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Abstract. A Hamiltonian description of oblique travelling
waves in a two-fluid, charge-neutral, electron-proton plasma
reveals that the transverse momentum equations for the elec-
tron and proton fluids are exactly integrable in cases where
the total transverse momentum flux integrals,P

(d)
y andP (d)z ,

are both zero in the de Hoffman Teller (dHT) frame. In this
frame, the transverse electric fields are zero, which simplifies
the transverse momentum equations for the two fluids. The
integrable travelling waves for the caseP (d)y =P

(d)
z =0, are

investigated based on the Hamiltonian trajectories in phase
space, and also on the longitudinal structure equation for
the common longitudinal fluid velocity componentux of the
electron and proton fluids. Numerical examples of a variety
of travelling waves in a cold plasma, including oscillitons,
are used to illustrate the physics. The transverse, electron
and proton velocity componentsujy andujz (j=e, p) of the
waves exhibit complex, rosette type patterns over several pe-
riods forux . The role of separatrices in the phase space, the
rotational integral and the longitudinal structure equation on
the different wave forms are discussed.

1 Introduction

In a recent paper (Webb et al., 2007, hereinafter referred to as
paper I), we developed a dual variational principle for non-
linear travelling waves in a charge neutral, non-relativistic,
electron-proton plasma. It was shown that travelling waves in
this multi-fluid plasma system could be described by two dif-
ferent, but equivalent Hamiltonian formulations. In the first
formulation, the Hamiltonian is identified with the total con-
served longitudinalx-momentum integral of the system,Px ,
in which the energy flux integralε=const. is a constraint, and
for whichd/dx is the Hamiltonian evolution operator. In the
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second Hamiltonian formulation, the Hamiltonian is the en-
ergy flux integralε, and thex-momentum integralPx=const.
is a constraint. In the latter formulation the Hamiltonian evo-
lution operator is the advective or Lagrangian time deriva-
tive d/dτ=uxd/dx. These dual variational principles are
analogous to the dual or multi-symplectic variational princi-
ples obtained byBridges(1992) in a study of travelling water
waves. Related work on a Hamiltonian formulation of par-
allel propagating whistler waves in multi-fluid plasmas has
been investigated byWebb et al.(2005), whereasMcKenzie,
Mace and Doyle(2007) show that the spatial evolution equa-
tions for solitary travelling waves in Hall current plasmas can
be cast in a Hamiltonian form in which the energy flux inte-
gralε is the Hamiltonian and the longitudinal momentum in-
tegralPx=const. acts as a constraint. The multi-symplectic
variational principles in general do not imply integrability of
the equations, that are obtained for bi-Hamiltonian systems
such as the KdV equation and the nonlinear Schrödinger
equation (e.g.Magri, 1978), which possess an infinite num-
ber of conservation laws and Lie symmetries.

In a multi-symplectic Hamiltonian system both space and
time variables can be used as Hamiltonian evolution vari-
ables, and the evolution of both the space and time vari-
ables are associated with skew symmetric matrices (see
e.g.Bridges, 1997a,b, Hydon, 2005, andCotter, Holm and
Hydon, 2007 for further details). The conditions that are
required for integrability is a subject of ongoing debate
(e.g.Zakharov, 1991). For ordinary differential equation sys-
tems, integrability means that the number of known integrals
matches exactly the number of integration constants. For
nonlinear differential equations it was conjectured (Ramani
et al., 1982), that integrability can be related to whether the
equations possess the Painlevé property. The definition of
the Painlev́e property for ordinary differential equations, is
that the only movable singularities its solution can exhibit
are poles (see e.g.Steeb and Euler, 1988). For Hamilto-
nian systems, integrability is associated with the existence
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of closed orbits in the phase-space, which in turn are asso-
ciated with integrals and Lie symmetries of the equations.
If the system does not have a complete set of integrals, it
is non-integrable and the phase space trajectories may be
chaotic. It turns out that the system of ordinary differential
equations governing the travelling waves in the quasi-neutral,
two-fluid plasma system is integrable if the integration con-
stantsP (d)y =0 andP (d)z =0, whereP (d)y andP (d)z are the total
transverse momentum integration constants for the system in
the dHT frame. In this case, the transverse electron and pro-
ton momentum differential equations admit an extra integral,
the so-called rotational integral, which allows the equations
to be completely integrated by quadrature over the longitu-
dinal flow velocityux . In the cases whereP (d)y 6=0 and/or

P
(d)
z 6=0, there is no rotational integral, and if there are no

other integrals, the system is non-integrable, and may exhibit
chaotic trajectories.

The emphasis in the present paper is on travelling wave so-
lutions of the two-fluid equations, mainly because these are
the simplest possible solutions. The solutions are a function
of one variable, the travelling wave variablex(w)=x−wt (in
our analysis we takew= − U ), wherew is the constant ve-
locity of the wave. Such waves can be generated in a steady
flow past a stationary object (e.g. such as the magnetosphere
in the solar wind flow past the Earth). These standing waves
in the frame of the object are analogous to the bow wave of
a ship, or stationary wave patterns generated by a rock in a
stream. Other wave solution forms are in general possible,
but will not be investigated in the present paper.

In Webb et al.(2007), the integration constants for the
system of differential equations and conservation laws were
specified at a fixed pointx=x0 in the travelling wave frame,
or equivalently in the de Hoffman Teller (dHT) frame. It was
found that if the total, transverse momentum flux integral in
the dHT frameP (d)

+0 =P
(d)
y0 + iP

(d)
z0 is zero, then the system is

exactly integrable (the superscriptd denotes the dHT frame).
The total, transverse momentum flux was specified by the
parameterδ0≡−M2

AesecθP (d)
+0 , whereMAe=U/VAe is the

electron Alfv́en Mach number of the wave,U is the trav-
elling wave speed,VAe is the electron fluid Alfv́en speed and
θ is the angle between the propagation direction (thex-axis)
and the reference magnetic fieldB0 at x0. Because of the
assumption of charge neutrality, the number densities of the
electron and proton fluidsnp=ne=n throughout the wave,
and the two fluids have a common longitudinal fluid veloc-
ity ux in the travelling wave frame. The parameterδ0 can in
general, be written in the form:

δ0 = −
M2

Ae0

ux0 cosθ

(
uey0 + µupy0

+ i

[
uez0 + µupz0 −

ux0 sinθ cosθ

M2
Ae0

])
,

(1)

where ujy0 and ujz0 (j=e, p) refer to the transverse
electron and proton fluid velocities in the dHT frame, and
MAe0=ux0/VAe is the electron Alfv́en Mach number of the
flow atx=x0. In Eq. (1), all fluid velocities are normalized to
the travelling wave speed andµ=mp/me is the ratio of the
proton and electron massesmp andme.

