, due in part to the avoidance
of the common outlier artifact. Addition of weight penalty
to the standard NLCCA model resulted in improvements in
mean correlation skill, although performance still laggedbe-
hind NLCCA with the bicor cost function at 9 and 12-month
lead times. At 0, 3, and 6-month lead times, maximum skill
over the 10 trials did, however, exceed the mean level of
skill of the bicor-based models, which suggests that an ap-
propriate amount of weight penalty can result in a good per-
forming model. Inspection of the time series ofu andv for
the best performing runs suggests that improved performance
was due to avoidance of the common outlier artifact. How-

Fig. 7. Cross-validated correlation skill for NLCCA models trained
with cor/mse, bicor/mse, and bicor/mae cost functions. Weight
penalty was applied to the model denoted cor/mse(p). Bars show
the mean correlation over the spatial domain, averaged over the 10
trials. Vertical lines extend from the minimum to the maximum
spatial mean correlation from the 10 trials. Horizontal lines show
correlation skill from the CCA model. The ordinate is limited to
showing positive cross-validated skill.

to predict a new value of̂v(tn). Finally, v̂(tn) was entered
into the appropriate inverse mapping network to giveŷ(tn).
For the second and higher NLCCA modes, the same proce-
dure was followed using residuals from the previous mode
as inputs. FollowingHsieh (2001), neural networks were
trained both with and without weight penalty terms using
two hidden-layer nodes. A two-stage cross-validation pro-
cedure was used to set the weight penalty coefficients and
to estimate forecast performance. For reference, a schematic
diagram showing how data were split into training/validation
segments is shown in Fig.6.

To avoid overfitting in models trained with weight penalty,
values of the coefficientsP1, P2, andP3 in Eqs. 3, 6, and7
were determined via 10-fold cross-validation on the training
dataset (CV1 in Fig.6). The training record was split into
10 contiguous segments. Models were trained on 9 of the 10
segments using weight penalties from the set{0, 10−6, 10−5,
10−4, 10−3, 10−2, 10−1, 1, 10}. Forecasts on the remaining
segment were then recorded for each weight penalty coef-
ficient. While fixing the weight penalties, these steps were
repeated 9 times, each time making forecasts on a different
segment. Finally, forecasts for all 10 segments were com-
bined and validated against observations. Weight penalties
that minimized the aggregated cross-validation error were
recorded, neural networks were retrained on all 10 segments

www.nonlin-processes-geophys.net/15/221/2008/ Nonlin. Processes Geophys., 15, 221–232, 2008



228 A. J. Cannon and W. W. Hsieh: Robust nonlinear canonical correlation analysis
8 A.J. Cannon and W.W. Hsieh: Robust nonlinear canonical correlation analysis

00 03 06 09 12

cor/mse
cor/mse(p)
bicor/mse
bicor/mae

SST predictions based on mode 1

Lead time (months)

C
ro

ss
−

va
lid

at
ed

 c
or

re
la

tio
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

− −
−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−
−

−

−

−

−
−

−

−

−

−

−

−

−

−

Fig. 7. Cross-validated correlation skill for NLCCA models trained
with cor/mse, bicor/mse, and bicor/mae cost functions. Weight
penalty was applied to the model denoted cor/mse(p). Bars show
the mean correlation over the spatial domain, averaged overthe 10
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for 6, 9, and 12-month lead times. All NLCCA models with
bicor/mse and bicor/mae cost functions, even those at a 12-
month lead time, showed positive skill. In general, NLCCA
models with bicor exhibited the least variability in skill be-
tween repeated trials. In no case was the range between min-
imum and maximum skill greater than 0.2. For NLCCA with
cor/mse cost functions, the range in skill exceeded 0.2 at all
lead times, indicating a very unstable model.

