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Abstract. A Hamiltonian description of oblique travelling second Hamiltonian formulation, the Hamiltonian is the en-
waves in a two-fluid, charge-neutral, electron-proton plasmaergy flux integrak, and thex-momentum integraP, =const
reveals that the transverse momentum equations for the eleds a constraint. In the latter formulation the Hamiltonian evo-
tron and proton fluids are exactly integrable in cases wherdution operator is the advective or Lagrangian time deriva-
the total transverse momentum flux integrat$”’ and P/, tive d/dt=u,d/dx. These dual variational principles are
are both zero in the de Hoffman Teller (dHT) frame. In this analogous to the dual or multi-symplectic variational princi-
frame, the transverse electric fields are zero, which simplifiegles obtained b@ridges(1992 in a study of travelling water
the transverse momentum equations for the two fluids. Thevaves. Related work on a Hamiltonian formulation of par-
integrable travelling waves for the Cag:éd)zpz(d):o’ are allel propagating whistler waves in multi-fluid plasmas has
investigated based on the Hamiltonian trajectories in phas®€en investigated by/ebb et al(2009, whereasvicKenzie,
space, and also on the longitudinal structure equation foMace and Doylg2007) show that the spatial evolution equa-
the common longitudinal fluid velocity component of the tions for solitary travelling waves in Hall current plasmas can
electron and proton fluids. Numerical examples of a varietyPe cast in a Hamiltonian form in which the energy flux inte-
of travelling waves in a cold plasma, including oscillitons, 9rale is the Hamiltonian and the longitudinal momentum in-
are used to illustrate the physics. The transverse, electroffgral Px=const acts as a constraint. The multi-symplectic
and proton velocity componenis, andu;, (j=e, p) of the varlatlona_l principles in genelral do not_lmply _|ntegrab|||ty of
waves exhibit complex, rosette type patterns over several per.he equations, that are obtained for bi-Hamiltonian systems
riods foru,. The role of separatrices in the phase space, theuch as the KdV equation and the nonlinear 8dhger
rotational integral and the longitudinal structure equation on€duation (e.gMagri, 1978, which possess an infinite num-
the different wave forms are discussed. ber of conservation laws and Lie symmetries.

In a multi-symplectic Hamiltonian system both space and
time variables can be used as Hamiltonian evolution vari-
ables, and the evolution of both the space and time vari-
ables are associated with skew symmetric matrices (see
e.g.Bridges 1997ab, Hydon 2005 and Cotter, Holm and

1 Introduction

In arecent papei{ebb et al.2007, hereinafter referred to as ; o
paper 1), we developed a dual variational principle for non- Hydon, 2007 for further details). The conditions that are

linear travelling waves in a charge neutral, non—relativistic,requ'reihfor integrability is a SUb_Jf?Ct of ‘;”90'”9 debate
electron-proton plasma. It was shown that travelling waves in(€-9-Zakharoy 1993). For ordinary differential equation sys-
this multi-fluid plasma system could be described by two dif- tems, integrability means that the_number of known integrals
ferent, but equivalent Hamiltonian formulations. In the first Matches exactly the number of integration constants. For
formulation, the Hamiltonian is identified with the total con- nonlinear dlﬁerentlal equf':lltlons it was conjecturétamani
served longitudinat-momentum integral of the syster, et al, _1983, that mtegrablhw can be related to V\{hg_ther the
in which the energy flux integral=const is a constraint, and  €duations possess the Pairdguwoperty. The definition of

for whichd /dx is the Hamiltonian evolution operator. In the e Painlee property for ordinary differential equations, is
that the only movable singularities its solution can exhibit

Correspondence tos. M. Webb are poles (see e.¢gpteeb and Eulerl988. For Hamilto-
(gmwebb@ucr.edu) nian systems, integrability is associated with the existence
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180 G. M. Webb et al.: Integrable, oblique travelling waves in two-fluid plasmas

of closed orbits in the phase-space, which in turn are assowhere ujyo and uj0 (j=e, p) refer to the transverse
ciated with integrals and Lie symmetries of the equations.electron and proton fluid velocities in the dHT frame, and
If the system does not have a complete set of integrals, itMaco=u.0/ V. is the electron Alfén Mach number of the

is non-integrable and the phase space trajectories may biow atx=xo. In Eq. (1), all fluid velocities are normalized to
chaotic. It turns out that the system of ordinary differential the travelling wave speed and=m,/m, is the ratio of the
equations governing the travelling waves in the quasi-neutralproton and electron massas, andnz,.

two-fluid plasma system is integrable if the integration con- The Hamiltonian equations describing parallel propagat-
stantsP\’=0 andP{”’=0, whereP," and P\’ are the total  ing waves ¢=0) in a cold plasma, in whiclxj,0=0 and
transverse momentum integration constants for the system injz0=0 (j=e, p) asxo——oo were studied bywebb et al.
the dHT frame. In this case, the transverse electron and pro2009. They found that the waves were either (i) peri-
ton momentum differential equations admit an extra integral,0dic waves at Mach numbers<0/<1/2, (ii) oscillitons
the so-called rotational integral, which allows the equationsif 1/2<M<1/~/2, and (iii) periodic waves foM >1/~/2,

to be completely integrated by quadrature over the longitu-where M is the Alfvén Mach number of the wave based on
dinal flow velocityu,. In the cases wher®® 0 and/or  half the harmonic mean of the electron and proton masses
(i.e., the mean particle mags=m,m./(m. + mp), where

Pz(d) =0, there is no rotational integral, and if there are no
yre andm, denote the electron and proton masses: note

other integrals, the system is non-integrable, and may exhibi :
that M~Mpneo asm,./m,<<1, whereMaeo is the electron

chaotic trajectories. , .
The emphasis in the present paper is on travelling wave so’-A‘lfV én Mach number). The analysis @febb et al (2009

lutions of the two-fluid equations, mainly because these ard"as based in part on the earlier analysesSatier et al.

the simplest possible solutions. The solutions are a functior(zool 2002 2093’ Dubinin et al.(2003, anndKe_nZ|e e_t
of one variable, the travelling wave variablé” =x — wz (in al. (2004. In this paper, we study the class of oblique, inte-
our analysis we taker= — /), wherew is the constant ve- grable, travelling waves, with-£0, satisfying the condition

: : =0.
locity of the wave. Such waves can be generated in a stead . :
flow past a stationary object (e.g. such as the magnetospher I\/:qce er: a|(20|07). have denvgd thel conserfvann Iell;(vs un-
in the solar wind flow past the Earth). These standing wavesaeer ying the anaysis dilcKenzie et a (2004 for travg 'ng
in the frame of the object are analogous to the bow wave ofVaves in W""ﬂ“'d plasma_s, by using the frozen_ln gener-
a ship, or stationary wave patterns generated by a rock in gllzed vorticity for barotropic flows for each species. This

stream. Other wave solution forms are in general possible‘:JIpproaCh provides a direct and elegant derivation of conser-

but will not be investigated in the present paper vation laws for both multi-dimensional flows and one dimen-
In Webb et al.(2007), the integration constants for the sional flows.

system of differential equations and conservation laws were h[_)lilbmm et a_I.(ZOO'/)b have dagaliﬁ e‘i the SESCSt_rI_oSéamS of
specified at a fixed point=xg in the travelling wave frame, whistier emissions observed by the four shace-

or equivalently in the de Hoffman Teller (dHT) frame. It was .Crag atRT)14—2%)%IfE Itn fthe northern :t;%IiToe:)gEeto.?rp;]here
found that if the total, transverse momentum flux integral inwa\/:gtarz gz:tro ra’mas c:??rl:gnc(j:;z 2 uagests thazt. the eemis
the dHT frameP}r‘QzPy(g) +iPZ(g) is zero, then the system is b 9 99

. . sions can be explained by nonlinear, travelling whistler
exactly integrable (the superscriptienotes the dHT frame). P y g

o waves of the type investigated in the present paper. For
The total, transverse momentum flux was specified by thethese waves, the protons and the electrons have compara-
parameter&oz—Miese@P(d) where Ms.=U/ V4, is the

- +0 ) ble Reynolds stresses which are mediated by the Maxwell
electron Alfen Mach number of the wavé/ is the trav-  agnetic stresses. Parallel propagating whistlers are shown
elling wave speedy s, is the electron fluid Alfen speed and ¢, ,ngergo nonlinear resonant amplification at one half the
0 is the angle between the propagation direction {##is)  gjectron gyrofrequency, where the phase speed of the wave
and the reference magnetic fielt$ at xo. Because of the 55 3 maximum oV4./2 ( Vae is the Alfven speed based
assumption of charge neutrality, the number densities of the,, ihe electron fluid), where the group velocity of the wave

electron and proton fluids ,=n.=n throughout the wave, aiches the phase speed (the group veldéitgxceeds the
and the two fluids have a common longitudinal fluid veloc- phase speed of the waves at frequenaies,).

ity u, in the travelling wave frame. The paramedgrcan in In principle, the dual Hamiltonian structure of the travel-

general, be written in the form: ling waves investigated byebb et al(2005 2007 could be
M2 related to the general, Hamiltonian, Poisson bracket descrip-
Sg = — —1e0 (ueyO + Wit pyo tion of multi-fluid plasmas developed in a more general con-
Ux0 COSY text by Spence(1982), Spencer and Kaufma{1982, Holm

. U0 SiN® cosH (1) and Kupershmidt(1983 Sahraoui, Belmont and Rezeau
0| Uez0 + Mt pz0 — Y ) (2003 and Elsasser(1994. Zakharov(1971) developed a
A0 Clebsch variable, Hamiltonian description of a magnetized
electron plasma, with stationary ions, including the effects
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of charge separation electric fields. This model was used taial point X=Xg where the magnetic fiel@ has the form
study nonlinear, three wave resonant interacti®shraoui, Bo=Bp(cosd, 0, sind)’. We specify the integration con-
Belmont and Rezea(2003 develop a Hamiltonian canoni- stants for the system of conservation laws and differential
cal formalism for two-fluid plasmas, in which the displace- equations atX=Xo. The u; denote the fluid velocity of
ment current is neglected, but electron inertia still plays a rolespeciesj. We use the physical parameters:

and show how this system is related to Hall MHD, when the

electron mass is neglected. Lo=—., Q= eBO, = Mp
The main aim of the present paper is to investigate the Q. me me
nature of the integrable travelling waves for whig:=0 in 2 U? 2 Bg
Eq. (1). We use the same model as in paper |. The analy- My, = v’ Ae = [LoMen
Ae elte

sis is carried out in the de Hoffman Teller (dHT) frame of

. . . . 2 b
MHD shock theory, which is different than the travelling ;,2 _ v 02'0 _ YiPjo i=ep ©)
wave frame used bpubinin et al.(2003. We restrict our / Cjz-o 7 nom;

analysis to cases where the transformation speed between the
travelling wave frame and the dHT framé tand <c, where  to characterize the travelling wave. Hefg, is the electron
U is the travelling wave speed andis the speed of light. ~cyclotron frequencyVy, is the Alfvén speed based on the
The analysis is also restricted to cases where the electroflectron number density,, and M, is the Alfven Mach
Alfvén speed/,. < <c, for which the displacement current number of the wave based on the electron fluids the ratio
in Maxwell’s equations can be neglected, and charge neuof the proton and electron masses=(1836); M; are sonic
trality is a good approximation (seééerheest et al.2004 Mach numbers of the travelling wave, based on the sound
McKenzie, Dubinin and Saug2005 Webb et al. 2007for ~ speed: ;o of the different plasma species (hgiee, p), and
extensive discussion of this very important point). L.=U/ 2, is the characteristic scale length for the wave as-
The basic travelling wave model is outlined in Sect. 2. In sociated with the electron fluid ars, is the electron gyro-
Sect. 3, we discuss the action principle and the first Hamil-frequency. For a charge neutral plasma:n ,=n.
tonian formulation in which the Hamiltonia# is identi- The electron and proton fluids are assumed to have poly-
fied with the longitudinal-momentum integralP, and in  tropic equations of state of the form:
which the energy integral=¢p=const acts as a constraint.
In Sect. 4, Hamilton's equations are expressed in terms of (7 v . 4)
the Poisson bracket. It is shown that in the integrable case§’ ~ P =
(60=0), a reduction of the phase space from a four dimen-
sional phase space to a two dimensional phase space is po4herey. andy, are the polytropic indices of the electron and
sible by exploiting the integrals of the system. The integra-pProton fluids.
bility condition 80=0, further restricts the solutions of inter- ~ The basic equations for the system consist of the momen-
est to a particular Hamiltonian contour in the phase spacetum and energy equations, and the number density continu-
The reduction of the phase space from a four to a two di-ity equations for each species, and the overall momentum
mensional phase space is an example of Hamiltonian redu@nd energy equations for the system, coupled with Maxwell’'s
tion (e.g.Marsden and Ratjul994 Olver, 1993 Section 5 equations. We use a Galilean transformation of the transverse
presents representative examples of oblique travelling wavegelocities for the two species, relative to that usediginin
for the integrable cas®=0 in a cold electron-proton plasma. et al.(2003 andMcKenzie et al(2004 of the form:
Sect. 6 concludes with a summary and discussion.
ujy =uj,, uj;=uj +tand, j=e, p. 5)
2 The model The u? (j=e, p) are the velocities in the travelling wave
] o frame used byubinin et al.(2003, normalized to the trav-
As in paper |, we use a multi-fluid, charge neutral, electron-gjjing wave speed. The transformation Eqsj, is from the
proton model, in which all physical quantities depend only rayelling wave frame to the de-Hoffman Teller (dHT) frame,
on the position .COOI'dInat§=x~|—Ut in the 'travelllng wave  sed in the theory of MHD shockslg Hoffman and Teller
frame, wherelU is the speed of the wave in the lab. frame. 195Q Drury, 1983 Webb, Axford and Terasaw4983. We

We use the dimensionless physical variables: assume that the de Hoffman Teller spé&tand <c.
X _ B B u; B n; . In the further development, (in an abuse of mathematical
=1 B= Bo uj = v = . J=éD, notation) we omit the over-bar notation for normalized quan-
e