The Hamiltonian equations describing parallel propagat-
ing waves (θ=0) in a cold plasma, in whichujy0=0 and
ujz0=0 (j=e, p) asx0→−∞ were studied byWebb et al.
(2005). They found that the waves were either (i) peri-
odic waves at Mach numbers 0<M<1/2, (ii) oscillitons
if 1/2<M<1/

√
2, and (iii) periodic waves forM>1/

√
2,

whereM is the Alfvén Mach number of the wave based on
half the harmonic mean of the electron and proton masses
(i.e., the mean particle mass̄m=mpme/(me + mp), where
me andmp denote the electron and proton masses: note
thatM≈MAe0 asme/mp<<1, whereMAe0 is the electron
Alfv én Mach number). The analysis ofWebb et al.(2005)
was based in part on the earlier analyses ofSauer et al.
(2001, 2002, 2003), Dubinin et al.(2003), andMcKenzie et
al. (2004). In this paper, we study the class of oblique, inte-
grable, travelling waves, withθ 6=0, satisfying the condition
δ0=0.

Mace et al.(2007) have derived the conservation laws un-
derlying the analysis ofMcKenzie et al.(2004) for travelling
waves in multi-fluid plasmas, by using the frozen in gener-
alized vorticity for barotropic flows for each species. This
approach provides a direct and elegant derivation of conser-
vation laws for both multi-dimensional flows and one dimen-
sional flows.

Dubinin et al.(2007) have analyzed the spectrograms of
whistler emissions observed by the four CLUSTER space-
craft atR∼14−16RE in the northern dusk magnetosphere
in December 2001, at frequencies off∼20−100 Hz. The
wavelet spectrograms of the data suggests that the emis-
sions can be explained by nonlinear, travelling whistler
waves of the type investigated in the present paper. For
these waves, the protons and the electrons have compara-
ble Reynolds stresses which are mediated by the Maxwell
magnetic stresses. Parallel propagating whistlers are shown
to undergo nonlinear resonant amplification at one half the
electron gyrofrequency, where the phase speed of the wave
has a maximum ofVAe/2 ( VAe is the Alfvén speed based
on the electron fluid), where the group velocity of the wave
matches the phase speed (the group velocityVg exceeds the
phase speed of the waves at frequenciesω<�e).

In principle, the dual Hamiltonian structure of the travel-
ling waves investigated byWebb et al.(2005, 2007) could be
related to the general, Hamiltonian, Poisson bracket descrip-
tion of multi-fluid plasmas developed in a more general con-
text bySpencer(1982), Spencer and Kaufman(1982), Holm
and Kupershmidt(1983) Sahraoui, Belmont and Rezeau
(2003) and Elsässer(1994). Zakharov(1971) developed a
Clebsch variable, Hamiltonian description of a magnetized
electron plasma, with stationary ions, including the effects
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of charge separation electric fields. This model was used to
study nonlinear, three wave resonant interactions.Sahraoui,
Belmont and Rezeau(2003) develop a Hamiltonian canoni-
cal formalism for two-fluid plasmas, in which the displace-
ment current is neglected, but electron inertia still plays a role
and show how this system is related to Hall MHD, when the
electron mass is neglected.

The main aim of the present paper is to investigate the
nature of the integrable travelling waves for whichδ0=0 in
Eq. (1). We use the same model as in paper I. The analy-
sis is carried out in the de Hoffman Teller (dHT) frame of
MHD shock theory, which is different than the travelling
wave frame used byDubinin et al.(2003). We restrict our
analysis to cases where the transformation speed between the
travelling wave frame and the dHT frame,U tanθ<c, where
U is the travelling wave speed andc is the speed of light.
The analysis is also restricted to cases where the electron
Alfv én speedVAe<<c, for which the displacement current
in Maxwell’s equations can be neglected, and charge neu-
trality is a good approximation (seeVerheest et al., 2004;
McKenzie, Dubinin and Sauer, 2005; Webb et al., 2007for
extensive discussion of this very important point).

The basic travelling wave model is outlined in Sect. 2. In
Sect. 3, we discuss the action principle and the first Hamil-
tonian formulation in which the HamiltonianH is identi-
fied with the longitudinalx-momentum integralPx and in
which the energy integralε=ε0=const. acts as a constraint.
In Sect. 4, Hamilton’s equations are expressed in terms of
the Poisson bracket. It is shown that in the integrable cases
(δ0=0), a reduction of the phase space from a four dimen-
sional phase space to a two dimensional phase space is pos-
sible by exploiting the integrals of the system. The integra-
bility condition δ0=0, further restricts the solutions of inter-
est to a particular Hamiltonian contour in the phase space.
The reduction of the phase space from a four to a two di-
mensional phase space is an example of Hamiltonian reduc-
tion (e.g.Marsden and Ratiu, 1994, Olver, 1993. Section 5
presents representative examples of oblique travelling waves
for the integrable caseδ0=0 in a cold electron-proton plasma.
Sect. 6 concludes with a summary and discussion.