Little difference in skill was evident between bicor/mse
and bicor/mae models, which suggests that the switch from
cor to bicor in the double-barreled network cost function was
responsible for most of the increase in skill relative to the
standard NLCCA model. Inspection of the canonical variates
shows that this was due to the insensitivity of the bicor cost
function to the common outlier artifact described in Section
2.2 and illustrated in Figure 3.

Plots of the canonical variatesu andv for the first mode of
NLCCA models with cor/mse and bicor/mse cost functions
at the 0-month lead time are shown in Figure 8 along with
PC scores from the leading SST and SLP PCA modes. For
these series, values of cor(u, v) and bicor(u, v) were 1.00
and 0.96 respectively. The high correlation betweenu andv

for the NLCCA model with the cor cost function was driven
almost exclusively by the common outliers present during
1997-1998. With the 1997-1998 outliers removed, cor(u, v)
dropped to 0.28. On the other hand, the high correlation be-
tweenu and v for the NLCCA model with the bicor cost
function was indicative of the strong relationship betweenthe
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Fig. 8. Plots of (a) PC scores from the leading SST (solid line) and
SLP (dashed line) PCA modes; (b) the canonical variateu for the
leading NLCCA mode from a model with cor/mse cost functions
(dashed line) and one with bicor/mse cost functions (solid line);
and (c) canonical variatev for the leading NLCCA mode from a
model with cor/mse cost functions (dashed line) and bicor/mse cost
functions (solid line).

SLP and SST series, as evidenced by the Pearson correlation
of 0.91 between the leading SST and SLP PCs.

Results discussed to this point have been for NLCCA mod-
els without weight penalty. Hsieh (2001) found that the addi-
tion of weight penalty to the standard NLCCA model lead to
improvements in performance, due in part to the avoidance
of the common outlier artifact. Addition of weight penalty
to the standard NLCCA model resulted in improvements in
mean correlation skill, although performance still laggedbe-
hind NLCCA with the bicor cost function at 9 and 12-month
lead times. At 0, 3, and 6-month lead times, maximum skill
over the 10 trials did, however, exceed the mean level of
skill of the bicor-based models, which suggests that an ap-
propriate amount of weight penalty can result in a good per-
forming model. Inspection of the time series ofu andv for
the best performing runs suggests that improved performance
was due to avoidance of the common outlier artifact. How-

Fig. 8. Plots of(a) PC scores from the leading SST (solid line) and
SLP (dashed line) PCA modes;(b) the canonical variateu for the
leading NLCCA mode from a model with cor/mse cost functions
(dashed line) and one with bicor/mse cost functions (solid line);
and (c) canonical variatev for the leading NLCCA mode from a
model with cor/mse cost functions (dashed line) and bicor/mse cost
functions (solid line).

combined using these penalties. Ten models were trained in
this manner to assess sensitivity to initial weights and biases.

A second round of cross-validation was used to estimate
out-of-sample forecast performance of the models (CV2 in
Fig. 6). The historical record was split into 5 contiguous seg-
ments (each approximately 11 years in length). Models were
trained on 4 of the 5 segments using the cross-validation pro-
cedure outlined above. Forecasts on the remaining segment
were then recorded. These steps were repeated 4 times, each
time making forecasts on a different segment. Finally, fore-
casts for all 5 segments were combined and compared with
observations.

4.3 Skill for models with one mode

Results from NLCCA models with one mode are shown in
Fig. 7. For reference, results from linear CCA models are
also shown. Cross-validated Pearson correlation skill is av-

eraged over the entire domain following reconstruction of the
SST field from the predicted SST PC scores. Values of rmse
were also calculated, but are not shown as relative perfor-
mance between models was the same as for correlation skill.
Results with weight penalty are only given for the NLCCA
model with cor/mse cost functions as the addition of penalty
terms to models with the bicor cost function did not generally
lead to significant changes in skill.