) titities, unless stated otherwise.
In terms of the variables Eq5), the transverse electron
where Bg and ng are the constant values of the magnetic and proton momentum equations for the system may be
field and the number density of the electrons at the fidu-written in the form:
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182 G. M. Webb et al.: Integrable, oblique travelling waves in two-fluid plasmas
If 0=0, the transverse momentum Ed®, @re invariant un-
. . der rotations about the axis, and admit an extra integral
E; :d& _ e cosd due to this Lie symmetry, and the equations are exactly inte-
dx Ux grable. The conditiodp=0 is equivalent to the conditon that
M2 uyo N N the total transverse momentum integral in the dHT frame is
i\ ~om (”e + M”p) +do) =0 zero.
B B We use the dHT frame fluid velocities in the transverse
E, :d”e Ll cosy momentum Eg. ) whereasDubinin et al. (2003 use the
dx Uy travelling wave frame velocities. THaubinin et al.(2003
M2 u Egs. (57) are equivalent to Ed)(in the special case where
. Ae¥x0 _ _ %
—1 W(ue +[lelp>+(so :0,
8o = i Sind (1 - Mﬁuxo) LWl =0, j=ep (1)
dul  u} cosd
E3 “dx +1 ity andu,p=1. Note thatsp=0 is satisfied for the case of par-
) 2 allel propagationq=0) and foru;"yozuﬁyozo. Webb et al.
_F M3 uxo (ujL + lm+) +60) =0, (20059, studied this integrable case, and obtained compact
w\ coso ‘ b travelling waves, whistler oscillitons and periodic travelling
du;, u, coSf wave _solu_tionzs. 1940 _then the equations are integrable if
Eq =~ i so=01i.e., if M5=1/u,oin Eq. (11). More generallyjo may
* ZWX be expressed in the form:
M4 u
1| el (u; + W-) +85 | =o0. (6) )
u | cost P Mpeo .
S = T ioc0SH [ttey0 + Rt pyo + i (10 + it pz0 — b)]
where 12)
ujt =ujy*iuj;, j=e,p, (7) where
. ; 2
are the complex transverse velocities of the electrons ang _ #x0SInf cost _ (u + 1)tand 2 _ M0 (qq
protons. We note, for later reference, that: M2, M2uy, =~ A0 w2
2 2 _2 jy2
M2 = (1+ p)M2.sed = U (®) In Eg. (12 and Eq. 13 Mz y=usy/ Vs, IS the ele.c.tron,
A Ae V2co26’ Alfv én Mach number of the flow. Thus, the integrability con-

is the square of the total Alan Mach numbeM 4, based on

the total plasma density=m.n, + myn, = m.(1 + wn,
and the Alf\en phase velocitWs,=V4 cosd. In Eq. 6) ux

is the common, normalized-component of the velocity of
the proton and electron fluids and-efers to the normalized

position coordinate in the travelling wave frame (i.extof

Eq.2). The parametes in the above equations is given by:

M2
5 — Ae P(d)
0 cosy
2

Mie (pw) | .
= — @(P‘l’w +1Mx0(1+ﬂ)tan9 .

Wherer(Ld)zP;d) +iP“ is the total, complex, transverse,
momentum integral in the dHT frame. It may be expressed

in the form:

M?
_ Ae w w
do= cosp 10 (MeyO + Wpyo)

: coté
+ i sing [1 — uyoM3 (1 +

Nonlin. Processes Geophys., 15, 1208 2008

9)

1 (u;‘;o + ,uugzo)>:| .

(10)

dition §o=0 requires:

Ueyo + pitpyo =0, and wuez0+ pup0 =b. (14)

The expression Eq.1@) for &p is the same as that in
Eqg. ). The conditions Eq.14), which are equivalent to
30=0, can be solved for the transverse electron fluid veloc-
ity (0, uey0, uez0) in terms of the transverse proton velocity
(0, u pyo, upz0) and vice-versa. Conditions Ed.4) are cen-
tral to the study of the integrable travelling wave solutions
studied in this paper.

The total transverse momentum equations for the electrons
and the protons can be solved for the complex transverse
magnetic fieldB™=(B, + i B;)/Bo in the wave as:

2

M
Bt = cog; UxQ (uj + ,uu',f) + do,

(15)

where theu/* (j=e, p) are the fluid velocities in the de Hoff-
man Teller frame (cf7).

Dubinin et al.(2003 assumed that¥=[u’"| (j=e, p)
vanish andB— Bg(cos8, 0, sirg)! asx — —oo. The bound-
ary conditionsulj‘.’—>0 correspond to the boundary conditions

ujz|ujf:|—> tand as|x|— oo in the dHT frame.

www.nonlin-processes-geophys.net/15/179/2008/
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The longitudinal momentum equation for the system mayu;?:uj exp(xi¢;), j=e, p. The equations may be written in

be written in the form\(Vebb et al.2007%): the form:
w) _ _ pw) 2
P =P+ Py= Py (16) % =—Ai/§;xouu,, sing — Re[idoexp(—ig)].  (23)
where doe _ M%euxo it p cost
puZ + pe + pp B? dx  cosh (1+u—ecos¢)+ Uy

P = — B= 55 17)

poU ZHopol — uilm [i60exp(—ige)] . (24)

e

are the normalized fluid dynamical and magnetic pressure

contributions repectively to the total longitudinal momentum dﬂ Mf;euxo

, 1_ .. :
flux, p=(m. + m,)n is the total plasma and, in Eq. (17) dx _ pcosh e SING + ;Re[zSo exp(—igy)] (25)

is the non-normalized longitudinal flow speed of the electron M2 u

. . » 4eUx0 Ue cosh
and proton fluids. HereP and Pg can be expressed in the —— = 1+ cosg | —
f . dx cosf it p AUy
orm: 1

. ) . 1 ﬁ;yg Mﬁ;yﬂ + MTIm [l80 eXp(—i¢p)] . (26)
P(ux) =ux0 Uy + 1 2 2 ) (18) P
m+ VeMeo VPMpO

) From Eqgs. 23-26) we obtain auxiliary equations fgr=¢, —

2 2 T_ .
u M R R ¢. andop=¢, + ¢, as:
Py = x0 . Ae0 (u: + Mu;) +o| . (19 e p T Pe
2( + l)MAeO cosf 2
do Moy, (e, 1) o,
where dx cosh wip U,
; ut 2 2 _ (u+ 1) coso
ﬁx :M_x(_)’ ﬁ:/t:u_jv MJZOZC_)Zcos MKGO:VLZO7 Hux
. . jo Ae exp(—i exp(—i
20 im [i&)( —idp) n p( ¢e)>] ’ 27)
“p Ue
(j=e, p) are the normalized fluid velocities and Mach num- @ zMﬁeuxo e  juidp cosp + (u — 1) cosd
bers based on the longitudinal flow spegd at x=xp. Note dx cosd nu p Ue Uy
that exp(—i exp(—i
2 _ 2 22 2 _ 2 a2 Uj +1Im [i80< At 2 ”M)} . (29)
MJO:uxoM], MA]OZMXOMAJ’ ul:u_o’ j=€,p. Mup Ue
X

(1) 3 Variational and Hamiltonian formulation

The Mach number3/;o and M4 o based o, are more

physically relevant than the Mach numbes; and M., In this section we provide a brief synopsis of the first vari-

based on the travelling wave spe&d However, both nor- af[ional principle of paper | and the corresponding Hamilto-
malizations are useful in describing the system. Using theMan formulation of the transverse momentum Eqsidr the

normalized variables Ec2(), the energy integral for the sys- electron and proton fluids. These results are used in Sects. 4
tem may be written in the form: and 5 to investigate the class of integrable waves 8¢0.

The transverse momentum equations for the electron and

1 ﬁi_ye Mﬁi_y" proton fluids Eq.§) can be combined to give the equation:
o =] 30+ D2+ >+ .
2 (Ve — 1)Mgo (Vp - 1)Mp0 d 2 2 _ _
L L E(ue — uus,) = 2Im[8o(u, + pu )l (29)
~2 2 52
= - = Hv = ¢p, 22 ) ) _
*3 (Me + Mu”) D HT} £ (22) Thus, if8o=0, we obtain the integral:
where Vyr=U tand /u.o is the normalized transformation R = u? — Mzuf, = const (30)
speed between the travelling wave frame and the de-Hoffman. | ) .
Teller frame. The integral Eq. 30) was also derived byubinin et al.

(2003, McKenzie et al.(20049 and Webb et al.(2005
2.1 Amplitude and phase equations for the case of parallel propagating waves foe0 and
u“’yozu%ozo asxo— —oo. The integral Eq.30) also ap-
In this section, we list the amplitude and phase form of thep(ies for oblique, travelling waves witbh=0. The integral
transverse electron and proton momentum By i which Eq. B0) is related to invariance of the transverse momentum

www.nonlin-processes-geophys.net/15/179/2008/ Nonlin. Processes Geophys., 253170068



184 G. M. Webb et al.: Integrable, oblique travelling waves in two-fluid plasmas

equations and the travelling wave system under rotation ofComment: The LagrangianC in Eq. (34) is equivalent to
the y andz components of the transverse fields. We showthe LagrangianC’ (meaning it has the same Euler-Lagrange
in Sect. 4.1 how this Lie symmetry and the space transla-equations) given by:

tion symmetry allows a reduction of the system fige=0

toa completely integrable system_in Whi_ch the Hamiltonian . _; (MzupV X Up — UV X U,
dynamics takes place on a two-dimensional reduced phase

space (it turns out that th&=0 condition restricts the dy-

namics to a particular contour of the Hamiltonian in the 2D

phase space).
Using the total energy integral Eq23) to compute

(35)
2(u + 1) cosh

Uxo

(= 28)))

The Lagrangiang& and£’ differ by a perfect derivative. The

3Mx/3uf (j=e, p), and using the transverse momentum | agrangian Eq.35) consists of three terms representing con-
Egs. 6) we obtain the longitudinal structure equation (see tributions from the proton fluid helicity:?u,-V x u,, the

paper I):
du, _ Uy
dx —  (u+DwZ—c)
M3, uxo(1+ 1)
Aex . — —
(ecTueup sing + Im[do(u, — up)]>,
(31)
where
Al—v, -
622 M)%O Uy v T My " _ YeDPe + YpPp (32)
fon+1\ M7 MIZ)0 (me +mp)nU?’

Note thatc, is a normalized version of the sound speed for
the combined electron-proton fluid. When the numerator andqz, p1) = ) u,
denominator in Eq.31) are simultaneously zero defines the

sonic critical point(s) of the flow. The locug =c, in general
defines values ofi, wheredu,/dx— oo and is related to
shock formation phenomena.

Below we describe the variational and Hamiltonian for-

electron helicity—u,-V x u,, and the longitudinal momen-
tum flux integralP)ﬁ“’). It is assumed in Eq.3Q)-Eq. 35
that the energy integrak=¢( acts a constraint on the dynam-
ics. One can also write down a Lagrangi&h equivalent to
Eq. 35), by using the generalized helicities of each species
(see paper I, Appendix C).
Proposition 3.2

The transverse electron and proton momentum Egjs. (
can be expressed in the Hamiltonian form:

where
). (q2.p2) = (), —pPuy),  (37)
are the canonical coordinates and
_ _Zurlcosh J;t) c0s0 (P —P)). (38)

mulations of the transverse electron and proton momentunT hus, the Hamiltonian Eq3) is equivalent, modulo a trivial
Egs. 6) obtained in paper |, which are used in the analysis ofscaling constant of-2i (. + 1) cost /u.o to the total, longi-

the integrable solution$d=0) in Sects. 4 and 5.
Proposition 3.1

The transverse electron and proton momentum Egjs. (
can be obtained by extremizing the action:

o
A:/ Ldx,
—00

with respect tar;” andu’;, where the Lagrangian density
is given by:

(33)

dut dul  2i 1) cosd
_Me_zu_ p+l(M+)

L=u dx P dx

(P& - P).

(34)

Ux0

subject to the constraint that the energy integral E@):(
e=¢gq Is satisfied. In other Wordaxzux(uf) is an implicit
function of theujE (j=e, p) given by solving the energy in-
tegral Eq. 22) for u, in terms of theujt.

Nonlin. Processes Geophys., 15, 1208 2008

tudinal momentum fluféw) (note that the momentum flux
constantP)fg”) is not essential). Here thecomponent of the
fluid velocity u, is given implicitly by solving the energy in-
tegral Eq. 22) for u,=u, (u7) in terms of theu™ (j=e, p).
The result Eg. 38) is reminiscent of the work oBridges
(1992, who showed that the spatial Hamiltonian for nonlin-
ear travelling water waves is themomentum flux integral.

4 Poisson brackets and integrable dynamics

In this section, we discuss the role of Poisson brackets in
reducing the Hamiltonian system EQ6}—Eq. 38) govern-

ing the transverse electron and proton dynamics (i.e. &qgs.

in the non-integrable and integrable cases. In the integrable
cases (i.e3p=0), there is a reduction of the phase space
possible from a four dimensional phase space to a two di-
mensional phase space, which is associated with the two Lie
symmetriesX; (x-translation symmetry) an#l, (rotational
symmetry) (see paper I). The fourth order Hamiltonian sys-
tem Eq. 6) for 80=0 has two Lie symmetries and hence
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is completely integrable by Darboux’s theorem (eldver, is the Poisson bracket for functionals. In this formulation
1993. The conditionsp=0 in fact forces the dynamics to be ~
restricted to a single Hamiltonian contour in ttge w) phase p;(x) :/ P8 (x' —x) dx',
plane, wherev=u; and¢=¢,—o.. —o0

Using the amplitude and phase form of the complex trans- =~ (> | , ,
verse velocitiesujizuj exp(xi¢;) (j=e, p), the Hamilto- q;(x) = Ooqf (8 (v —x) dx, (44)
nian density Eq.38) may be written in the form:

define the functionalg; (x) andg; (x). From Eq. 44

2i 1) cost
H = _2i(u+ Dcosy (p(,;x) 1 Pg — px(g’)) i (39)
Uxo 8pj(x) =58 (x 8q,(x) s ’
~—— =k (x —x), - _8k8(x —x),(45)
where 8pr(x’) 8qr(x")
M2 wheres j. is the Kronecker-delta symbol addx'—x) is the
Pg =ﬁ (uf + ,uzulz, + 2uu pu, COS¢) Dirac-delta distribution.
® o Using the definition Eq.43) for the Poisson bracket in
21802 d SH d SH
_ Uaol%l” — e _ 21 gng EPE_ 27 (46)
2(u + DMy, dx 1y dx 3qk

and P (ii,) is the fluid dynamical momentum flux given by N the present example, 6H/spy=90H/dp; and
Eq. (18). In the general caseio0, the Hamiltonian den- 0#/3qx=0H/dqx, and hence Eq.46) are equivalent
sity Eq. B9) can be written in terms of the four variables t0 the classical Hamiltonian Eo@).