2 The model

As in paper I, we use a multi-fluid, charge neutral, electron-
proton model, in which all physical quantities depend only
on the position coordinateX=x+Ut in the travelling wave
frame, whereU is the speed of the wave in the lab. frame.
We use the dimensionless physical variables:

x̄ =
X

Le
, B̄ =

B
B0
, ūj =

uj
U
, n̄j =

nj

n0
, j = e, p,

(2)

whereB0 and n0 are the constant values of the magnetic
field and the number density of the electrons at the fidu-

cial pointX=X0 where the magnetic fieldB has the form
B0=B0(cosθ,0, sinθ)t . We specify the integration con-
stants for the system of conservation laws and differential
equations atX=X0. The uj denote the fluid velocity of
speciesj . We use the physical parameters:

Le =
U

�e
, �e =

eB0

me
, µ =

mp

me
,

M2
Ae =

U2

V 2
Ae

, V 2
Ae =

B2
0

µ0mene
,

M2
j =

U2

c2
j0

, c2
j0 =

γjpj0

n0mj
, j = e, p, (3)

to characterize the travelling wave. Here,�e is the electron
cyclotron frequency,VAe is the Alfvén speed based on the
electron number densityne, andMAe is the Alfvén Mach
number of the wave based on the electron fluid;µ is the ratio
of the proton and electron masses (µ=1836);Mj are sonic
Mach numbers of the travelling wave, based on the sound
speedcj0 of the different plasma species (herej=e, p), and
Le=U/�e is the characteristic scale length for the wave as-
sociated with the electron fluid and�e is the electron gyro-
frequency. For a charge neutral plasmane=np=n.

The electron and proton fluids are assumed to have poly-
tropic equations of state of the form:

pj = pj0

(
nj

n0

)γj
, j = e, p, (4)

whereγe andγp are the polytropic indices of the electron and
proton fluids.

The basic equations for the system consist of the momen-
tum and energy equations, and the number density continu-
ity equations for each species, and the overall momentum
and energy equations for the system, coupled with Maxwell’s
equations. We use a Galilean transformation of the transverse
velocities for the two species, relative to that used byDubinin
et al.(2003) andMcKenzie et al.(2004) of the form:

ujy = uwjy, ujz = uwjz + tanθ, j = e, p. (5)

The uwj (j=e, p) are the velocities in the travelling wave
frame used byDubinin et al.(2003), normalized to the trav-
elling wave speedU . The transformation Eq. (5), is from the
travelling wave frame to the de-Hoffman Teller (dHT) frame,
used in the theory of MHD shocks (de Hoffman and Teller,
1950, Drury, 1983, Webb, Axford and Terasawa, 1983). We
assume that the de Hoffman Teller speedU tanθ<c.

In the further development, (in an abuse of mathematical
notation) we omit the over-bar notation for normalized quan-
titities, unless stated otherwise.

In terms of the variables Eq. (5), the transverse electron
and proton momentum equations for the system may be
written in the form:
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E1 =
du+

e

dx
− i

u+
e cosθ

ux

+ i

(
M2
Aeux0

cosθ

(
u+
e + µu+

p

)
+ δ0

)
= 0,

E2 =
du−

e

dx
+ i

u−
e cosθ

ux

− i

(
M2
Aeux0

cosθ

(
u−
e + µu−

p

)
+ δ∗0

)
= 0,

E3 =
du+

p

dx
+ i

u+
p cosθ

µux

−
i

µ

(
M2
Aeux0

cosθ

(
u+
e + µu+

p

)
+ δ0

)
= 0,

E4 =
du−

p

dx
− i

u−
p cosθ

µux

+
i

µ

[
M2
Aeux0

cosθ

(
u−
e + µu−

p

)
+ δ∗0

]
= 0. (6)

where

u±

j = ujy ± iujz, j = e, p, (7)

are the complex transverse velocities of the electrons and
protons. We note, for later reference, that:

M2
A = (1 + µ)M2

Aesec2θ ≡
U2

V 2
A cos2 θ

, (8)

is the square of the total Alfv́en Mach numberMA, based on
the total plasma densityρ=mene + mpnp ≡ me(1 + µ)n,
and the Alfv́en phase velocityVAn=VA cosθ . In Eq. (6) ux
is the common, normalizedx-component of the velocity of
the proton and electron fluids andx refers to the normalized
position coordinate in the travelling wave frame (i.e. tox̄ of
Eq.2). The parameterδ0 in the above equations is given by:

δ0 = −
M2
Ae

cosθ
P
(d)
+

≡ −
M2
Ae

cosθ

(
P
(w)
+ + iux0(1 + µ) tanθ

)
, (9)

whereP (d)+ =P
(d)
y + iP

(d)
z is the total, complex, transverse,

momentum integral in the dHT frame. It may be expressed
in the form:

δ0 = −
M2
Ae

cosθ
ux0

(
uwey0 + µuwpy0

)
+ i sinθ

[
1 − ux0M

2
A

(
1 +

cotθ

µ+ 1

(
uwez0 + µuwpz0

))]
.

(10)

If δ0=0, the transverse momentum Eqs. (6), are invariant un-
der rotations about thex axis, and admit an extra integral
due to this Lie symmetry, and the equations are exactly inte-
grable. The conditionδ0=0 is equivalent to the conditon that
the total transverse momentum integral in the dHT frame is
zero.

We use the dHT frame fluid velocities in the transverse
momentum Eq. (6) whereasDubinin et al.(2003) use the
travelling wave frame velocities. TheDubinin et al.(2003)
Eqs. (57) are equivalent to Eq. (6) in the special case where

δ0 = i sinθ
(
1 −M2

Aux0

)
, uw+

j0 = 0, j = e, p, (11)

andux0=1. Note thatδ0=0 is satisfied for the case of par-
allel propagation (θ=0) and foruwey0=u

w
py0=0. Webb et al.

(2005), studied this integrable case, and obtained compact
travelling waves, whistler oscillitons and periodic travelling
wave solutions. Ifθ 6=0 then the equations are integrable if
δ0=0 i.e., ifM2

A=1/ux0 in Eq. (11). More generally,δ0 may
be expressed in the form:

δ0 = −
M2

Ae0

ux0 cosθ

[
uey0 + µupy0 + i(uez0 + µupz0 − b)

]
,

(12)

where

b =
ux0 sinθ cosθ

M2
Ae0

≡
(µ+ 1) tanθ

M2
Aux0

, M2
Ae0 =

u2
x0

V 2
Ae

. (13)

In Eq. (12) and Eq. (13) M2
Ae0=u

2
x0/V

2
Ae is the electron,

Alfv én Mach number of the flow. Thus, the integrability con-
dition δ0=0 requires:

uey0 + µupy0 = 0, and uez0 + µupz0 = b. (14)

The expression Eq. (12) for δ0 is the same as that in
Eq. (1). The conditions Eq. (14), which are equivalent to
δ0=0, can be solved for the transverse electron fluid veloc-
ity (0, uey0, uez0) in terms of the transverse proton velocity
(0, upy0, upz0) and vice-versa. Conditions Eq. (14) are cen-
tral to the study of the integrable travelling wave solutions
studied in this paper.