Without weight penalty, the NLCCA model with cor/mse
cost functions performed poorly, exhibiting mean skills
worse than CCA at all lead times. Even with concurrent
predictor/predictand fields, the mean correlation skill was
lower than 0.2. NLCCA with bicor/mse cost functions and
bicor/mae cost functions performed much better, with mean
correlation skills exceeding 0.5 at the 0-month lead time.
Over the 10 trials, minimum skills from models incorpo-
rating the bicor cost function were higher than maximum
skills from the corresponding cor/mse models without weight
penalty.

For NLCCA with cor/mse cost functions, minimum corre-
lations were lower than zero (i.e., no cross-validation skill)
for 6, 9, and 12-month lead times. All NLCCA models with
bicor/mse and bicor/mae cost functions, even those at a 12-
month lead time, showed positive skill. In general, NLCCA
models with bicor exhibited the least variability in skill be-
tween repeated trials. In no case was the range between min-
imum and maximum skill greater than 0.2. For NLCCA with
cor/mse cost functions, the range in skill exceeded 0.2 at all
lead times, indicating a very unstable model.

Little difference in skill was evident between bicor/mse
and bicor/mae models, which suggests that the switch from
cor to bicor in the double-barreled network cost function was
responsible for most of the increase in skill relative to the
standard NLCCA model. Inspection of the canonical variates
shows that this was due to the insensitivity of the bicor cost
function to the common outlier artifact described in Sect.2.2
and illustrated in Fig.3.

Plots of the canonical variatesu andv for the first mode
of NLCCA models with cor/mse and bicor/mse cost func-
tions at the 0-month lead time are shown in Fig.8 along with
PC scores from the leading SST and SLP PCA modes. For
these series, values of cor(u, v) and bicor(u, v) were 1.00
and 0.96 respectively. The high correlation betweenu andv

for the NLCCA model with the cor cost function was driven
almost exclusively by the common outliers present during
1997–1998. With the 1997–1998 outliers removed, cor(u, v)

dropped to 0.28. On the other hand, the high correlation be-
tweenu and v for the NLCCA model with the bicor cost
function was indicative of the strong relationship between the
SLP and SST series, as evidenced by the Pearson correlation
of 0.91 between the leading SST and SLP PCs.

Results discussed to this point have been for NLCCA mod-
els without weight penalty.Hsieh(2001) found that the addi-
tion of weight penalty to the standard NLCCA model lead to
improvements in performance, due in part to the avoidance
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Fig. 9. (a) Plots of the first SST mode for CCA (thin line) and NLCCA with bicor/mae cost functions (thick line) in the planes of the PC1-PC2
and PC1-PC3 scores at 0, 3, 6, 9, and 12-month lead times. Spatial patterns for (b) PC1, (c) PC2, and (d) PC3, all normalizedto unit norm.

forecasting problems. To make NLCCA more robust, non-
robust cost functions in the model are replaced by robust cost
functions: the Pearson correlation in the double-barrelednet-
work is replaced by the biweight midcorrelation, while the
mse in the inverse mapping network can be replaced by the
mae.

Through analysis of a synthetic dataset and a real-world
climate dataset, adoption of the biweight midcorrelation is
shown to result in large improvements in model stability,
mainly by avoiding the common outlier artifact noted by

Hsieh (2001). Replacing the mse by the mae leads to im-
proved performance on the synthetic dataset, but little im-
provement on the climate dataset, except at the longest lead
time where the signal-to-noise ratio is smallest.