(ue,up,qb,a;) where ¢p=¢,—¢. and ¢3=¢p+¢e [note that The_ Poissgn bracket Eq43), written in terms of the
¢p=(+$)/2 andgp.=($—¢)/2]. Thex-component of the canonical variables Eq37) reduces to:

fluid velocity u,=u, (u., u,) can be determined by solving

; ; o 0F 6G oF 486G
the energy integral Eq2@) for u, in terms ofu, andu,. (F,G} = il
In the integrable caséo=0, the Hamiltonian density —oolL\Oug Sug  Sug Suf
Eq. 39) depends only orfu,, u,, ¢). However, by using 1 [ 8F §G SF 8G (47)
i ; 22,2 ; i Nl Pl N 2
the rotational integraR=u;—uu%, H may be written in W2\ 5ud 5w, su sul }

the form H:?—Y(qﬁ, w) whereg=¢,—¢. and w:uf are the

canonical variables in a reduced phase space. _ The Poisson bracket E47) can be transformed into a va-
In Sect. 4.1, we show how the phase space shrinks fromiety of different forms, by changing the physical variables
a four dimensional phase space to a two dimensional phasgseq in the Poisson bracket. This is useful in describing

space in the integrable cases, by using appropriate transfofne reguced Hamiltonian dynamics associated with the in-
mations of the phase space variables describing the Poissqggraple cases whesg=0, where a reduction in the number
tions in the integrable cases wh&g=0. use the amplitude and phase form of the transverse fluid ve-
locities u;!::l/tj exp(xi¢;), (j=e, p). Using the variational

4.1 Poisson brackets and variable transformations derivative transformations:

Hamilton’s Eqgs. 86-37) can be written in the Poisson §p 1 . SF i §F 48
: — =_—ex N —F ——
bracket form: e P(Fig;) (8 . F “ 8¢j>’ (48)
dqr dpk J
Ty " lae HY, = Ape HY (41)  the Poisson bracket Eg#7) becomes:
Here 1 1 /6F 6G oF 6G
{F,G} =5 [ |— -
o0 2i Ue \O¢e SU,  Sutp 8¢,
H = / dx H, (42) (49)
—00

1 O0F 6G O0F 686G

" 2 \6g, 5w, suy 50, ) |9
nw

is the Hamiltonian functional and P P pere

Similarly, using the variables:

o 2
8F 8G  8F 8G
{F,G}zf > (—————) dx, (43) - 2 .
—o0 f=1 \8qk Spx  Spi dqk p=¢p+de, d=¢p—¢., xj=uj, j=e p, (50)
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and the variational derivative transformations

oF oF SF SF OF
— =2 —, —=—+—,
514]' ’ ‘SXj 8¢p 8¢ 8¢
8F 6F OF )
= " . J=éDp, (51)
S¢S S

the bracket Eq.49) transforms to the form:

(F.G) ,/w{aF<aG+ 1BG>
5 =1 _ — —_—
ol 80 \Sxe  128xp

5G(8F " 1 (SF)
8¢ \Sxe  u?d8xp
(52)
[BF (5G 1 8G)
8 \8xe u28xyp
3G <8F 1 §F )“
- — (=-S5 |4~
8¢ \Oxe u“dxp
Introducing the variables:
Xt = Xe = 12X, (53)

to replacey, and x, (note thaty_=u2—u2u2=R=const
is the rotational integral of Eq6) if §o=0), and using the
transformations:

oF oF SF oF oF SF
=—+— —= 2(———), (54)
Sxe Sx+  Ox-  Sxp Sx+ Ox-

the bracket Eq.52) reduces to the canonical form:

© (§F §G OF G
{F,G}:2i/ <—————

oo \8X_ 86 b Sx—
o \0X— 6¢ 8¢ 0X (55)
§F 5G oF 5G>
—_— e — —— .X7
8¢ x4+ Sx+ 8¢

which shows thatx_, ) and (¢, x4) are canonically con-
jugate coordinates.

Using the Poisson bracket E¢5) we obtain the alterna-
tive Hamiltonian formulation of Eq.36):

d¢ dHy dyy = 0Hz
dx  dxy dx 8¢’
dx- _ 9Hp ﬁ __0H (56)
dx ¢ dx — 9x_’
where
4 1) cosp
Hy = 2D O iy (57)

Ux0

is the Hamiltonian (i.eH,=2iH where we neglecP.}y’ in
Eq.39).

In the integrable case=uZ — p?u%=const, §x_=0,
and the bracket Eg56) reduces to the simplified form:

© (§F §G  8F 8G
{F, G}=2if < )dx.

= (58)
o\ 86 31y Sxs 30
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The result Eq.%8) is an example of Hamiltonian reduction
(e.g.Marsden and Ratjul994). It shows that the four di-
mensional phase space spanned jy, ¢) and (¢, x4) in

the integrable case reduces to a two dimensional submani-
fold governed by the variables and x., on which bothH
and x_ are constant. To make it more explicit, that the man-
ifold is two dimensional, we note that

o 2

G 1/6G
( (59)
‘SXe

1 5(;) 148G
u2dxp)  268x.
where G is the functional obtained by setting,=(x. —
X=)/12 in G(xe, xp> > ) Where y_=const (i.e. G is a
functional of x, and ¢, and¢ does not play a role in the
Hamiltonian dynamics). Using Eds9), the Poisson bracket
Eqg. (68) reduces to:

© §F §G  SF 8G
{F, G}:i/ (— - —)dx.
—0o \ 0 8xe Sxe 60

The bracket Eq.q0) describes the integrable dynamics on
the (¢, x.) phase space, where the functionaland G de-
pend ong andye,.

(60)

4.2 Integrable Casesp=0

In general, for a spatial Hamiltonian system, the evolution of
a physical variable) is given by the Poisson bracket equa-
tion Y, ={y, H}. Thus,w,={w, H} and¢,={¢, H} where
w:u§ = x.. Using the Poisson bracket E4Qj we obtain
Hamilton’s equations:

3 Ho M2,

dw 2 sing
— = ——— =2—"= _su,u ,
dx 9¢  “upcossPte

2
d—qj:@:M 2+ &4_& COS¢
dx ow  u,ypCOSH Ue it p
(u + 1) coso
My ,

(61)

(62)

for w and¢, whereHp=iH andH is the Hamiltonian density
for 50=0. If we omit the non-essential integration constant
(w)
Py’ then
M/i 0 2 22
e

Hozm (ue + nui, + 200t pite COS¢)

n 2(n + 1) coso

Ux0

(63)
P(iy).

Consider the longitudinal velocity structure E§1);

duy Mieouxueupsin¢ (64)
dx Ux0COSH (U2 — c2)’

We show below that the righthand side of EG4) can be
expressed solely as a function of, and hence can be in-
tegrated to givexr as a function oft,. The solution foru,
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as a function ofc is not necessarily a 1-1 function. For ex-
ample,u,, may become a double valued functionxoff the
solution passes through the sonic point wherec;. In this

case a shock must be inserted into the flow in order to obtain’~ — 2(u + 1) cost

a single valued weak solution.
Proposition 4.1

The longitudinal structure Eq64) may be reduced to the
separable form:

dﬂ - _U(IL + D)uro COSOux /R (uy)
dx 1z —c2)

. (65)

whereo =sgntan(¢/2). In particular, the integral of Eq66)
is of the form:

x=X(ux>=—/uX

where it is assumed that the integral in B8g)(is integrable.
The functionR () is defined by the equations:

2 = cAdu,

+const
o (i + Duyo COSOux /R (1)

(66)

R(uyx) = N(ux)D(uy), (67)
MZeo(tte + pit)?
N(u,) = —2e0 P2 _[H — P(iy)], 68
(uyx) 20 + 1) 020 [ (f1x)] (68)
M? (Ue — pu )2
D(uy) = H — P(ily) — —2e0°¢ P’ 69
(1) (i) 2(; + 1) coZ2 6 (69)
N
2 =tar? (%) = %, o = sgn(t), (70)
o (Rt2uénr o 2W(a) ’ 1)
¢ w(p+1) Yop+1
g2 _ 1 (2%ur —R _ 72— 2W (i) | (72)
Prop 0 w+1 n+1
where
A R
R=— = iig — i,
Uyvo
. £ &€ 1 A
EHr —# = —2 ot DVir, (73)
x0 X0

are the normalized rotational integral E§O) and the energy
integral in the dHT frame respectively. The explicit form for
R(uy) from Eqgs. 67-72) is:

2,uM£ u?
R — e0”x0 H _ P A
(ux) i1 1)co2d co§0[ (i1x)]
Autnr + A= WR o 2W(i) 74
2u(pn+1) ou+l
M4 u? R?
CH — PGP — Ae0?x0 ’
[ (it)] 4(u + 1)%2cod o
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where

2
M Ae0

2(u + 1) co2 o
(ug + M2u% + 2uupue COS¢> ,
(75)

H .
o =P +

is a renormalised version of the Hamiltonian integtfgland

~1—
U x ”

(Vp - 1)M§0 ’

Al—
0y Ve

W(iiy) = +
) (Ve — 1)M620

(76)

is the enthalpy contribution to the energy integral E29)(
P (i1, is the longitudinal, fluid dynamical-momentum flux
of the proton and electron fluids E4.8), andcs2 is the square
of the combined sound speed Eg2) which is a function of
Uy.

The value of cog throughout the wave from EQq79) is
given by

_ 2(u+1ycog OMpZolH — P(ii)] — u2 — p2u?

’

(77)

2uupu,

which can be written solely as a functionof.

Proof: The main idea behind the proof is to exprassu ,
and siny in thex-structure Eq.&4) in terms ofu,.. To derive
Eq. (71) and (72) for u.(uy) andu,(u,) we note that the
energy integral Eq.22) may be written in the form:

bur = (4 D2 W + 5 (24 i), (79
Simultaneously solving the first equation in Eq.3)( and
Eq. (78) for 4Z andii? gives Eq. 71) and Eq. 72).

To derive Eq. {0) for r = tan(¢/2), substitute the half an-
gle trignometric formula cog = (1—t2)/(1+ ) for cosp
in the Hamiltonian integral Eq76), and solve for2 in terms
of H and the other variables, to obtaif=N (uy)/D (i)

where N and D are given by Eq.8) and Eq. 69. A
straightforward calculation gives:

o (4 1) coS O/Nuy)D(uy)

2
Mot pte

2T

1+12

sing = (79)

Using the identity Eq.49) in the structure Eq.64) gives the
differential Eq. 65) in whichdu, /dx is a function ofu,.

In the integrable case, the differential equation fbr
Eqg. (28) reduces to:

Ue nu

— 1) cosf
”) cos¢ + (= Deosh
“up Ue

KUy

ﬁ _ Mgeouxo
dx ~ cosd
(80)
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The right-hand side of Eq.80) can be written solely in
terms ofu,. Thus,d¢/dux=d¢/dx/(d1~4x/dx)=F(ux) is
also a functionF (uy) of u,, and hencep= [ F(uy)du, is

also a function ofu,. The net upshot of the above analy-

sisis thate=X (uy), =0 (uy), ue=ue(ux), up=up,(uy) and
$=d(uy), and hence the system Ed) (for the integrable

case can be expressed in terms of integrals of functiong of

and in terms of ordinary functions of.. Note that the proton
and electron phases,=(¢ + ¢)/2 andg.=(¢—¢)/2 can be

expressed in terms @f and$. One can easily show that
and D are non-negative. This completes the proof.

5 Solution examples

G. M. Webb et al.: Integrable, oblique travelling waves in two-fluid plasmas

corresponding to zero, total transverse momentum fluxes for
the system in the dHT frame. Using E&6] (see Appendix

A), it follows, that the Hamiltonian integrall can only have
one value, namelyi1, where

tar? 6 Sinf e
Hy=u’y+ > = u?y |1 — . (87)
2M? 201+ HM2,

Thus, the system trajectories in phase space satisfy the equa-
tion
H(¢(x), wx)) = Hy, (88)

which essentially fixes the solutions to lie on a particular in-
variant torus. Put another way, the solution trajectories in

In this section we give numerical solution examples of phase space consist of the locus of phase space [ginis
obligue travelling waves for the integrable cases for whichsatisfyingH (¢, w)=H; (i.e. anHz contour level).

30=0. We concentrate on the cold plasma solutions. We give

In the present paper, we restrict our attention to the class

a discussion of the nature of the critical points for the hotof integrable solutions withy=0 satisfying the initial condi-
plasma case as well. For the integrable cases, the integrabilions:

ity condition 30=0, (i.e. Eq.14), is equivalent to setting the
total complex, transverse momentum flux in the dHT frame,
P}rd), equal to zero. A detailed discussion of the integrability

conditiondp=0 is given in Appendix A.
In general, the Hamiltonia® in the cold plasma, inte-
grable casép=0 has the form:

H=uyun+ A (uf + uzui + 2pupu, COS¢) , (81)
where
(u?q —u?)
ul =uly+ pudo —ud). uh=ubg+ %v (82)
2 2.2
_ MZgo5e¢0 _ M3, ©3)

S 2w+D) 2w+ D2

T ~
¢80=¢p0=57 $p0=0, ¢o=m
1) tané siné cosH
Ue0 + UUpo = ) = &0 =b. (89)
p 2 2
uxoMy Mpeo

A more general class of initial data wiifp#0, satisfying the
integrability conditionsp=0 is discussed in Appendix A.

In general, the class of solutions satisfying E8j/)(and
Eqg. 89) includes solutions for which the transverse, complex
velocitieSM%)Jrzu%)y —i-iu%)Z in the travelling wave frame
are non-zero. However, in the special case of B) for
which

MZuy0 =1,

¢$0=0,

u,0 = upo = tano,

$e0 = Ppo = % ¢o = 7. (90)

Alternatively, H can be written in terms of the canonical vari- e obtain an integrable class of solutions Satisfij"'zo

ablesw=u2 andg¢ in the form:

H =uyouy(w)

84
+ A (w + /Lzup(w)2 + Z/Lwl/zu,,(w) cosgb) , (84)
where
1/2
() = (22 — g+ w)
2 1/2
u —w

uy(w) = (“50 + (eoﬂ—)) . (85)

However, the integrability constraints EqG4j (i.e. §o=0) re-

at x=xg in the wave frame. These solutions have similar
boundary conditions to the oscilliton solutions investigated
by Dubinin et al.(2003, for which«'"’* =0 asxo— — oc.
For the initial data Eq.90), the Hamiltonian integral Eg. can
be written in the87) reduces to:
, 1
H1=Mx0+§1/lx0tar\29. (91)
We first discuss the critical points of the differential equa-
tion system Eq.§1) and Eq. 62) for w:uf and¢ governing
the Hamiltonian dynamics, as well as the related EG4) (

and B80) for du, /dx andd¢ /dx. We discuss the sonic points
and critical points for the hot plasma case, followed by a

quire that the initial transverse electron and proton fluid ve-more detailed discussion of the cold plasma case, which is

locities satisfy the Egs.