The total transverse momentum equations for the electrons
and the protons can be solved for the complex transverse
magnetic fieldB+

=(By + iBz)/B0 in the wave as:

B+
=
M2
Ae

cosθ
ux0

(
u+
e + µu+

p

)
+ δ0, (15)

where theu+

j (j=e, p) are the fluid velocities in the de Hoff-
man Teller frame (cf.7).

Dubinin et al.(2003) assumed thatuwj =|u±w
j | (j=e, p)

vanish andB→B0(cosθ,0, sinθ)t asx → −∞. The bound-
ary conditionsuwj →0 correspond to the boundary conditions

uj≡|u±

j |→ tanθ as|x|→∞ in the dHT frame.
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The longitudinal momentum equation for the system may
be written in the form (Webb et al., 2007):

P (w)x = P + PB = P
(w)
x0 , (16)

where

P =
ρu2

x + pe + pp

ρ0U2
, PB =

B2
⊥

2µ0ρ0U2
, (17)

are the normalized fluid dynamical and magnetic pressure
contributions repectively to the total longitudinal momentum
flux, ρ=(me + mp)n is the total plasma andux in Eq. (17)
is the non-normalized longitudinal flow speed of the electron
and proton fluids. Here,P andPB can be expressed in the
form:

P(ûx) =u2
x0

[
ûx +

1

µ+ 1

(
û

−γe
x

γeM
2
e0

+
µû

−γp
x

γpM
2
p0

)]
, (18)

PB =
u2
x0

2(µ+ 1)M2
Ae0

∣∣∣∣∣M2
Ae0

cosθ

(
û+
e + µû+

p

)
+ δ0

∣∣∣∣∣
2

, (19)

where

ûx =
ux

ux0
, û±

j =
u±

j

ux0
, M2

j0 =
u2
x0

c2
j0

, M2
Ae0 =

u2
x0

V 2
Ae

,

(20)

(j=e, p) are the normalized fluid velocities and Mach num-
bers based on the longitudinal flow speedux0 atx=x0. Note
that

M2
j0=u

2
x0M

2
j , M2

Aj0=u
2
x0M

2
Aj , ûj=

uj

ux0
, j=e, p.

(21)

The Mach numbersMj0 andMAj0 based onux0 are more
physically relevant than the Mach numbersMj andMAj

based on the travelling wave speedU . However, both nor-
malizations are useful in describing the system. Using the
normalized variables Eq. (20), the energy integral for the sys-
tem may be written in the form:

ε =u2
x0

[
1

2
(µ+ 1)û2

x +
û

1−γe
x

(γe − 1)M2
e0

+
µû

1−γp
x

(γp − 1)M2
p0

+
1

2

(
û2
e + µû2

p

)
−

1

2
(µ+ 1)V̂ 2

HT

]
= ε0, (22)

where V̂HT=U tanθ/ux0 is the normalized transformation
speed between the travelling wave frame and the de-Hoffman
Teller frame.

2.1 Amplitude and phase equations

In this section, we list the amplitude and phase form of the
transverse electron and proton momentum Eq. (6) in which

u±

j =uj exp(±iφj ), j=e, p. The equations may be written in
the form:

due

dx
=
M2
Aeux0

cosθ
µup sinφ − Re

[
iδ0 exp(−iφe)

]
, (23)

dφe

dx
= −

M2
Aeux0

cosθ

(
1 +

µup

ue
cosφ

)
+

cosθ

ux

−
1

ue
Im
[
iδ0 exp(−iφe)

]
, (24)

dup

dx
=
M2
Aeux0

µ cosθ
ue sinφ +

1

µ
Re
[
iδ0 exp(−iφp)

]
, (25)

dφp

dx
=
M2
Aeux0

cosθ

(
1 +

ue

µup
cosφ

)
−

cosθ

µux

+
1

µup
Im
[
iδ0 exp(−iφp)

]
. (26)

From Eqs. (23–26) we obtain auxiliary equations forφ=φp−

φe andφ̃=φp + φe as:

dφ

dx
=
M2
Aeux0

cosθ

[
2 +

(
ue

µup
+
µup

ue

)
cosφ

]
−
(µ+ 1) cosθ

µux

+ Im

[
iδ0

(
exp(−iφp)

µup
+

exp(−iφe)

ue

)]
, (27)

dφ̃

dx
=
M2
Aeux0

cosθ

(
ue

µup
−
µup

ue

)
cosφ +

(µ− 1) cosθ

µux

+ Im

[
iδ0

(
exp(−iφp)

µup
−

exp(−iφe)

ue

)]
. (28)

3 Variational and Hamiltonian formulation

In this section we provide a brief synopsis of the first vari-
ational principle of paper I and the corresponding Hamilto-
nian formulation of the transverse momentum Eqs. (6) for the
electron and proton fluids. These results are used in Sects. 4
and 5 to investigate the class of integrable waves withδ0=0.

The transverse momentum equations for the electron and
proton fluids Eq. (6) can be combined to give the equation:

d

dx
(u2
e − µ2u2

p) = 2Im[δ0(u
−
e + µu−

p )]. (29)

Thus, ifδ0=0, we obtain the integral:

R = u2
e − µ2u2

p = const. (30)

The integral Eq. (30) was also derived byDubinin et al.
(2003), McKenzie et al.(2004) and Webb et al.(2005)
for the case of parallel propagating waves forθ=0 and
uwjy0=u

w
jy0=0 asx0→−∞. The integral Eq. (30) also ap-

plies for oblique, travelling waves withδ0=0. The integral
Eq. (30) is related to invariance of the transverse momentum
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equations and the travelling wave system under rotation of
the y andz components of the transverse fields. We show
in Sect. 4.1 how this Lie symmetry and the space transla-
tion symmetry allows a reduction of the system forδ0=0
to a completely integrable system in which the Hamiltonian
dynamics takes place on a two-dimensional reduced phase
space (it turns out that theδ0=0 condition restricts the dy-
namics to a particular contour of the Hamiltonian in the 2D
phase space).