Based on these results, it is recommended that the bi-
weight midcorrelation replace the Pearson correlation in the
NLCCA model. Choosing the mse or mae cost function ap-
pears to be more problem dependent, and should be con-
sidered as part of the model selection process. Other cost
functions, for example those based on theLp norm with

Fig. 9. (a) Plots of the first SST mode for CCA (thin line) and NLCCA with bicor/mae cost functions (thick line) in the planes of the
PC1-PC2 and PC1-PC3 scores at 0, 3, 6, 9, and 12-month lead times. Spatial patterns for(b) PC1,(c) PC2, and(d) PC3, all normalized to
unit norm.

of the common outlier artifact. Addition of weight penalty
to the standard NLCCA model resulted in improvements in
mean correlation skill, although performance still lagged be-
hind NLCCA with the bicor cost function at 9 and 12-month
lead times. At 0, 3, and 6-month lead times, maximum skill
over the 10 trials did, however, exceed the mean level of
skill of the bicor-based models, which suggests that an ap-
propriate amount of weight penalty can result in a good per-
forming model. Inspection of the time series ofu andv for
the best performing runs suggests that improved performance
was due to avoidance of the common outlier artifact. How-
ever, the wide range in performance over the 10 trials (e.g., at

0 and 6-month lead times) reflects the instability of the train-
ing and cross-validation steps needed to choose the weight
penalty coefficients. In practice, it may be difficult to con-
sistently reach the performance level of the robust model by
relying solely on weight penalty to control overfitting of the
standard NLCCA model.

Returning to the NLCCA models with bicor/mse and bi-
cor/mae cost functions, little difference in skill between the
models is apparent from Fig.7. At short lead times (0 and
3-months), when the signal is strongest, the bicor/mse model
performed slightly better than the bicor/mae model, whereas
at the longest lead time (12-months), when the signal is
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Fig. 10. Spatial correlation skill at 0-month lead time for (a) NLCCAwith bicor/mae cost functions and (b) CCA. Panel (c) shows NLCCA
skill minus CCA skill. Panels (d) to (f) as in (a) to (c) but for12-month lead time

1 < p < 2 (Hanson and Burr, 1988), might also be viable,
depending on the prediction task. More research is needed to
determine the most appropriate cost function for the inverse
mapping networks.

Development of a robust NLCCA model for operational
prediction of SSTs in the equatorial Pacific Ocean is cur-
rently underway. To maximize skill, additional predictors,
for example lagged SSTs (Wu et al., 2006), upper ocean heat
content, and Madden-Julian oscillation indices (McPhaden
et al., 2006), are being investigated. Model performance may
also be improved by specifying corrections on predictions
when the model extrapolates beyond the limits of the train-
ing data, as suggested by Wu et al. (2007).
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which, from the spatial loading patterns, means that the pre-
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(which, at left/right extremes of the curve, correspond to La
Niña/El Niño states respectively) exhibited east/west asym-
metry. The curve rotated counter clockwise and straightened
with increasing lead time. At short lead times, the leading
CCA mode was driven mainly by PC1.

Conversely, the NLCCA curve in the PC1-PC3 plane dis-
played increased nonlinearity with lead time. Predicted val-
ues of PC3 were typically positive when values of PC1 were
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pattern of PC3, indicates differences in the contrast between
predicted SST anomalies along the equator and off the equa-
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tor during La Nĩna and El Nĩno states. Observed asymmetry
in the spatial patterns and magnitudes of SST anomalies as-
sociated with La Nĩna and El Nĩno are present in the obser-
vational record and have previously been detected by nonlin-
ear methods (Hsieh, 2001; Monahan, 2001; Wu and Hsieh,
2002).

To this point, reported skills have been averaged over the
entire spatial domain. For reference, Fig.10 shows spa-
tial patterns of correlation skill for NLCCA models with
bicor/mae cost functions at lead times of 0 and 12-months
respectively. For comparison, correlation skills from CCA
models are also plotted. Spatially at 0-month lead time, skill
was highest in the central equatorial Pacific Ocean, with a
secondary maximum to the northeast of Papua New Guinea
and east of Australia. Somewhat similar spatial patterns are
seen at the other lead times. Differences in skill between NL-
CCA and CCA are generally small, with the largest improve-
ments by NLCCA occurring along the boundary separating
the two skill maxima.