Uey0 + HUUpy0 = 0, wue0+ MU pz0 = b, (86)
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the main focus of the present paper. This is followed by
examples of the phase trajectories (i, w) phase space,
obtained by plotting the contours of the Hamiltonian in the
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phase plane. We discuss in detail the longitudinal structurdntroducing the state vector (Kat al. 2007, in preparation):
equation fordu, /dx, and how the solutions depend on the

roots of the cubic equatiom (i, )=0 determining the values  — ( u?, ¢, ¢) (99)
of u, for which du, /dx=0. Examples of the solutions for
different initial data are presented. Equations 92)—(93) and ©7)—(98) can be written in the
- . form:
5.1 Critical points
u? — 2
The basic differential equations governing the two-fluid trav- dW _ —ZMKeouzue;p sinb¢/(uxo cos) | _ N. (100)
elling waves consist of the Hamiltonian Eq61{62): an (ug _ cg)dqf/dx =N,
—co)do/d
dw _ dHy _ M3y . (i — )/
—— = = =220y, sing, (92) . . .
dx ¢ U0 COSH where N is the column vector on the right hand side of
d¢ dHo Eg. (L00). In the first equation in Eq100), dx /dA=(u%—c2)
dx  ow defines a convenient parameterlong the solution curves,
M2 which enables one to pass through the sonic point, without
Ae0 Hup u . o . . 0
= + + cos¢ encountering an infinite derivative during numerical integra-
U0 COSH Ue U p . Py . .
tion. The critical points of the system E4.QQ) are points at
_M, (93)  Wwhich the components of the column vectbare simultane-
ity ously zero. This is the approach used by&al. (2007) in a
2 study of the integrable, travelling waves in the above model
wherew=ug, of hot electron and proton plasmas wjih # 0 andp,, # O.
AW In the present paper, we restrict our attention to
Ug =Ugo T 1 (“xo — Uy — m) ) (94) cold electron-proton plasmas, in which the entropy

W (u)=W (ux0)=0 and henceAW=0 in Eqgs. 84-95). In
42— “io n 1 <“)2co —u? - 2A_W> , (95)  this case, there is a one-to-one relation betwegandu?.
M In the cold plasma limit, the sound speaedg—0 and the
, 1 i+1 tang sonic Mach numbersf ;o— oo (j=e, p), and the flow is su-
Ugg = 15 | Uy + <upzo - — ) , (96) personic throughout. The critical points in this case, are sim-

2
K uxoMj ply the points in(¢, w) phase space where
and W (u,) is the combined enthalpy of the electron-proton dw _0Ho d¢  9Hp
plasma, given by Eq76), andAW=W (u,) — W (u,0). Note 4, — kY3 =0 and dx  dw 0. (101)
that for the integrable casi=0, anduf0 can be expressed
in terms ofu ,,0 andu ;0 as in Eq. 96). We note

For hot plasmas, wittA W (u,) a non-trivial function of

uy, u? and u? consist of a single hump-like function o

uy, that have maxima at the sonic point where=c2 and  (i). d¢/dx = 0 when the right hand side 0®9) is zero.
¢; is the combined electron and proton sound speed give
by Eq. 32). Thus, for a given value ofu u?, there are
in general two values of one Wlthu <c and one with

f (). dw/dx =0when¢ =0, £ oru, =00ru, =0,

r&:onsider the possibility of a critical point on the lige=0,
for whichdw /dx=0. For¢$=0,

u2>02 Hence, there is a subsonic solution branch of the ) 5

Hamlltonlan Hg with u, <c, and a supersonic brandiy, d¢ _ Mjux0COS0 (ue + pup)” (n+1)cosd Fuy),

with u, >c;, in wh|ch the sonic liner,=c, separates the two dx 1+pu HUpUe J1a7

branches. (102)
It is useful to supplement the Hamiltonian Eq82493)

with equations foeu, /dx andd¢/dx (Egs. 64and80) ): where f (uy) is the function ofu, obtained by using the so-

lutions Eq. 84) and Eq. 95) for uZ andu?. Note thatu,>0

duy Mﬁeouxueup sing 97) andu,>0 are required for physical solutions fey andu,,.
dx  uxpCoS9(u2 —c2)’ From Eq. 04)
z 2 2_,2
Z_¢ =M§8g;m (”e M ”p) cosg uf =0 when u)zc = ”)ch = u)zco—i—ufo/u. (103)
X MU pite
Similarly from Eq. :
it us =0 when u?=u2, =ul+ uus, (104)
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From Egs. 103-104):

2 2 MSO B /1’2”?70 R
Uy —Uyp=—" — =,
iz iz
where R is the rotational integral. In gener& can
be positive or negative. For the conditions E®QO)(
R=(1—p?) tarf <0 andu,2>u,1.
Proposition 5.1
There is a critical point on the ling=0 in the (¢, u,)
plane atu,=u,. where O<u . <it;,, up=mMin(uy1, uy2), and
uy1 anduyo refer to the values ofi, for which u,=0 and
u,=0 respectively (nota,, >u,o). Furthermore, the critical
point is a centre.
Proof: The proof follows by noting that

(105)

df  MZuyoCc089u,R?> (1 + 1)cosh
- >
du, 2(n + Dptudu’ 2

0, (106)
Mux
and by noting thaf (i, ) — — oo asu,—0 andf (i, ) — oo as
u—u,. The proof that¢, u,)=(0, u,.) is a centre critical
point is given in Appendix B.

Comment:

The exact location of the centre critical point in Proposition
5.1 depends on the value of the parameters. For example, if

ueo=upo=tand andM3uo=1 as in Eq. 90) then

(u + 1) coso
MUx0

Sfuxo) = (uxo— 1. (107)
Thus, ifuyo>1 (i.e. for a sub-Alfenic travelling wave with
M 4 <1) thenu, . <u,o. However, for a super-Alfenic travel-
ling wave withM 4 >1 andu o<1, uy.>u.o. For an Alfvénic
wave withM =1 andu,o=1, thenu,.=1.
Proposition 5.2

There are no critical points along the lings- 4+ 7 in the
(¢, w) phase plane.
Proof: For ¢= + 7, dw/dx=0 in Eq. 02). Also from
Eq. ©3) on the linesp= + =:

d_¢ - _ (Mgeo(“e - lmp)2 (u + 1) coso

Ky

dx U0 COSH

) <0. (108)

Henced¢/dx+#0 along¢p= + 7, and there are no critical
points alongp= + . This completes the proof.

5.1.1 Non-standard critical points and separatrices

The critical point(¢1, w1)=(0, u2)) in Proposition 5.1 is a
centre critical point. Inspection of Eq€923) and ©3) for
dw/dx andd¢/dx reveals that points wher¢— + 7/2
and eitheru,—0 or u,—0 may behave like critical points
if approached from a specific direction in tlg, w) phase

G. M. Webb et al.: Integrable, oblique travelling waves in two-fluid plasmas

of the (¢p2, w2)=(—m/2, 0) and at(¢3, w3)=(r/2, 0) in the

(¢, w) plane. We restrict our attention to the critical points
(¢, w)y=(£m/2, 0) (it is straightforward to carry out a simi-

lar analysis for the points for whiap=+ /2 andu ,=0). It
turns out that the Hamiltonian contours passing through these
“critical points” act as separatrices in thg, w) phase space,
separating those solutions which are boundetiftom those
which are not. Discussion of the conditions for separatri-
ces to appear in the phase space, associated with these crit-
ical points are given in Appendix C. Note that as—0,
dw/dx—0 near these points. However, the behaviour of
d¢/dx in Eq. 93) is strongly dependent on the direction
of approach at these points, and depends on the limit of the
ratio of uu, cosg/u. as both cog—0 andu,—0 simulta-
neously. Using the perturbation expansipa—rm/2 + asu,
whereu,<<1, one finds thafw/dx— 0 and andl¢ /dx—0

as one approachég,, wo) along the ray

8 +1)?%-2 M2
_(b =y = [(n 2) M”xczz( A“xO)] ’ (109)
Sue 12 uch”ch(MAuxO)
where

1/2

2.2 2
) ) 1/2 (ﬂ Upo — ”eo>
Uxc2 = (uxO + Meo/,u) y  Upc2 = s
W
(110)

However, along the ragu,.=0, §¢#0 andd¢/dx is un-
bounded. Hence in general, the solution trajectories skirt
around(¢2, wo) except along the ray Eq1Q9. Similarly,
for (¢3, w3)=(7/2,0), d¢/dx—0 anddw /dx— 0 along the
ray ¢=m/2—azu, (i.e. ¢/3u.=—a2). The above results
Egs. L09-110 apply to the case of a cold plasma (similar
behaviour applies for a hot plasma), and it is assumed that
the rotational integrak <O.
Proposition 5.3

The separatrix passing througlp, w)=(+mr/2, 0) for
cold plasma solutions, satisfying the integrability constraints
Eq. @9) also passes through the poirs, w)=(0, 0) and
(¢, w)=(0, u%) where

2(n 4+ Duyotand
UeQ =

T (n+D2/u —tarte’ (111)

The proof is given in Appendix C. Note thafo + uu ,0 = b,
u.0>0 andu ,0>0 must also be satisfied (see Appendix C for
details).

Comment:

It is also possible to have a separatrix passing through the
points¢= =+ /2 andu ,=0. The conditions for this to apply
are discussed in Appendix C.

space. These points are not standard critical points, sinc@roposition 5.4

the behaviour o/w/dx andd¢/dx near these points di-

The condition for the centre critical point

verges if the points are approached from other directions. Be¢¢1, w1)=(0, w1) to be a stationary point of the differ-
low we discuss the behaviour of the solutions in the vicinity ential equation system Eq9Z-93) is thatd¢/dx=0 and

Nonlin. Processes Geophys., 15, 1208 2008
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dw/dx=0 simultaneously at the initial poiti¢o, ufo) where
¢o = 0 andu,=u,q. This condition is satisfied if

tarf 9 = Miupougo. (112)

Proposition 5.5

The conditions Eg.89) for an integrable solution and the
condition Eq. 112) for (¢1, w1)=(0, w1) to be a stationary
critical point may be written in the form:

U0 Siné cosd
oo + putpo = T = b, (113)
MAeO
2 &ir?
JusaSinco
HUeOU p0 = 20 (114)

(L +DHMZ,

Equations {13-114) are satisfied simultaneously:ifo sat-
isfies the quadratic equation:

sind cosy Sirt o
30_ £a0 2 = 2 “fo =0. (115)
Mpeo (n+DMpyeo

From Egs. {13-114) we obtain:

D=u

Ue0

L uxoSind coss
o= —— o (1£/51), (116)
¢ 2A/IAeO ( )
+ 0 Sin@ cosH
e = = (1 Vo). (117)
AeO
as the solutions fat.o andu 0, where
=1 — a2 ce@e (118)
P o e
Comment: 1

The conditions for the stationary point for integrable solu-
tions in Proposition 5.5 requirey >0. This condition re-
quires that

1 1

Magpsedd <= | = (119)
2\ n

Comment: 2

191

From Eq. 20, we obtain the equations:

R+ b* b*—R
2’ 2b

for u.0 anduu ,0. Because, we requitgo>0 andu ,0>0 for

a physical solution, then the rotational integkain Eq. (121)
must lie in the range:

UeQ = HUpo = (121)

—b? <R < b? (122)

The separatrix solutions associated with=0 anduu ,0=0
(Appendix C) correspond tR=—b? andR=b? respectively.
Using Eqg. (21 for u.o in the expression Eq.1(5 for
D(u.0) we obtain:
R? — b1
D=—-—,
4p?

whereé; is given by Eq. {18. The result Eq.123) shows
the important role played by the rotational integfaland
MpeoSed (i.e. 51) in determining the roots aR (u,) in the
longitudinal structure Eq66) for du, /dx in the cold plasma
limit.

(123)

5.2 Hamiltonian contours

In this section we give examples of the Hamiltonian trajecto-
ries in the(¢, w) phase space, for the integrable cold plasma
solution cases satisfying one of the initial conditions B§) (
or Eq. ©0). The integrability constraints Eq86) force the
system trajectories to lie on a specific Hamiltonian contour,
H=H,, where H; depends on the initial data. We plot the
system trajectories in phase space (the contdiitsHq),
for a family of different Hamiltonian functions Eq84) ob-
tained by varying a particular parameter in the Hamiltonian
H (e.g.uxo) whilst keeping the other parameters fixed.
Figure 1 shows a family of contoufg=H in the (¢, w)
phase-plane, for a cold plasma satisfying the initial con-
ditons Eq. 00), i.e., M2u,o=1, u.o=u,0=tand, where
6=60°. For this initial data, the transverse velocities of the
electrons and protons are zerocatxg in the travelling wave
frame, which is similar to the boundary conditions used by

It turns out that the integrable solutions of the system of dif- pypinin et al.(2003. The figure shows the effect of varying

ferential Eqs.92-98) for the cold plasma case, can be classi-
fied in terms of whetheb >0, D<0 or D=0, and on whether
81>0, §1<0 or 81=0, whereD is given by Eq. {15 andé;
by Eq. @L17). The conditionD=0 is in fact a condition for
the functionR (u,) in the longitudinal structure Eq65) for
du, /dx to have a double zerp,=u,q in the cold plasma
case.