Using the total energy integral Eq. (22) to compute
∂ux/∂u

±

j (j=e, p), and using the transverse momentum
Eqs. (6) we obtain the longitudinal structure equation (see
paper I):

dux

dx
= −

ux

(µ+ 1)(u2
x − c2

s )(
M2
Aeux0(1 + µ)

cosθ
ueup sinφ + Im[δ0(u

−
e − u−

p )]

)
,

(31)

where

c2
s =

u2
x0

µ+ 1

(
û

1−γe
x

M2
e0

+
µû

1−γp
x

M2
p0

)
≡

γepe + γppp

(me +mp)nU2
. (32)

Note thatcs is a normalized version of the sound speed for
the combined electron-proton fluid. When the numerator and
denominator in Eq. (31) are simultaneously zero defines the
sonic critical point(s) of the flow. The locusux=cs in general
defines values ofux wheredux/dx→∞ and is related to
shock formation phenomena.

Below we describe the variational and Hamiltonian for-
mulations of the transverse electron and proton momentum
Eqs. (6) obtained in paper I, which are used in the analysis of
the integrable solutions (δ0=0) in Sects. 4 and 5.
Proposition 3.1

The transverse electron and proton momentum Eqs. (6)
can be obtained by extremizing the action:

A =

∫
∞

−∞

L dx, (33)

with respect tou±
e andu±

p , where the Lagrangian densityL
is given by:

L = u−
e

du+
e

dx
−µ2u−

p

du+
p

dx
+

2i(µ+ 1) cosθ

ux0

(
P (w)x − P

(w)
x0

)
,

(34)

subject to the constraint that the energy integral Eq. (22):
ε=ε0 is satisfied. In other words,ux=ux(u

±

j ) is an implicit

function of theu±

j (j=e, p) given by solving the energy in-

tegral Eq. (22) for ux in terms of theu±

j .

Comment: The LagrangianL in Eq. (34) is equivalent to
the LagrangianL′ (meaning it has the same Euler-Lagrange
equations) given by:

L′
=i

(
µ2up·∇ × up − ue·∇ × ue

+
2(µ+ 1) cosθ

ux0

(
P (w)x − P

(w)
x0

))
.

(35)

The LagrangiansL andL′ differ by a perfect derivative. The
Lagrangian Eq. (35) consists of three terms representing con-
tributions from the proton fluid helicityµ2up·∇ × up, the
electron helicity−ue·∇ × ue, and the longitudinal momen-
tum flux integralP (w)x . It is assumed in Eq. (33)–Eq. (35)
that the energy integralε=ε0 acts a constraint on the dynam-
ics. One can also write down a LagrangianL′′ equivalent to
Eq. (35), by using the generalized helicities of each species
(see paper I, Appendix C).
Proposition 3.2

The transverse electron and proton momentum Eqs. (6)
can be expressed in the Hamiltonian form:

dqj

dx
=
∂H
∂pj

,
dpj

dx
= −

∂H
∂qj

, j = 1,2, (36)

where

(q1, p1) = (u+
e , u

−
e ), (q2, p2) = (u+

p ,−µ
2u−
p ), (37)

are the canonical coordinates and

H = −
2i(µ+ 1) cosθ

ux0

(
P (w)x − P

(w)
x0

)
. (38)

Thus, the Hamiltonian Eq. (38) is equivalent, modulo a trivial
scaling constant of−2i(µ + 1) cosθ/ux0 to the total, longi-
tudinal momentum fluxP (w)x (note that the momentum flux
constantP (w)x0 is not essential). Here thex-component of the
fluid velocityux is given implicitly by solving the energy in-
tegral Eq. (22) for ux=ux(u

±

j ) in terms of theu±

j (j=e, p).
The result Eq. (38) is reminiscent of the work ofBridges
(1992), who showed that the spatial Hamiltonian for nonlin-
ear travelling water waves is thex-momentum flux integral.

4 Poisson brackets and integrable dynamics

In this section, we discuss the role of Poisson brackets in
reducing the Hamiltonian system Eq. (36)–Eq. (38) govern-
ing the transverse electron and proton dynamics (i.e. Eqs.6)
in the non-integrable and integrable cases. In the integrable
cases (i.e.δ0=0), there is a reduction of the phase space
possible from a four dimensional phase space to a two di-
mensional phase space, which is associated with the two Lie
symmetriesX1 (x-translation symmetry) andX2 (rotational
symmetry) (see paper I). The fourth order Hamiltonian sys-
tem Eq. (6) for δ0=0 has two Lie symmetries and hence
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is completely integrable by Darboux’s theorem (e.g.Olver,
1993). The conditionδ0=0 in fact forces the dynamics to be
restricted to a single Hamiltonian contour in the(φ,w) phase
plane, wherew=u2

e andφ=φp−φe.
Using the amplitude and phase form of the complex trans-

verse velocitiesu±

j =uj exp(±iφj ) (j=e, p), the Hamilto-
nian density Eq. (38) may be written in the form:

H = −
2i(µ+ 1) cosθ

ux0

(
P(ûx)+ PB − P

(w)
x0

)
, (39)

where

PB =
M2

Ae0

2(µ+ 1) cos2 θ

(
u2
e + µ2u2

p + 2µupue cosφ
)

+
ux0

(µ+ 1) cosθ
Re
[
δ∗0(u

+
e + µu+

p )
]

+
u2
x0|δ0|

2

2(µ+ 1)M2
Ae0

,

(40)

andP(ûx) is the fluid dynamical momentum flux given by
Eq. (18). In the general case,δ0 6=0, the Hamiltonian den-
sity Eq. (39) can be written in terms of the four variables
(ue, up, φ, φ̃) whereφ=φp−φe and φ̃=φp+φe [note that
φp=(φ+φ̃)/2 andφe=(φ̃−φ)/2]. Thex-component of the
fluid velocity ux=ux(ue, up) can be determined by solving
the energy integral Eq. (22) for ux in terms ofue andup.