4.4 Skill for models with two modes

Results reported in the previous section were from NLCCA
models with a single nonlinear mode. Inclusion of the sec-
ond NLCCA mode may improve forecast performance in the
tropical Pacific Ocean (Wu and Hsieh, 2002). To investigate,
results from NLCCA models with two modes are shown in
Fig. 11.

Model skill with two modes improved relative to NLCCA
with a single mode at short lead times. For instance, mean
correlation skill for the NLCCA model with bicor/mae went
from 0.55 with one mode to 0.65 with two modes at a 0-
month lead time, and from 0.52 to 0.59 at a 3-month lead
time. At longer lead times performance dropped, even to a
level below CCA at 6-months, which is indicative of over-
fitting. However, the same was also true of the CCA model
where, at 9 and 12-month lead times, skill decreased rela-
tive to the model with a single mode. Results are somewhat
at odds with those reported byWu and Hsieh(2002), who
found the largest improvements in model performance to oc-
cur at longer lead times. However, cross-validation was not
employed byWu and Hsieh(2002), which means that over-
fitting may have caused inflated skill estimates at these lead
times.

As pointed out byHsieh(2001), nonlinearity in the tropi-
cal Pacific is strongest in the leading SST mode and is much
weaker (or even not evident) in higher modes. As a result,
using a nonlinear model, even one that can be estimated ro-
bustly, to extract the second or higher modes may not be war-
ranted and could lead to poor forecast performance. When
the skill improvement of NLCCA over CCA is minimal, as
is the case here even at short lead times, it may be more ap-
propriate to apply CCA to residuals from the first NLCCA
mode. This approach is currently used in operational NL-
CCA forecast models run by the Climate Prediction Group
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Fig. 11. As in Figure 7, but for NLCCA models with two modes.
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2339, 2003.
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Fig. 11. As in Fig.7, but for NLCCA models with two modes.

at the University of British Columbia (A. Wu, 2007, personal
communication).

5 Conclusions

NLCCA based on multi-layer perceptron neural networks is
a flexible model capable of nonlinearly generalizing linear
CCA (Hsieh, 2000). However, the complicated model archi-
tecture and use of non-robust cost functions means that over-
fitting is difficult to avoid, particularly when dealing with the
short, noisy datasets that are common in seasonal climate
forecasting problems. To make NLCCA more robust, non-
robust cost functions in the model are replaced by robust cost
functions: the Pearson correlation in the double-barreled net-
work is replaced by the biweight midcorrelation, while the
mse in the inverse mapping network can be replaced by the
mae.

Through analysis of a synthetic dataset and a real-world
climate dataset, adoption of the biweight midcorrelation is
shown to result in large improvements in model stability,
mainly by avoiding the common outlier artifact noted by
Hsieh (2001). Replacing the mse by the mae leads to im-
proved performance on the synthetic dataset, but little im-
provement on the climate dataset, except at the longest lead
time where the signal-to-noise ratio is smallest.

Based on these results, it is recommended that the bi-
weight midcorrelation replace the Pearson correlation in the
NLCCA model. Choosing the mse or mae cost function ap-
pears to be more problem dependent, and should be consid-
ered as part of the model selection process. Other cost func-
tions, for example those based on theLp norm with 1<p<2

www.nonlin-processes-geophys.net/15/221/2008/ Nonlin. Processes Geophys., 15, 221–232, 2008
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(Hanson and Burr, 1988), might also be viable, depending
on the prediction task. More research is needed to determine
the most appropriate cost function for the inverse mapping
networks.

Development of a robust NLCCA model for operational
prediction of SSTs in the equatorial Pacific Ocean is cur-
rently underway. To maximize skill, additional predictors,
for example lagged SSTs (Wu et al., 2006), upper ocean heat
content, and Madden-Julian oscillation indices (McPhaden
et al., 2006), are being investigated. Model performance may
also be improved by specifying corrections on predictions
when the model extrapolates beyond the limits of the train-
ing data, as suggested by Wu et al. (20081).
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