Comment: 3

It is instructive to write the functioD (u.0) in Eq. (L15) in
terms of the rotational integra. Taking into account the
integrability constraint Eq.89) for ¢p=0, we obtain the two
equations:

o+ pupo =b, R =uly— pu’ud,. (120)

www.nonlin-processes-geophys.net/15/179/2008/

the longitudinal flow speed,o from u,0=0.0001 in steps of

0.1 up tou,0=2.0. Theu,0=0.0001 curve is the nearly hor-
izontal curve passing through=3. The parameteit g in-
creases moving clockwise and downwards across the curves
on the right hand side of the figure,=0.1(0.1)0.4) until

one encounters the separatrix.~0.5), which is the con-
tour with the cusps alg, w) = (£n/2, 0). For the separa-
trix,

ueo [(n +?/u — tarf 6]
2(n + 1) tand

(124)

Ux0 =

(see Appendix C). Setting.o=tand=+/3 and x=1836 in
Eq. (129 givesu,0=0.49970.5, for the value ofu,q for
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006 F T T T T T s
1of 005F
004F
= 003F

0.02 -

0.01r

0.00 b= . : T : . —-

Fig. 2. Hj-level Hamiltonian contours generated by vary-
ing uyo from 0.02 to Q4 in steps of M2. The value of
u.,0 was fixed by evaluating the condition for a separatrix
p0=2u,0(u+1) tand/[(u+1)2/u— tar? 0] for the particular case

of u,0=0.1. In other words the bell-shaped separatrix-like contour
(bold curve) corresponds to the cagg=0.1. The horizontal con-
tour corresponds to a value ofg equal to 00001. Other parame-
ters aref=30°, M 4,=0.45

Fig. 1. H1-level Hamiltonian contours fo#=60° andM%uxO:l.
In this case u,o=upo=tand while u,o takes the values
u,0=0.0001, 01(0.1)2.0. (and henceM 4 varies). The horizontal
contour corresponds toig.q value of Q0001.The separatrix (bold
curve) is the contour correspondingitgy=0.5.

the separatrix. The curves in<3: u,0=0.6(0.1)1.0 for in-
creasingu,o correspond to a sequence of closed orbits of
decreasing area that converge onto the centre critical poi
(¢, w)=(0,3) for u,0=1. Note that all the orbits pass
through the same initial poinfp, w)=(0, 3) in the phase
plane. The contour for,o=1 consists of a single isolated
point (¢o, wo)=(0, 3). It is an isolated, centre critical point
of H. The curves inw>3 correspond ta,0=1.1(0.1)2.0,

in whichu, o increases monotonically moving outward from
¢=0 in both directions. The tops of the curves are not
shown. They consist of a sequence of closed ellipsoida

2??5:15&2’;?;2 tvr\]/ihr?gggig’ Whergetzzutgg‘;nzc;st [iollnts the upper half plane >0.014) or (ii) the trajectories stretch
n8o. AHX0= from ¢=— 7 to ¢p=m and wrap around the cylinder in a con-

the Alfvén Mach number of the travelling waves decreases.. . )
: : tinuous, periodic fashion aschanges.
asu,g increases. Thus, the largest valueMyf is the curve

1,0=0.0001 for which7,=100 and the smallest value of  Th® above two examples of Hamioman tajectories
M, is M4=0.7071 obtained when,o=2.0. H(¢(x), w(x))=Hy in the (¢, w) phase plane illustrate

Figure 2 shows phase space trajectofi®, w)=Hy for phase trajectories in cases where there is a separatrix. How-
0=30°, Maeo=0.45, 1=1836 in whichu,o is: changed in ever, the existence of a separatrix depends on whether condi-
- 1 — Y. 1 - X

tions Egs. C5andC6) in Appendix C are satisfied.

n{'hese contours are boundeddn(i.e. |¢|<¢,, <7 /2 where

¢ IS the maximum value op). The contours in the up-
per plane in the region>0.014 are closed curves with.g
increasing moving upward and outward away from the criti-
cal point ¢,0=0.4 is the outermost curve iw>0.014). If
one imagines the phase space trajecto¢ies), w(x)) as
wrapped around the surface of a cylinder, wherés the
razimuthal angle, then the solutions are either: (i) bounded
In |¢| <o, <7 (i.e. the contours inside the separatrix, and in

steps of 0.02 from¢,0=0.0001 tou,0=0.4. The value of

u.o is fixed by the equation: o .
5.3 The longitudinal structure equation foy

_ 2uxoo(n + 1) tand
T (4 1)2/u —tare’

Ue0 (125) There are further constraints imposed on the travelling wave

solutions that are related to the longitudinal structure &9).
whereu00=0.1. the curver,0=0.1 corresponds to the sep- describing the dependence:nf on x, which in present case
aratrix solution and: o is chosen to satisfy the integrability reduces to:
constraints Eq.§9). Note thatu ,07u.g in this example (in
Fig. 1, u.0=upo=tand). In the lower planey<0.014), the duy  o(u~+ DuyxoCosH/R(uy)
contours split into two families. The family with,<0.1 dx Wity ’
lies outside the separatrix, with the near horizontal curve
corresponding tar,0=0.0001, and«,o increases monoton- whereR (u,) is given by Eq. {4) but with P=uou,, H=H1,
ically moving downward across the curves until the separa-andAW=0, namely:
trix u,0=0.1 is obtained. Inside the separattiy, the closed
loop contours decrease in size with increasing until the 2 (M2 uo)u?
centre critical point solution is reached for whighy=0.2. R(ux) = W(”X —uz0) (U + Bux + ), (127)

(126)
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where only if each of the two squares are zero. Thus, the condition
) A=0is satisfied if
(k+1 i
B=— tarf 6 + — |, (128) _ _ b _ uxosing cost
2M3u o w UeO = iUp0 = 5 = —ZMﬁeo , (133)
2 o ((n+1)? +1 tar? 0
y=—uly+ ~tarf ¢ M2 se@o = (12 : 134
X ZMiuxO ( I Ae0 4,bL (/J/ + 1)2 ( )
uZy + n2u? (w+12 tarko " - -
S Y ro) ) (129)  The conditions Egs.133-134) coupled with the solutions
2u 210 (M3uy0)? Eq. (L31) for u imply
Alternatively, R can be written in the form: sir 6 H
Y, R () uy=u_=ug 1+ —r— ) =L (135)
2(n + 1)MAeO Ux0
ZM(ME\M)CO)MEO
R(ux) = W(”x — ux0) Uy —u—)(ux —u+), where H; is the Hamiltonian integral Eq8{). This solu-
(130) tion case corresponds to an oscilliton solution, with zero ro-
tational integralR=u? — 2u3=0.
where the equations: Case (i) S
Equations {32 for a double root are also satisfied if:
(n+1)? D
4Mf\uxo ( " uvo+ Buxo+y p 0, (136)
2
1 1)? where
A= |:ux0 S <(“ + 1 —tar?@)]
AMuxo 1 b tar? 6 u?ysir? 6
=U| —5 —UQUPO | = U | 5 — UeOUpO
| (ueo = puy0)® (131) m; n+DMZ "
4u ’ . .
siné cost Sirf o
= ”30 - uxofueo + M—zufo (137)
give the roots:. of the quadratic equatiarf + fu, +y = 0. Mieo (1 +1D)Mieo

Thus, in this case, the condition f&(u,) to have a double
root, D=0, is equivalent to the condition that the integrable
solution has a stationary critical point (see Proposition 5.5).
Proposition 5.7

The rootsu,=u. of R(uy) in Eq. 131) may be expressed

5.3.1 RootsoR(u,) =0

In the case u.o=pupo, the rotational integral
R:ufo—uzuf,ozo, A in Eq. (13) is a perfect square,
and the roots:+ of R(u,)=0 have a simple algebraic form.

The analysis of this class of solutions wii=0 is carried in the form:
outin Appendix D, where we show the connection between w2 £ (w2 — u?p)? + Dufo/u]l/z
these solutions and the Hamiltonian for parallel propagating:+ = » , (138)
nonlinear whistler waves investigated Webb et al(2005. x0
More general solutions of the longitudinal stucture equationwhere
in which R#£0 in general, are discussed below. )
Proposition 5.6 2ot iae G D
The condition for R(x,) to have a double root, ie., * 4M?2 u 139)
R(uy)= R’ (uy)=0 simul I i
(ux)=0 andR’(u,)=0 simultaneously, requires o+ 1)u§0 L tarko
@2 + Bty + ¥y — 1x0) = 0, AuMigose@o T (ut+ 12 )
2
(ux — ux0)(2ux + B) +uy + Pur +y =0. (132)  Pproof: The proof of Eq. 138) follows from the identity:
Proof: There are two cases in which E4.3Q) are satisfied 2 2
. (nw+21
simultaneously: - tarf 6 + —up| —A
The proof splits into two cases. AMuxo (140)
Case (i) tat6 D
If A=0thenu,=u_ is a double root oR (u,)=0. For this = UpOlted — M2 =0

rootu?+pu,+y=0 and ,+p=0, and hence Eq1@2) are
satisfied. Note thaA is a sum of two squares, and that0 and the formulae Eq1@1) for u..

www.nonlin-processes-geophys.net/15/179/2008/ Nonlin. Processes Geophys., 253170068
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Comment: 1
The parameters; of Eq. (118 andu, of Eq.(139 are re-
lated by the equations:

uz _ 1,[2 (M + 1)14)260 s utarlzé
* 0 AM3Z o seC 0 (w+12)°
2 w2 (1+ ptarf6/(u + 1)2
81:14* uxo( /;2 /(e ) ) (141)

*

If 81>0 (i.e. Mz,n5e€0<(n + 1)/4un) then the roots
u.o=uzy of D=0 are real.

Comment: 2

If D=0 and u?>u?; then u_=u,o is a double root of

R(uy)=0. If u?<u? thenu . =u.o. However, this latter case %+ =

G. M. Webb et al.: Integrable, oblique travelling waves in two-fluid plasmas

and pupo is given by Eq. 144. Note that §;>0,
2, then

using Eq. 41) implies u?>u?,. If u?<u?,
S1<—ptarf8/(u+1)2 in Eq. (141), which leads to the con-

tradiction D>0. Hence, there are no exact solutions if
2_.2

Uy <uio-

(iii) Case D=0

In this case the roots EqL38) for u reduce to:

2 2_ .2
M_ (146)

uy =
Ux0

If u?>u?, thenu,=u_=u,o is a double root oR (u) and

2 2
2, ~ 50 (147)

>Ux0-
Ux0

does not lead to physical solutions, because real solutions for

u.0 do not exist in this case.
The physically allowed solutions far, as a function of

A sketch of R(u,) versusu, reveals that the only solution
possible is the isolated point=u,o. We also requirg1>0

x in Eq. (126) requires thatR (1, )>0, and that the solution in order that«.o andu o are real. In fact

pass throught,=u,q. In addition for integrable solutions,
u.0 andu ,o must satisfy Eq.89), andu.o andu o must be
real and non-negative. The nature of the integrable solution
for u, depends on the initial data fa, u.o andu ,o, which
in turn depend on whether (fp>0, (i) D<O0 or (iii) D=0,
whereD (u.0) is given by Eq. {37).
Proposition 5.8

The physically allowed solutions far, versusx, for given
initial data foru,o, u.o andu o requiresR(u,)>0, which
depends on whether (>0, (ii) D<O0 or (iii) D=0. The

(148)

+
UeQ = U,

Are the only values af,.g that are allowed, andu o is given
in terms ofu.o by Eq. (144). If u?<u?, thensd; <0, u>, are
complex, and hence there are no solutions in this case.
Comment:

In addition to the above constraints op, we requireu§>0,
which from Eq. (03) requires:

u)
different possible solution cases are: u? < uy+ -9, (149)
(i) CaseD>0
In this case R(u,)>0 for u, in the range inorderthatu, isreal.

U_<uy<uyo<us. If 81>0, thenu,o must be chosen

to lie in the range: 5.3.2

Integration of the longitudinal structure equation

10 SiN6 coso The longitudinal structure Eq126) can be integrated to give
{0 < Ueo < ”eo} Ujufy<uo<——-——1. (142)  xasafunction ofi, in the wave as:
MAeO
If $1<0 th tbe ch in th - /M i S, (150)
1<0 thenu,.o must be chosen in the range: X =- Uy,
‘ ,/Z/LMf\uxouio cosd Jur Q)
0 Sin@ cosH
{0 < ue0 < xf} . (143)  where
M
Ae0
Oux) = (ux —u1)(uy — u2)(Uy — u3). (151)

u 0 is obtained by using the integrability constraint EBR)(
whereu; <uz<ugz are the roots oR (1, )=0 in increasing or-

u,0Sing cosy der. From Eqs.X30-131):
Hupo = Y Ue0- (144)
Ae0 uy = Min(uyg, u—), up = mMaxuyo, u—), U3 =1Uuy.
(i) CaseD <0 (152)

In this case, the relative location of the roots depends
on whethem?>u?; or u?<u?,. If u?>u?y, ands1>0 then  Thus, for Case (iu1=u_ and us=u,o, but for Case (i),
R(uy)>0foru, inthe rangeu,o<u,<u_<u, andu,omust  #1=uxo anduz = u_. In Eq. 150 we have chosen the inte-
be chosen in the range gration constant so that=0 corresponds to the point where
uy=u1. Note we requirei1<u,<up in order thatQ (u,)>0
(145) for a physical real solution for.

- +
U,g = UeO = U,
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Using the change of integration variable:

1/2

u', —u

7= (x_1> ,
Uz — uq

the integral Eq. 150) can be reduced to a combination of

elliptic integrals of the form:

(153)

o+/21
X =—
w2080,/ M2us0/iiz — i1 (154)
w3l — (uz —u) E(U|v)),
where
U:/»" dz
0 VA-2)1—vz?)
4 d /
E/ S S (155)
0 ,/1—vsin2<p/
1/2
Y (1—v72
EU|v) = ) d
Uv) /O (1_Z2> z
(p .
E/ V1—vsirtgdy, (156)
0
Uy —uj 1/2 .
y=< ) = snU|v) = sin(y),
U —uq
p=—2"1 (157)
uz —ujg

Here U=sn1(y|v) and E(U|v) are standard elliptic inte-
grals of the first and second kindlframowitz and Stegun
1965 Ch. 17, p. 589). The incomplete elliptic integral of the
second kindE (U |v) can be expressed in a variety of different
forms (e.g Abramowitz and Stegyri965 Ch. 17).

Note that Eq. 131 pertains to a range of, where
o=sgn(sing) is constant. It is straightforward to modify
Eq. (1549 to account for the change of sign of girthrough-
out the wave.

By noting thaty=0 whenu,=u1 andy=1 whenu, =u> it
follows from Eq. (L50) that the spatial period of the wavi,
is given by

I— 221
u)zcocosé‘ Miux()m
[usK — (uz —u1)E], (158)
1 dz
K =K(v) = / , 159
b 0 VA-221—-vz?) (159)
L a2\ 2
E=E(K|v)=f <1 "2) dz, (160)
o \1-z

wherek (v) andE (K |v) are complete elliptic integrals of the
first and second kind.

www.nonlin-processes-geophys.net/15/179/2008/
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1.75

S O

Fig. 3. Contours of the Hamiltonian H=H;
(Egs. 81 and 87) for u, =09 and a range of Maep:
0.1<Mpeg<(u,0Sind oS8 /u,0) /2. 6=30°, u,o=1 andu=1836.
There are two different classes of solutions: one wifj<u,.o
(contours in the lower part of the figure whearg<u,0=0.9) and
another withu,g<u g (contours in the upper part of the figure
whereu,>u,0=0.9). The upper contours are closed curves whose
apexes extend to large valueséf(not shown).