In the integrable caseδ0=0, the Hamiltonian density
Eq. (39) depends only on(ue, up, φ). However, by using
the rotational integralR=u2

e−µ
2u2
p, H may be written in

the formH=Ĥ(φ,w) whereφ=φp−φe andw=u2
e are the

canonical variables in a reduced phase space.
In Sect. 4.1, we show how the phase space shrinks from

a four dimensional phase space to a two dimensional phase
space in the integrable cases, by using appropriate transfor-
mations of the phase space variables describing the Poisson
bracket. Section 4.2 discusses the integration of the equa-
tions in the integrable cases whenδ0=0.

4.1 Poisson brackets and variable transformations

Hamilton’s Eqs. (36–37) can be written in the Poisson
bracket form:

dqk

dx
= {qk, H } ,

dpk

dx
= {pk, H } . (41)

Here

H =

∫
∞

−∞

dx H, (42)

is the Hamiltonian functional and

{F,G} =

∫
∞

−∞

2∑
k=1

(
δF

δqk

δG

δpk
−
δF

δpk

δG

δqk

)
dx, (43)

is the Poisson bracket for functionals. In this formulation

pj (x) =

∫
∞

−∞

pj (x
′)δ
(
x′

− x
)
dx′,

qj (x) =

∫
∞

−∞

qj (x
′)δ
(
x′

− x
)
dx′, (44)

define the functionalspj (x) andqj (x). From Eq. (44)

δpj (x)

δpk(x′)
= δjkδ

(
x′

− x
)
,

δqj (x)

δqk(x′)
= δjkδ

(
x′

− x
)
, (45)

whereδjk is the Kronecker-delta symbol andδ
(
x′

−x
)

is the
Dirac-delta distribution.

Using the definition Eq. (43) for the Poisson bracket in
Eq. (41) we obtain:

dqk

dx
=
δH

δpk
and

dpk

dx
= −

δH

δqk
. (46)

In the present example, δH/δpk=∂H/∂pk and
δH/δqk=∂H/∂qk, and hence Eq. (46) are equivalent
to the classical Hamiltonian Eq. (36).

The Poisson bracket Eq. (43), written in terms of the
canonical variables Eq. (37) reduces to:

{F,G} =

∫
∞

−∞

[(
δF

δu+
e

δG

δu−
e

−
δF

δu−
e

δG

δu+
e

)
−

1

µ2

(
δF

δu+
p

δG

δu−
p

−
δF

δu−
p

δG

δu+
p

)]
dx.

(47)

The Poisson bracket Eq. (47) can be transformed into a va-
riety of different forms, by changing the physical variables
used in the Poisson bracket. This is useful in describing
the reduced Hamiltonian dynamics associated with the in-
tegrable cases whereδ0=0, where a reduction in the number
of phase space variables can be effected. To this end, we
use the amplitude and phase form of the transverse fluid ve-
locitiesu±

j =uj exp(±iφj ), (j=e, p). Using the variational
derivative transformations:

δF

δu±

j

=
1

2
exp

(
∓iφj

) ( δF
δuj

∓
i

uj

δF

δφj

)
, (48)

the Poisson bracket Eq. (47) becomes:

{F,G} =
1

2i

∫ [
1

ue

(
δF

δφe

δG

δue
−
δF

δue

δG

δφe

)
−

1

µ2up

(
δF

δφp

δG

δup
−
δF

δup

δG

δφp

)]
dx.

(49)

Similarly, using the variables:

φ̃ = φp +φe, φ = φp −φe, χj = u2
j , j = e, p, (50)
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and the variational derivative transformations

δF

δuj
=2uj

δF

δχj
,

δF

δφp
=
δF

δφ̃
+
δF

δφ
,

δF

δφe
=
δF

δφ̃
−
δF

δφ
, j = e, p, (51)

the bracket Eq. (49) transforms to the form:

{F,G} =i

∫
∞

−∞

{
δF

δφ

(
δG

δχe
+

1

µ2

δG

δχp

)
−
δG

δφ

(
δF

δχe
+

1

µ2

δF

δχp

)
−

[
δF

δφ̃

(
δG

δχe
−

1

µ2

δG

δχp

)
−
δG

δφ̃

(
δF

δχe
−

1

µ2

δF

δχp

)]}
dx.

(52)

Introducing the variables:

χ± = χe ± µ2χp, (53)

to replaceχe andχp (note thatχ−=u2
e−µ

2u2
p≡R=const.

is the rotational integral of Eq. (6) if δ0=0), and using the
transformations:

δF

δχe
=
δF

δχ+

+
δF

δχ−

,
δF

δχp
= µ2

(
δF

δχ+

−
δF

δχ−

)
, (54)

the bracket Eq. (52) reduces to the canonical form:

{F,G} =2i
∫

∞

−∞

(
δF

δχ−

δG

δφ̃
−
δF

δφ̃

δG

δχ−

+
δF

δφ

δG

δχ+

−
δF

δχ+

δG

δφ

)
dx,

(55)

which shows that(χ−, φ̃) and(φ, χ+) are canonically con-
jugate coordinates.

Using the Poisson bracket Eq. (55) we obtain the alterna-
tive Hamiltonian formulation of Eq. (36):

dφ

dx
=
∂H2

∂χ+

,
dχ+

dx
= −

∂H2

∂φ
,

dχ−

dx
=
∂H2

∂φ̃
,

dφ̃

dx
= −

∂H2

∂χ−

, (56)

where

H2 =
4(µ+ 1) cosθ

ux0
P (w)x , (57)

is the Hamiltonian (i.e.H2=2iH where we neglectP (w)x0 in
Eq.38).

In the integrable case,χ−=u2
e − µ2u2

p=const., δχ−=0,
and the bracket Eq. (55) reduces to the simplified form:

{F,G} = 2i
∫

∞

−∞

(
δF

δφ

δG

δχ+

−
δF

δχ+

δG

δφ

)
dx. (58)

The result Eq. (58) is an example of Hamiltonian reduction
(e.g.Marsden and Ratiu, 1994). It shows that the four di-
mensional phase space spanned by(χ−, φ̃) and (φ, χ+) in
the integrable case reduces to a two dimensional submani-
fold governed by the variablesφ andχ+, on which bothH
andχ− are constant. To make it more explicit, that the man-
ifold is two dimensional, we note that

δG

δχ+

=
1

2

(
δG

δχe
+

1

µ2

δG

δχp

)
=

1

2

δĜ

δχe
, (59)

where Ĝ is the functional obtained by settingχp=(χe −

χ−)/µ
2 in G(χe, χp, φ, φ̃) whereχ−=const. (i.e. Ĝ is a

functional ofχe andφ, and φ̃ does not play a role in the
Hamiltonian dynamics). Using Eq. (59), the Poisson bracket
Eq. (58) reduces to:

{F,G} = i

∫
∞

−∞

(
δF̂

δφ

δĜ

δχe
−
δF̂

δχe

δĜ

δφ

)
dx. (60)

The bracket Eq. (60) describes the integrable dynamics on
the (φ, χe) phase space, where the functionalsF̂ andĜ de-
pend onφ andχe.

4.2 Integrable Cases:δ0=0

In general, for a spatial Hamiltonian system, the evolution of
a physical variableψ is given by the Poisson bracket equa-
tion ψx={ψ,H }. Thus,wx={w,H } andφx={φ,H } where
w=u2

e ≡ χe. Using the Poisson bracket Eq. (60) we obtain
Hamilton’s equations:

dw

dx
= −

∂H0

∂φ
=2

M2
Ae0

ux0 cosθ
µupue sinφ, (61)

dφ

dx
=
∂H0

∂w
=

M2
Ae0

ux0 cosθ

[
2 +

(
µup

ue
+

ue

µup

)
cosφ

]
−
(µ+ 1) cosθ

µux
, (62)

forw andφ, whereH0=iH andH is the Hamiltonian density
for δ0=0. If we omit the non-essential integration constant
P
(w)
x0 then

H0=
M2

Ae0

ux0 cosθ

(
u2
e + µ2u2

p + 2µupue cosφ
)

+
2(µ+ 1) cosθ

ux0
P(ûx).

(63)

Consider the longitudinal velocity structure Eq. (31):

dux

dx
= −

M2
Ae0uxueup sinφ

ux0 cosθ(u2
x − c2

s )
. (64)

We show below that the righthand side of Eq. (64) can be
expressed solely as a function ofux , and hence can be in-
tegrated to givex as a function ofux . The solution forux
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as a function ofx is not necessarily a 1–1 function. For ex-
ample,ux may become a double valued function ofx if the
solution passes through the sonic point whereux=cs . In this
case a shock must be inserted into the flow in order to obtain
a single valued weak solution.
Proposition 4.1

The longitudinal structure Eq. (64) may be reduced to the
separable form:

dux

dx
= −

σ(µ+ 1)ux0 cosθux
√
R(ux)

µ(u2
x − c2

s )
. (65)

whereσ=sgn(tan(φ/2). In particular, the integral of Eq. (65)
is of the form:

x = X(ux) = −

∫ ux µ(u2
x − c2

s )dux

σ(µ+ 1)ux0 cosθux
√
R(ux)

+const.

(66)

where it is assumed that the integral in Eq. (66) is integrable.
The functionR(ux) is defined by the equations:

R(ux) = N(ux)D(ux), (67)

N(ux) =
M2

Ae0(ue + µup)
2

2(µ+ 1) cos2 θ
− [H − P(ûx)], (68)

D(ux) = H − P(ûx)−
M2

Ae0(ue − µup)
2

2(µ+ 1) cos2 θ
, (69)

τ2
= tan2

(
φ

2

)
=
N(ux)

D(ux)
, σ = sgn(τ ), (70)

û2
e = µ

(
R̂+ 2µε̂HT
µ(µ+ 1)

− û2
x −

2W(ûx)

µ+ 1

)
, (71)

û2
p =

1

µ

(
2ε̂HT − R̂
µ+ 1

− û2
x −

2W(ûx)

µ+ 1

)
. (72)

where

R̂ ≡
R
u2
x0

= û2
e − µ2û2

p,

ε̂HT ≡
εHT

u2
x0

=
ε0

u2
x0

+
1

2
(µ+ 1)V̂ 2

HT , (73)

are the normalized rotational integral Eq. (30) and the energy
integral in the dHT frame respectively. The explicit form for
R(ux) from Eqs. (67–72) is:

R(ux) =
2µM2

Ae0u
2
x0

(µ+ 1) cos2 θ
[H − P(ûx)][

4µε̂HT + (1 − µ)R̂
2µ(µ+ 1)

− û2
x −

2W(ûx)

µ+ 1

]

− [H − P(ûx)]
2
−

M4
Ae0u

4
x0R̂

2

4(µ+ 1)2 cos4 θ
,

(74)

where

H =
H0ux0

2(µ+ 1) cosθ
≡P(ûx)+

M2
Ae0

2(µ+ 1) cos2 θ(
u2
e + µ2u2

p + 2µupue cosφ
)
,

(75)

is a renormalised version of the Hamiltonian integralH0 and

W(ûx) =
û

1−γe
x

(γe − 1)M2
e0

+
µû

1−γp
x

(γp − 1)M2
p0

, (76)

is the enthalpy contribution to the energy integral Eq. (22),
P(ûx) is the longitudinal, fluid dynamicalx-momentum flux
of the proton and electron fluids Eq. (18), andc2

s is the square
of the combined sound speed Eq. (32) which is a function of
ux .

The value of cosφ throughout the wave from Eq. (75) is
given by

cosφ =
2(µ+ 1) cos2 θM−2

Ae0[H − P(ûx)] − u2
e − µ2u2

p

2µupue
,

(77)

which can be written solely as a function ofux .
Proof: The main idea behind the proof is to expressue, up
and sinφ in thex-structure Eq. (64) in terms ofux . To derive
Eq. (71) and (72) for ue(ux) andup(ux) we note that the
energy integral Eq. (22) may be written in the form:

ε̂HT =
1

2
(µ+ 1)û2

x +W(ûx)+
1

2

(
û2
e + µû2

p

)
, (78)

Simultaneously solving the first equation in Eq. (73) and
Eq. (78) for û2

e andû2
p gives Eq. (71) and Eq. (72).