5.4 Examples

In the cold plasma, travelling wave examples below, we
use, in the main, the following fixed paramete+=30°,
u=1836 and«,0o=1. The solutions are obtained by integrat-
ing the transverse electron and proton momentum Ejs. (
with 80=0, and by using the rotational integfdland energy
integral in the dHT frame g, to express:, in terms ofu,,

ie.,

]l/ 2 (161)

Uy = [“50 + (ugo — ug)/
Note that the constant term in EdLE1) can be expressed
in terms of R andeyr (see Eqs71 and72). The initial

conditions used in the numerical integration of E@) #re
those in EqQ.89), i.e.,

0 SiNO cosH

2
M Ae0

$e0 = Ppo = 7/2,

Ueo + pitpo = b

s

(162)

which ensures that the total, transverse momentum fluxes
in the dHT frame are zero (i.659=0). The initial data
arise from imposing a particular choice of the initial phases,
namely$.o=¢,0=m/2 in the more general integrability con-
ditions Eq. 86). More general solutions of Eq86) (i.e., the
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Fig. 4. Velocity components as a function affor the Hi-level Fig. 5. Electron (upper panel) and proton (lower panel) per-

curve withMaep=0.231918 in Fig. 3 (all other parameters as given pendicular velocity “hodographs” for theéi;-level curve with

in Fig. 3). This is the third curve moving inwards in<0.81 in Mx¢=0.231918 in Fig. 3 (all other parameters as given in Fig. 3).

that figure and it corresponds to a negative value of the rotationalrhis is the third curve moving inwards in that figure<0.81) cor-

integral’R= — 50.32. responding to a rotational integr&l= — 50.32. Same parameter
values as in Fig. 4.

Egs.80=0) are discussed in Appendix A. Note that the initial

data Eq. 162) imply thatu.yo=u ,y0=0 and thatu..o=u.o Figure 3 shows thep, w) phase space contours=Hj,
andu p:o=u o are both non-negative. From EQ8Q) itfol- ot 5 sequence of different Hamiltonians, obtained by vary-
lows that ing Maco, and withu,0=0.9, 0=30°, u,o=1 and x=1836

(163) fixed. The contours represent two distinct types of solution,
distinguished by whether.o<u,, Or u.o0>u,y, Whereu, is

The choice Eq.X62 does allow for the possibility of paral- the smaller root oD (u.0)=0. Note thatu,, varies as\aeo

lel propagating waves, but only for the cagg = u 0 = 0. changes. For the lower, tear shaped contours #0.81,

In other words, it rules out a large number of physical solu- D(u.0)<0 and it is necessary that.,o lie in the range

tions that are possible in this case (see Appendix A for Otheme_0<ueo<u:0 and u,o<u,<u_ for the physically allowed

possible cases). The condition Eg69) for u.o implies the  solutions. For the upper sequence of contolrgy,.p)>0.

O<uep<b and O< pup <b.

restriction to oblique travelling waves with: If D(u.0)>0 then it is necessary that eithego<u,, or
1 ueo>uy if §1>0 (81=0 whenMae0=0.4333 in the present

0>6,= —arcsm(ZMAeo eO) (164)  example). However, i1<0, thenu.,o must lie in the range
2 0 O<u.o<b. The values oft, lie in the rangeu_ <u, <uyg

(noteu,o can also depend at). One can investigate the case for the upper contours. For the examples in Figu3<u,

of quasi-parallel propagating waves witk@<6, by using for the upper contours. For the isolated centre critical point
other initial data described in Appendix A (e.g. the solutions (#0. wo)=(0, 0.81), D (u.0)=0 anduo=u is a double root

of o=0 given in EqA11 andA12). However, in the present  Of R(ux)=0. The transition from the lowen(<0.81) to the
paper, we restrict our attention to solutions satisfying the ini-UPPer curvesy>u 2/=0.81 occurs wherD (u,0)=0 (in fact

tial data Eq. 162. The numerical accuracy of the solutions whenu.o=u,y). Using Eq. (15 for D(u.0), and setting
was monitored by checking the constancy of the known inte-D (u.0)=0, we obtain an equation fcM,feo where the curves
gralsey 7, R and Hy during the computations. transit from the lower to the upper sequence of contours,
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Fig. 6. Velocity components as a function effor the Hq-level Fig. 7. Electron (upper panel) and proton (lower panel) per-
curve withMpaegp=0.561714 in Fig. 3 (all other parameters as given pendicular velocity “hodographs” for théfi-level curve with
in Fig. 3). This is the second curve moving inwards in ie0.81 Mpe0=0.561714 in Fig. 3 (all other parameters as given in Fig. 3).
part of that figure and it corresponds to a positive value of the rota-This is the second curve moving inwards in the 0.81 part of that

tional integratR =0.586868. figure, corresponding to a rotational integfa=0.586868.
namely when .
y in w>0.81 occur whenu,=u_. For the lower contours
u+0Sing sing (w<0.81), the bottom of the loops correspondig=u .
M/ieo=xo—2 <ueOCOSQ — a I/tx0> . (165) The behavi fth loCi fth |
Uy w+1 e behaviour of the velocity components of the electrons

and protons for representative cases are shown in Figs. 4—

This corresponds th§e0=0.17247 or Mpep=0.415294. 5 and Figs. 6-7. Figures 4-5 show an example for which
At this value of Maeo, u_=u,o is a double root of w<0.81 andMae=0.231918 (it corresponds to the third
R(u,)=0, and the contour consists of the centre critical point H1 level curve moving inwards in Fig. 3). For this solution
(¢0, wp)=(0, 0.81). On the upper branciw>0.81,51>0 for ue.0>U,q, and the rotational integra® = — 50.32. The fluid

low Mach numbers: @15294 Mae0<0.4333,81=0 when  velocity variations in this example are predominantly in the
Mpe0=0.4333, ands; <0 for larger values ofMpaeo. The transverse directions, with very little variation in the longitu-
largest value ofMaep allowed occurs whem.g=>b, which dinal velocityu, (this is reminiscent of the Alfén wave in

from Eq. (L62) occurs when MHD, which is an incompressible mode, in which there are
no variations inu,: e.g.Chen 1984 p. 136 et seq\\Webb et

2 uxosingcost _ al., 1999. The transverse velocities of the electrons consist

Mieo = Uo0 =04811 or Maeo = 0.6936 of a long scale variation, on which are superimposed finer

(166) scale variations, whilst the protons exhibit only a long scale
variation. This difference in the behaviour of the protons and
It should be noted that only a portion of the upper contourselectrons, is more vividly illustrated in Fig. 5 which show
is shown, in order to emphasize the contour structure in thehodograph type plots of the transverse velocity components
vicinity of (¢o, wo)=(0,0.81). The upper contours form of the electrons (top panel) and the protons (lower panel). It
closed curves, which begin at the right hand side of the fig-is seen that the protons execute an almost circular, smooth ro-
ure and return on the left hand side. The top of the curvedational motion in the fu ,,, 1u ;) plane, but the electrons
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quence of Magp Vvalues beginning at .0 and ending at x

(0SNG cosd /u,0)Y/? (note that this represents a sequence
of different Hamiltonian functions)0=30°, u,o=1 andu=1836.

The lower sequence with_y<u,q correspond to separatrix-type Fig. 9. Velocity components as a function offor the Hj-level
solutions. curve with Mpag0=0.392848 in Fig. 8. This is the second curve

moving outwards in the lower part of that figure and it corresponds
to a rotational integral o0R= — 1.39505.
execute a rosette type motion, in which the orbit precesses in
a circular type pattern. It turns out that the type of motion of . I :
the protons and the electrons in the transverse plane, depends':Igure 8 shows contours of the Hamiltoniai=H, in the

very much on the value of the rotational integral(in this (¢, w) phase plane similar to the plots in Fig. 3, except that
exampleR is large and negative) u.0 i1s now determined from the condition:

Figures 6 and 7 show the electron and proton velocities 2uyo(u + 1) tand
for a travelling wave withMae0=0.56174. .Thi.s examp'le UeO = (1 + 12/ —tark 6]’
corresponds to the secordy contour, moving inward, in ] ) . )
the regionw>0.81 of the(¢, w) phase-plane in Fig. 3. The Which gives separatrix type solutions ®(u.0)<0 and
rotational integralR—0.586868 in this example. The pro- U,<tc0<it;- ~These solutions pass through the non-
file for u, shows a long flat section witl,~1, followed by ~ Standard critical points &t, w)=(+7/2,0). AS Mpeo in-

a fast deceleration and acceleration phase. The transver§é€asesu , increases and approacheg until u o=u.o,
electron and proton fluid velocitig® jy, u ;) (j=e, p) also  at which pointD (u.0)=D(u,5)=0. At this value ofMaeo,
show a long flat section, wherg~0 andu,~0, followed  Maeo=M,, the contour consist of a single point, the centre
by a fast spatial evolutionary phase. Thus, the wave exhibit$ritical point. For largeaeo, there are no separatrices, and
both a slowly varying phase, followed by a rapid evolution- the contours form loops in the upper portion of tlgg w)-

ary phase. Figure 7 shows the transverse electron and prélane wherew>uZ,. By differentiation of D(u.0)=0 with

ton velocity hodographsu,, versusu,., (upper panel) and respect t(Mﬁeo, we obtain

W p; Versusuu p, (bottom panel). Both the protons and the )

electrons exhibit complex rosette patterns, that resemble pre-di.o _ Uy (168)
cessing ellipses. The slow and fast evolutionary phases argM2,,  b/51M2,,’

reflected in the hodographs in Fig. 7, where the electrons

spend a large part of their time in the vicinity @f~0. This ~ which shows tha&jo both increase with increasimgﬁeo. In

is followed by a fast acceleration to larger, followed by a  Fig. 8, Maeo varies from 01 up to(u,o Siné cost /u.0) /2.
deceleration back ta,~0, which appears as a loop on the  Figure 9 shows the fluid velocity components of the elec-
hodograph plot. A similar pattern occurs for the protons.  trons and protons for a separatrix type solution WitReg =

(167)
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Fig. 10. Electron (upper panel) and proton (lower panel) per-

pendicular velocity “hodographs” for théfi-level curve with

MAeO:_O'392848 in Fig. 8. Th'sf is the second curve moving out- Fig. 11. The functionsR (i) and D(u,q) for the solution shown

Warfjs in the Iower_ part _Of that figure, and corresponds to the plots, Figs. 4 and 5. The velocity component oscillates periodically

in Fig. 9. The rotational integrak = — 1.39505. between its initial valua ,o=1 and the root —=1.0002 (see upper
panel). The initial value ofi.q is equal to 9, which corresponds
to a negative value ab (lower panel).

0.392848, corresponding to the second curve moving out-

ward in the lower portion of Fig. 8. The dynamics are(_:ltS initial value 1 and the rook_—1.0002. In the nu
dominated by the transverse velocity variations, and there> " ©Ux0= - : )
y y merical solutionsy,.0=0.9 and henceD(u.9)<0. Note the

is only a very small change in, (note l<u,<1.0004). S
The hodographs of the transverse electron and proton Ve@xtremely small range o, for the solution: ku, <1.0002,

locities in Fig. 10 again show complex rosette patterns.WhiCh implies the need for both accurate computations and

Noteworthy is the fact that the perpendicular electron SpeecEigorous algebraic analysis in order to explore the interesting

a - . i f phase space.
ue=(u2, + u2,)Y2 periodically passes through zero. At this regions o . . .
point, tyhere is a very fast change ¢r=¢,—¢,., without a hF'%ur;S 12_oanrc]i 13 'IgJStgte a ;olgtlon_examfle n
significant change in.. Note that this is consistent with the Wh!ch ()= 0 as a double Too _x._“l"o_?‘*’. OL
separatrix solution plots in the, w) phase plane (Fig. 8), W ¢ (¢r?’ wo)—l( ’”60_)|_h's a centr(ta crltlcadpomt ”(1); €
because the separatrix near0 joins the two non-standard 5“/’; w) g 2a5‘:‘_)e Gp a3r(])oe'an due p%rng 4(;rsNuoi; Wﬁ‘@: 0 5
iti i _ _ Ae0=0.200,0= €0=3. . x=ux0=0.

\(/:vrr:“ecrzl tﬁg'rrgsis(?;:ﬁ];gé 6;;/:2 n(ﬁ] ?r?:l \(/ﬁlauéug)f;(\jxrv{tﬁo?t does not vary throughout the wave. The electron and proton
any significant change i, ' fluids rotate in phase with a finite wave periodxinin which

' ) . ¢=¢, — $.=0 andu,=u,g throughout the wave. The elec-
Comment: To understand the behaviour of the travelling tron and proton hodographs in Fig. 13 show that the trans-
wave solutions illustrated in Figs. 4-10, it is useful to havegrge velocities(u,, , u.;) for the electrons and ,y, u ;)

at hand, the zeros of the functidt(u,) in the longitudinal oy the protons simply rotate in circle with constant radius

structure Eq. 126) and to know the zeros ab(uc0). Fig- 4, for the electrons (top panel) and radiysfor the protons
ure 11 illustratesk (ux) (top panel) and (u.o) (lower panel)  (jower panel), whilst maintaining a constant phase difference
corresponding to the solutions in Figs. 4 and 5. Thevari- ¢=¢,—¢.=0 throughout the wave.

ation in the solution is confined to the regiapy<u, <u_
where R(u,)>0. The solution varies periodically between
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andu,p=3.01049. The fluids simply rotate in phase, maintaining

¢=0 andu,=u,q throughout.

Another double root case fdt(u,) = 0 occurs ifu_ = u,
(see Proposition 5.6, Eq436-138 et seq.). This occurs
when the rotational integr&=0 and the Alfien Mach num-
ber Maeo is given by the equation:

1 1 tarfe
M2gseo =~ [AT2 . (169)
4 " nw+1
The values
u,pSingcosd b
uEOZMupO=—25_7 (170)
2MAeO 2

ensure that both the rotational integfak=u2, — uzuiozo
and the integrability condition.o + pu ,0=>b in Eq. 89) are
both satisfied. For this solution,

( Sint 6 ) Hp
uy =u_=uyo|l

21 + DMAeO
are the two equal roots. of R(u,)=0.

Figure 14 shows a plot oR(u,) versusu, for a case
whereu_=u. is a double root ofR(u#,). The parameters
areuyo=1, 0=30°, ©=1836. The parameter®aeco, U0,
nupo, anduy are determined from Eqs169-171). The
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Uez

Fig. 13. Perpendicular electron and proton “hodographs” for the
case wherR(uy) has a double root. The parameters are the same as
in Fig. 12. The fluids simply rotate in phase, maintaingrg0 and
ux=u,q throughout.

travelling wave solution corresponding to tiR€u ) plot in

Fig. 14 has a simple zem,=u,o=1 and a double zero at
uy=u,=u_=1.00036. The physical solution is restricted to
the rangeato<u,<u; whereR(u,)>0. The pointu,=u,g
corresponds to the centre of the wave and the double zero at
uy=u4 corresponds ta— =+ oo whereu,—0 andu ,—0.

The spatial profiles of the electron and proton transverse fluid
velocities and the longitudinal speed for the above pa-
rameters are displayed in Fig. 15. The wave is an oblique,
whistler oscilliton of the type investigated fyauer et al.
(2001, 2002, Dubinin et al.(2003, McKenzie et al(2004),
andWebb et al.(2005. Figure 15 shows only half of the
wave in the region:>0. The wave is symmetric abont=0.
Thus, the wave envelope for the transverse velocities, stretch-
ing fromx= — oo to x= + oo has a bell shape profile rem-
iniscent of that of a classical soliton, on which there is su-
perimposed a high wave number oscillating component. The
present analysis shows that the obliquely propagating oscil-
liton is an integrable solution, and that there are very strin-
gent conditions required to obtain an oscilliton in the oblique
propagation case. Figure 16 shows hodographs of the trans-
verse electron and proton velocities, which have a distinctive
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5.4.1 Rosette winding patterns

In this section we discuss the results of C. M. Ko (private Fig. 15. Velocity components as a function effor the solution
communication) on the winding pattern of the transverse ve-corresponding to the case given in Fig. 14. This is an oscilliton-
locity hodographs of the electron and proton fluids, as illus-type solution. Only half of the wave is shown. The parameters are
trated in Figs. 5 and 7. Figure 7 shows clearly that in general#x0=1,6=30°, u=1836, and¥ a0, u.0 anduu ;o are determined
both the electron and proton fluids exhibit rosette patterns irffom Eas. 169-171).
the the(uey, ue;) and(u,y, up;) hodograph planes. First, it
is useful to note that the Hamiltonian contours in the w) _
phase plane in Figs. 1 and 2 split into two different cases deleaves requires tha¥,=N,. However, for the unbound or-
pending on whether the contours Ef are boundedC,) or  Dits (C,) in the (¢, w) plane, the orbits consist dif large
unboundedC,) in ¢. The bound orbits are restricted to the a l€aves in the hodograph planes onlyNf,—N,=M. The
region|é (x)| < ém <7, whereas the unbound orbits assume conditions for closed orbits in the hodograph planes also re-
all values|¢ (x)| < 7 (note the contours arex2periodic in ~ QuiresA¢ = [¢p(x+L)—¢(x)]=4rnp/q wherep/q is a ra-
). The functionu, (x) is a periodic function of with pe- tional nu_mb_er. We refer t&/, and N, as the electron and
riod L, i.e.uy (x + L)=u, (x) where the period. is given by ~ Proton winding numbers. 3
Eq. (158). The conditions for the transverse electron and pro-  To prove the above assertions, first notice thatdx is a
ton fluid velocity hodographs to consist of a closed pattern ofperiodic function ofc with periodZ, and hence
M large leaves (cloves) are discussed below. .

A natural question to ask _is: _given that_ the electrons ro-gx) = (¢, )x +/ Sbrdx + ¢(0), (172)
tate through, complete orbits inp,., in which the change 0
of ¢, Ap.=21 N, in the (u.,, u.;) hodograph plane, corre- _ L B
sponding taV orbits in the(¢p, w) phase plane, then what are gives the variation o(x) with x, wheresg, =¢, —(¢.) has
the conditions for the hodograph orbits to consist of closedzero mean over one periddin x and the angle brackets in
orbits with M large leaves? Note that one large leaf in the (#x) denote an average over one period irSettingx=L in
(ey, tez) Plane in general corresponds Aap,>2x in that  EQ. (172) we obtain:
plane (i.e. portions of the orbit at small can be convo- _ ~ ~
luted and contribute substantially #¢.). A similar ques- ~ o(L) —p(0) Ag
tion can be posed for the protons. One finds that for bound“b"> - L -
closed orbits in thép, w) phase plane, the rosette patternsin
the (uey, u.;) plane withAg,=2r N, and in the(u ,y, u ;) (notep=¢, + ¢). Similarly, the variation of (x)=¢, — ¢
plane withA¢,=2r N, consist of closed orbits with/ large  for unbound orbits in th¢p, w) phase-plane may be written

, (173)
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Fig. 16. The perpendicular electron (upper panel) and proton (lower
panel) velocity components corresponding to the oscilliton solution
of Figs. 14 and 15.

as:
bu(x) =(px)x + ¢(0) + 5¢ (x)mod(2rr)

174
EZ”TX + 8¢ (x)mod(2r), (174)
where §¢p=¢— (). In our case ¢(0)=0 because
Ppo=¢.0=m/2, andd¢ (x)=¢ where|¢p|<x. Similarly for
the bound orbitg’;, we obtain:

$p(x) = 8¢ (x)Mod(2r), (175)
Using Egs. {72-175 we obtain:
1/ (A} + 278k -
ép(x) =5 (M + ¢(0)
+ / ' Sy dx + 5¢(x)mod(2n)), (176)
0
_1((Ad—2n8u)x | -
Pe(x) =3 (f +¢(0)
+ / ' S dx — 8¢(x)m0d(27r)>, (77)
0

where k=u, b refer to unbound and bound orbits in the
(¢, w) plane respectively.

Nonlin. Processes Geophys., 15, 1208 2008

G. M. Webb et al.: Integrable, oblique travelling waves in two-fluid plasmas

The conditions that the; (j=e, p) undergo a change of
2 N; in phase during periods ofu,(x) to give closed
orbits of M large leaves in the hodograph planes may be ex-
pressed in the form:
¢j(x +ML) —¢;(x) =2nN;, j=e,p. (178)
Using Egs. 176-177) for ¢, and¢,, the conditions Eq.1(78)
reduce to:

Ny _ A% b

TR RN (k = u,b), (179)
Ne A¢ S
M 4x 2’ ( u, b) (180)

Thus, if A¢/(4m)=p/q is a rational number, then the hodo-
graph orbits in theu ,,, u,,) plane will consist ofM large
leaves corresponding to a winding numbéy (N, integer)

of the proton orbits. Similarly, fong /(47)=p/q a rational
number, the electron orbits will consist 81 leaves in the
(ey, tez) Plane corresponding to an electron winding num-
ber of N,. Using Eqgs. 1{79-180) the bound orbits in the
(¢, w) plane, correspond to closed orbits withlarge leaves

in the transverse hodograph planevif = N.. Similarly,
using Eqgs.179-180), the unbound orbits in th@, w) plane,

will correspond to closed orbits a¥f large leaves in the
hodograph planes only i¥,—N.=M and Ap/(Am)=p/q

is a rational number. This completes the discussion of the
rosette winding patterns of the electron and proton transverse
velocities in their respective hodograph planes.

6 Summary and concluding remarks

High resolution satellite observations of a variety of wave
forms in the near-Earth plasma environment by FAST, Polar,
Geotail and Cluster spacecraft (eQattel et al.2002 Mozer
et al, 1997 Ergun et al. 1998 andPickett et al.2003 Du-
binin et al, 2007 has stimulated the development of theo-
retical models to explain the observations based on travelling
waves in multi-fluid plasmas (e.@auer et aJ.2001, 2002
2003 Dubinin et al, 2003 McKenzie et al. 2004 Verheest
et al, 2004 Webb et al.2005 2007, Dubinin et al, 2007).
Analysis of travelling waves in multi-fluid plasmas by
Webb et al.(2005 2007 and McKenzie, Mace and Doyle
(2007 revealed that many of the travelling wave models are
Hamiltonian systemsWebb et al.(2007 showed that the
quasi-charge-neutral two-fluid model used in the present pa-
per has a dual Hamiltonian structure.
We used one of the Hamiltonian formulationswébb et
al. (2007, in which the Hamiltonian is identified with the
total conserved, longitudinal momentum integral of the sys-
tem, Py, in which the energy integral=const is regarded
as a constraint, angl/dx is the Hamiltonian evolution oper-
ator wherex denotes position in the travelling wave frame.
Hamilton’s equations for the system reduce to the transverse
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momentum Eqs.6) for the electron and proton fluids in the R(u,)=0 has roots = u,o andu,=u., whereu are given

dHT frame, where by Eqg. (L31). In the double root case_=u, andu,o<u_,
Lo N ” _ one obtains an obliquely propagating whistler oscilliton so-
(91, p1) = (u u,) and (g2, p2) = (uy;, —puy,), lution analogous to the parallel propagating whistler oscil-

(181) liton investigated bySauer et al(2001, 2002, Dubinin et

. . £ : + al. (2003, McKenzie et al.(2004 andWebb et al.(2005.

‘f’“e the c?r?onlcal vlarlalé)le@ = Uey T ”t""z’ “p d_ u”i’ + f .dThe hodograph of the transverse fluid velocities in Fig. 16
lipz are the complex, transverse electron and proton MUiG., st of inward spirals with maximum radius at the centre
velocities in the dHT frame, and = m ,/m, is the ratio of

of the wave att=0 and decrease monotonically to zero as
the proton and electron masses. The transverse electron and

i . + co. The double root solution case, in whigho=u_
proton momentum Eqs6) are exactly integrable if the total = Ro=u

transverse momentum integrals are zero in the dHT fram and u>uxo CoMesponds to a centre critical point in the
. . S , hase plane. For this solutian,= is constant
(i.e. 80=0 in Eq.1). If the initial values for(u,,, u.;) and Pw w) P P Of=itx0

e ) throughout the wave, and the transverse velocities of the elec-
.(fb_‘/’y’ up;) are specified at=xo in the dHT frame, thefy=0 tronsgand the protons simply rotate in phase, maintaining
I ¢=¢,—¢.=0 throughout the wave. The velocity hodographs
1,0 SiNG cosH in Fig. 13 are circles.
M/?\eo b, Other solution examples in Sect. 5 correspond to cases
(182) where R(u,)=0 has simple roots (i.ei,, u+ andu_ are
distinct). In these cases, the transverse velocity hodographs
whereMaeo=ux0/ Va. is the electron Alfén Mach number  show complex rosette type patterns.
of the flow atx=xo. If conditions Eq. {82 are satisfied, The family of travelling wave solutions with rotational in-
then Eqg. 6) admit an extra integral, namely the rotational in- tegralR=0 is described in detail in Appendix D. This class
tegralR=uZ — 1?u%=const, which combined with the other  of solutions is relatively simple to analyse, and the Hamilto-
integrals of the system, allows the integration of the systemian in this case can be related to the Hamiltonian for par-
in terms of quadratures over the longitudinal flow speed  allel propagating whistler waves investigatedWgbb et al.
The phase space of the system reduces from a four dimen2005.
sional space to a two dimensional space in the integrable case An analysis of the rosette patterns for the transverse ve-
(Sect. 4) (this is technically known as Hamiltonian reduction: ocities of the electrongiu,,, u.;) and protons(u y, ;)
e.g.Marsden and Ratiu994). respectively in Sect. 5.4.1 revealed that for bound orbits in
In the integrable cases EdLd2), the Hamiltonian can be  the (¢, w) Hamiltonian phase plane to correspond to closed
expressed in terms of the canonical varialiesp)=(¢. w)  orbits with M large leaves required tha¥,=N, where
where ¢=¢,—¢, is the difference between the proton n, and N, are the winding numbers for the electrons and
and electron phases for the complex transverse veIocitiesprotons, whereas for unbound orbits in thg, w) phase
ul=ujy +iuj;=u;expie;) (j=e, p) and w=uZ. Itturns  plane, the condition for the orbits to consist of closed or-
out, that the conditions Eq182) for the system to be in-  bits with M large leaves in the hodograph planes requires
tegrable force the Hamiltoniaf (¢, w) to take only one N ,—N,=M. The conditions for closed orbits withf large
value H=Hy (see Appendix A). In other words, the sys- |eayes in the hodograph planes also requisgs= [¢(x +
tem trajectories in the phase space satisfy the equationg) 5 ()j=4rp/q wherep/q is a rational number.
H (¢ (x), w(x))=Hy, which essentially fixes the solutions to e sojutions in Figs. 1-16 are a representative class of the
lie on a particular invariant torus (i.e., only one value of the jyieqgrable cold plasma, travelling wave solutions. However,
Hamiltonian contours, namelyf (¢, w)=H is allowed in  here are many other solutions, both for the integratje-Q)
the (¢, w) phase plane: see E@]) et seq.). The integrable  gng non-integrablesg-£0) cases that are are not covered by
solution examples in Sect. 5, were restricted to satisfy a Spegyr analysis (e.g., the hot plasma solutions). It remains an
cial case of the initial conditions Ed1§2) in which the elec-  gpen question as to the nature of the non-integrable solutions
tron and proton phases have the values: with 8050, and in particular the role of KAM theory in the
b0 =dpo=7/2 and w0+ puupo = b, (183)  nhear-integrable cases (eZﬁg,Iavsky et a).199]),as well as
the role of chaos in the non-integrable cases. These problems

(more general solutions of Eq1§2) are discussed in Ap-  |ie heyond the scope of the present paper, and remain to be
pendix A). Despite this restriction, one obtains a rich variety explored in other investigations.

of travelling wave solutions depending on the initial Adfv
Mach numbeaeo and rotational integraR =u2, — /Azuf,o

Uey0 + HUpyo = 0, ue0+ KU pz0 =

of the wave. Appendix A
The examples of travelling waves for cold plasmas inves-
tigated in Sect. 5, depend on the roots of the cubic, ) ap- In this appendix we discuss the general solution of the in-

pearing in the longitudinal structure EQ.26) for du, /dx. tegrability conditionso=0. The cases for which sifp=0

www.nonlin-processes-geophys.net/15/179/2008/ Nonlin. Processes Geophys., 253170068
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are singular.

singo=0. We show that for sithg7£0, (.0, 111 po) for a fixed
¢o must lie on an ellipse. The conditidg=0 is equivalent
to the two momentum balance Eq44) in the dHT frame.
Using

j=ep, (A1)

Ujy0 = U;0COSPjo, uj.0=ujoSiNgjo,

Equation (4) can be written in the matrix form:

U0 COSp.0 COSP 0 Ue0 0)
A = ) = , (A2
<F‘”p0> <S'”¢e0 smqﬁ,,o) (“”p0> (b (A2)
The determinant of the matri, detA = singo, in Eq. (A2).
Assuming that sig # 0, Eq. A2) has the general solution:

Ue0 — b — COS¢ 0
KU po singg \ COSp.0 /-
Note that we require.o andu ,0 must both be non-negative.

Writing (u.0, nupo) = (€, 1), Eq. (A3) can be combined
to give the equations:

(A3)

£ + ncospo = bsing.o,

1 SiNgg = b COSP,0. (A4)

Squaring and adding the two equations in Egt)(gives the
equation:

£2 + n? + 2£n cospo = b°. (A5)

Equation A5) is that of an ellipse. To show this, introduce
new coordinategt’, ") corresponding to a rotation of coor-
dinates through an angfe:

£\ _ (cosQ —sinQ g

n/)  \sinQ cosQ n)’
and choosing=x/4 corresponding to a rotation of 45
Eq. (A5) reduces to the standard equation for an ellipse:

(A6)

n?

,32

£2
F + =1, (A7)

where
b b
=—~ and p=—
* = /2 coddo/2)| V2| sin(go/2)]

If po<m/2, thenpg anda correspond to the semi-major and

(A8)

We first discuss the non-singular case with
singp#0, followed by a discussion of the singular case

G. M. Webb et al.: Integrable, oblique travelling waves in two-fluid plasmas

In the limit as¢o—0 Eq. (A5) reduces to

UeQ + Mt po = b. (A9)

The solution Eqg.49) corresponds to the initial data

T
¢o =0, ¢p0 = 0 = E, (A].O)
of Eq. 81), investigated in detail in Sect. 5. If€t.0<b/2
then the rotational integrak <0, but if b/2<u.o<b, R>0
andR=0 if u.0=b/2.
The solution case

T T
¢o =, ¢po=§, ¢>eo=—§, MUp0 = Ue0 + b,
(A11)
and the case
T T
¢o = —m, ¢p0=_57 d’eO:E’ Ue0 = U po + b,

(A12)

can also be thought of as degenerate ellipses in the
limt as ¢o— 4+ m. For Eq. All) R<0 and for
Eq. A12) R>0. In the case Eq.A9), the semi-major
axis B = b/|v/2sin¢o/2)|— o0 as ¢o—0. Similarly in
cases Eq.A11) and Eq. Al2) the semi-major axi =
b/ (/2] cos¢o/2)|)— 00 aspo— + 7.

The value of the Hamiltoniait/=H; at the initial point
x=xo from Eq. 81) is given by:

2
MAO

Hy = _—
! 2(u + 1)2

u)zco + (”30 4 quio + 2uu potte0 COquo) .

(A13)

Using Eq. AS5) with £=u.o andn=pu yo, Eq. (A13) reduces
to:

M3 b2 ‘
2(n+1)2
Using the expression EqLy) for b in Eq. (A14) we obtain:

tar? 0 5
o2 ) =usy <l+
AO

which is the result Eq.87) for Hj.

Hy=uy+ (A14)

) sirf o
Hl = Mxo 1+ —2 .
2(n + DMz,
(A15)

semi-minor axes of the ellipse respectively. The semi-minorappendix B

axis¢’ lies along the lingy=¢ and the semi-major axig lies
along the linen= — & corresponding to a 45otation of the
& andn axes. Ifr/2<¢o<m theng’ is the major axis ang’

is the minor axis. Again note thgt=u.o andn=p.u ,o0 must
be non-negative for a physical solution.

Nonlin. Processes Geophys., 15, 1208 2008

In this appendix we discuss the critical points of the Hamil-
tonian Hp=2(i« + 1) cos¥ H for the travelling wave solu-
tions. We show that the poirith1, w1)=(0, w.) on the line
¢=0in the(¢, w) plane wherel¢/dx=0 is a centre critical

www.nonlin-processes-geophys.net/15/179/2008/
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point. At this pointd¢/dx=f (u,)=0 anddw/dx=0. The
points(¢2, w2)=(—mr/2, 0) and(¢s, wz)=(/2, 0) could be
thought of as critical points in the sense th#é, —0 and
Hgy— 0 along the ray directiod¢/su.=a2 in Eq. (L09).

However, along the ray¢=0, d¢/dx=Hy, becomes un-
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Appendix C

In this appendix we discuss the conditions for the Hamil-
tonian contourH =H; to correspond to a separatrix in the
(¢, w) phase-plane where=u2. There are two cases: either

bounded as one approaches the critical point. In other wordd|j) the contour passes through the poi@ts u.)=(+m/2, 0)

the points(+ /2, 0) are non-standard critical points.

Below we study Hamilton’s equations in the vicinity of
these points. Linearizing Hamilton’s Eq61j and 62) about
the centre critical poinf¢1, w1) we obtain the matrix equa-

tion system:
i 8¢ = A 5¢ A — HO,w¢> HO,ww
dx \ sw sw )’ —Ho gy —Hogw )

(B1)

Searching for linearized solutions of the linearized Hamil-
ton’s equations (C1) of the form:

s\ _
(8w> =r exp(ix), (B2)
results in the eigen-equations:
(A—AHr=0 where detA—Ail)=0. (B3)

Evaluation of the determinantal equation @&t— Al) = 0
in Eq. B3) gives the eigenvaluesin the form:

3% = HE ., — Ho.gppHoww = G = — det(A). (B4)

The nature of the critical point depends on whet&er0 or
G <0. ForG=>0 the critical point is a saddle, butdf <0 the
point is a centre.

Using the Hamiltonian Eq6Q) for the cold gas case with
Ms=1, we find:

2M2u .0 CcOSH

Ho gy = — T,uupue cosg,
Hogw = — M3u,0 0080 (u? + p?u?) sin¢’

’ n+1 Wl plie
R M2uocost (u2 — puu?)? cosg

' nw+1 2,u3u%u§

(e 1) cosp (B5)
2u2ul

Using Eq. B5) in Eq. B4), we find that at the critical point
(¢1, w1)=(0, wy) that

(B6)

Because\2<0 this implies(¢1, w1) is a centre. Note that
A==i|A|is pure imaginary in EqH6). In the neighborhood
of (¢2, w2) and(¢3, ws), one can show tha¥ >0, indicating
saddle type behaviour. Howevér oo in the neighborhood
of the points(+/2, 0), so that the usual procedure of lin-
earizing about these points becomes questionable.

uf — p2ul)?

3,33
JINTEATH:

(n+ 172
pu

4. 2
B Mius, cog Ouupu,

22 =
(n+1)7?

www.nonlin-processes-geophys.net/15/179/2008/

or (ii) the contour passes through the points whigtet /2
and u,=0. In Case (i) the rotational integrdt:u(f —
1?u? <0 but in Case (iR >0.
Proposition C1

Consider the integrability constraint E9) for which
80=0, i.e.

O,

T
$e0 = ¢p0 = 5 $o Ue0 + Mt po = b. (C1)
A condition for the contourH=H; of the Hamiltonian
Eq. (75) for the cold plasma case to be a separatrix pass-
ing through the point&p, w)=(+n/2, 0) inthe(¢, w) phase

plane, wherav=u2, is that either

ue.0 =0, (C2)
or

2 Du,otand
oo = (1 + Duxo (C3)

T (w+1)2/u—tarke’

()

In order thatu.o and uu 0 in Egs. €3) and C4) are non-
negative requires

In the case Eq.(3)

MU po =b — ueo
2(u + DMZ 5560

__uxoSing cosh
- (u+ 12/ —tart o

2
M Ae0

tarf 6 <((u + 1)%/u, (C5)
2 w1l wtarf o
M32.,sec 0 < 5 (1 . 1)2> : (C6)

The rotational integradR <0 if the separatrix passes through
(¢, w) = (£7/2,0).
From Eq. 84) u.=0 when

uf = upy = ugo + ulp/ 1. (C7)
From Eg. C1) the rotational integral
R = uly — uPudy = b(b — 2uup0) = —p?us,. (C8)

whereu ,=u,, at uy=uy1 andu,=0. Using Eq. {5) the
value of H passing through the initial point=xo where
Ue=1U.0, Up=lpo andp=4go for the cold plasma case is:

Hy = (C9)

2
Uyo +

Nonlin. Processes Geophys., 25817068
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If the H=H; contour corresponds to a separatrix, then uy=u 0, uy=u-+ With increasing electron Alfén Mach num-
ber M=Maeosedd, and hence to classify the different trav-
2 1/2 2,2 elling wave types that occur for the caRe-=0.
H = H, =y (ufo + LO) + 220 b(b — 2u,0). Setting the rotational integraR=uZ,—u?u%,=0, in
H 2n+1 Egs. 84-85), the formulae foru,(w) andu,(w) become:

(C10)

Equating the expressions féf in Egs. €C9) and €10 and pup(w) = w2, u(w) = <u20 + W2 — w)/u)l/z’
noting that * ¢

(D1)
M2b = M, (C11)  and the Hamiltonian Eq8¢) reduces to:
Ux0
: . 2 12 2
. Uy — w M2 sedf
gives the equation: H =1y (“fo 4 Zeo ) n Ae0+ : w(l+Ccosp).

2
U.0 [(M — tar? 9) uen0 — 2(p + Duxo tan9i| =0. (b2)

# Settingu,0=1 andu.0=0 in Eq. O2) we obtain the Hamil-
(C12)  tonian

1/2
Equation C12) implies thatu.o is given by either C2) or H— (1 _ ﬂ) / + M/ieose@ew(l_i_ ) (D3)
(C3). This completes the proof. 7 pn+1 ’

Proposition C2 which is the Hamiltonian used Bijebb et al (2005 (except

If the integrability constraint EQQ1) is enforced, the con-
tour H=H, of the Hamiltonian Eq.45) for a cold plasma,
will be a separatrix passing through the poipts+ /2 and
u,=0, if either:

for a scaling factor of 2) in describing parallel propagating
whistler waves.

Next consider the roots of the cubic polynomi{u,)
givenin Eq. (30) and in the longitudinal structure E4.Z6),
in the special case whefe=0. Note thatR=0 if u.o=pu 50,

upo =0, (C13) and that for this case in Eq. (131) is a perfect square. In
or this case we obtain:
24+ |u2 - H

. _ 2+ Dusotans cLay 4= il ] (D4)

H0 = W D2 —tarke’ o
where

The value ofu.g is u.0=b in case Eq. C13. In case 2 (1 +1)2
Eq. C14): 2= 10 (sitg4+ LT cofe).  (D5)

U0 =b — pupo 2
) S
_ ux0Sing cosd 2(n + HM2 ,se o (C15) Hy = ujo (1 + W) - (D6)
T Mg (w+ D2/ —tarfg | ©

HereH1 is the value of the Hamiltonian integral E§.7 and

2 . . . .
Proof: The method of proof is essentially the same as in% IS defined in Eq.139). There are two cases to consider,

Proposition C1, but the details are different. listed below.
Case
(i) uZ=H
Appendix D In this case, we obtain from EdD4) the expressions:
: . . : . 1
In this appendix we consider the class of travelling waves in u, = 120 et M2.,5eC0 ), (D7)
; i i i ; T M2 se@o \ 2 Ae0

which the rotational integrak=0. This is instructive on two Ae0 H
accounts. First, the cage=0 can be related to the Hamilto- sirt 6 Hy 08)

: ; ; i i - u_=uxo |l ————F- | = —, D8
nian formulation for parallel travelling whistler waves inves x ZMKQO(M 1 1r0

tigated byWebb et al(2005. Secondly, the formulae for the
roots of the cubic equatioR (1, )=0 occurring in the longi-  for the rootsu.. The conditiomszl is equivalent to
tudinal structure Eq.126), namelyu,=u,o andu,=uy are

relatively simple in the cas®=0. This allows one to ob- M2 se@p < } nt+l tar? 0 ' (D9)
tain a picture of the relative movement of the rootRef:, ), A0 - 7 n+1

Nonlin. Processes Geophys., 15, 1208 2008 www.nonlin-processes-geophys.net/15/179/2008/
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The roots ofR (u,)=0 are ordered so that.o<u_ <u.
Case (iiyu?<H;
From Eqg. D4) we obtain:

ur =uo|l+ & s (D10)
o 2MZoo(n+1) ) ux0’
Uuxo uw+1l 2 )
u_ = — M2 ,sec6 |, D11
M2, se@0 < 0 Ae0 (D11)

The Conditiomi < Hj is equivalent to

1 1 tarfe
M2gsedo = = (A2 : (D12)
4 I n+1
We require:
1 1 tarfe 1
S < M2 el < M2 (D13)
4\ u w+1 21

to ensure thaiu_>0. Hereu_=0 at the upper limit on
M3, sec 6 in Eq. O13). _

Based on the formulae EqDT-D13) we obtain the fol-
lowing classification for the roots aR(u,)=0. Using the
notation

1({pu+1 tarfo
M? = M2.,sech, MZP=>["—— ,
1 1
Y R e V7 S g (D14)
4u 21

we find for increasing/f the following scheme:
(). If M2<M? thenu,o<u_<uy.

(ii). 1f M2 = M2, thenu_ = ui>uyo, andu_ = u is a double
root. This case corresponds to an oscilliton solution.

(iiiy. If M2<M?<M3, thenu,o < u— < uy is the order of the
roots of R(uy). This is the same order for the roots in (i).

(iv). If M?>=M3, thenu_=ug<uy. This is a double root case.
ux=u,qIis acentre critical point ang, =u ¢ is constant throughout
the wave. Rotation of the transverse fluid velocity compongnts
andu ;, of the electron and proton fluidg+£e, p) as well as rotation
of the transverse magnetic field occurs.

(V). If M3<M2<M3 thenu_<uyg<uy. Note that the order of
the rootsu_ andu,q is reversed compared to (i).

(vi). If M2=M§, thenu_=0. The order of the roots is the same

as in (v). ForM?>M2, u_ <0. Solutions exist for_ <0, but they
must involve a shock, becausg=>0 is required for physical solu-
tions.

Using the expression Eql23) for D(u.g) in terms of R
andsq, with R=0, we obtain:

b5

D = ,
4

(D15)

www.nonlin-processes-geophys.net/15/179/2008/

whereé is given by Eq. {18). We find thatD <0 if M <M>
(i.e. 81>0) andD>0 if M>Mo>. If D<0 thenu,o<u_<u,y,
and if D>0, thenu_<u,g<u, as discussed in Eql42) et
seq.
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