To derive Eq. (70) for τ = tan(φ/2), substitute the half an-
gle trignometric formula cosφ = (1−τ2)/(1+τ2) for cosφ
in the Hamiltonian integral Eq. (75), and solve forτ2 in terms
of H and the other variables, to obtainτ2

=N(ux)/D(ux)

whereN andD are given by Eq. (68) and Eq. (69). A
straightforward calculation gives:

sinφ =
2τ

1 + τ2
=
σ(µ+ 1) cos2 θ

√
N(ux)D(ux)

M2
Ae0µupue

. (79)

Using the identity Eq. (79) in the structure Eq. (64) gives the
differential Eq. (65) in whichdux/dx is a function ofux .

In the integrable case, the differential equation forφ̃
Eq. (28) reduces to:

dφ̃

dx
=
M2

Ae0ux0

cosθ

(
ue

µup
−
µup

ue

)
cosφ +

(µ− 1) cosθ

µux
.

(80)
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The right-hand side of Eq. (80) can be written solely in
terms ofux . Thus,dφ̃/dux=dφ̃/dx/(dux/dx)=F(ux) is
also a functionF(ux) of ux , and hencẽφ=

∫
F(ux)dux is

also a function ofux . The net upshot of the above analy-
sis is thatx=X(ux), φ=φ(ux), ue=ue(ux), up=up(ux) and
φ̃=φ̃(ux), and hence the system Eq. (6) for the integrable
case can be expressed in terms of integrals of functions ofux
and in terms of ordinary functions ofux . Note that the proton
and electron phasesφp=(φ̃+φ)/2 andφe=(φ̃−φ)/2 can be
expressed in terms ofφ andφ̃. One can easily show thatN
andD are non-negative. This completes the proof.

5 Solution examples

In this section we give numerical solution examples of
oblique travelling waves for the integrable cases for which
δ0=0. We concentrate on the cold plasma solutions. We give
a discussion of the nature of the critical points for the hot
plasma case as well. For the integrable cases, the integrabil-
ity condition δ0=0, (i.e. Eq.14), is equivalent to setting the
total complex, transverse momentum flux in the dHT frame,
P
(d)
+ , equal to zero. A detailed discussion of the integrability

conditionδ0=0 is given in Appendix A.
In general, the HamiltonianH in the cold plasma, inte-

grable caseδ0=0 has the form:

H = uxux0 + A
(
u2
e + µ2u2

p + 2µupue cosφ
)
, (81)

where

u2
e =u2

e0 + µ(u2
x0 − u2

x), u2
p = u2

p0 +
(u2
x0 − u2

x)

µ
, (82)

A =
M2

Ae0 sec2 θ

2(µ+ 1)
≡

M2
Au

2
x0

2(µ+ 1)2
. (83)

Alternatively,H can be written in terms of the canonical vari-
ablesw=u2

e andφ in the form:

H =ux0ux(w)

+ A
(
w + µ2up(w)

2
+ 2µw1/2up(w) cosφ

)
,

(84)

where

µup(w) =

(
µ2u2

p0 − u2
e0 + w

)1/2
,

ux(w) =

(
u2
x0 +

(u2
e0 − w)

µ

)1/2

. (85)

However, the integrability constraints Eq. (14) (i.e.δ0=0) re-
quire that the initial transverse electron and proton fluid ve-
locities satisfy the Eqs.

uey0 + µupy0 = 0, uez0 + µupz0 = b, (86)

corresponding to zero, total transverse momentum fluxes for
the system in the dHT frame. Using Eq. (86) (see Appendix
A), it follows, that the Hamiltonian integralH can only have
one value, namelyH1, where

H1 = u2
x0 +

tan2 θ

2M2
A

= u2
x0

(
1 +

sin2 θ

2(µ+ 1)M2
Ae0

)
. (87)

Thus, the system trajectories in phase space satisfy the equa-
tion

H(φ(x),w(x)) = H1, (88)

which essentially fixes the solutions to lie on a particular in-
variant torus. Put another way, the solution trajectories in
phase space consist of the locus of phase space points(φ,w)

satisfyingH(φ,w)=H1 (i.e. anH1 contour level).
In the present paper, we restrict our attention to the class

of integrable solutions withδ0=0 satisfying the initial condi-
tions:

φe0 = φp0 =
π

2
, φ0 = 0, φ̃0 = π

ue0 + µup0 =
(µ+ 1) tanθ

ux0M
2
A

=
ux0 sinθ cosθ

M2
Ae0

= b. (89)

A more general class of initial data withφ0 6=0, satisfying the
integrability conditionδ0=0 is discussed in Appendix A.

In general, the class of solutions satisfying Eq. (87) and
Eq. (89) includes solutions for which the transverse, complex
velocitiesu(w)+j0 =u

(w)y

j0 + iu
(w)z
j0 in the travelling wave frame

are non-zero. However, in the special case of Eq. (89) for
which

ue0 = up0 = tanθ, M2
Aux0 = 1,

φe0 = φp0 =
π

2
, φ0 = 0, φ̃0 = π. (90)

we obtain an integrable class of solutions satisfyingu
(w)+
j0 =0

at x=x0 in the wave frame. These solutions have similar
boundary conditions to the oscilliton solutions investigated
by Dubinin et al.(2003), for whichu(w)+j0 =0 asx0→ − ∞.
For the initial data Eq. (90), the Hamiltonian integral Eq. can
be written in the(87) reduces to:

H1 = u2
x0 +

1

2
ux0 tan2 θ. (91)

We first discuss the critical points of the differential equa-
tion system Eq. (61) and Eq. (62) for w=u2

e andφ governing
the Hamiltonian dynamics, as well as the related Eqs. (64)
and (80) for dux/dx anddφ̃/dx. We discuss the sonic points
and critical points for the hot plasma case, followed by a
more detailed discussion of the cold plasma case, which is
the main focus of the present paper. This is followed by
examples of the phase trajectories in(φ,w) phase space,
obtained by plotting the contours of the Hamiltonian in the
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phase plane. We discuss in detail the longitudinal structure
equation fordux/dx, and how the solutions depend on the
roots of the cubic equation,R(ux)=0 determining the values
of ux for which dux/dx=0. Examples of the solutions for
different initial data are presented.

5.1 Critical points

The basic differential equations governing the two-fluid trav-
elling waves consist of the Hamiltonian Eqs. (61–62):

dw

dx
= −

∂H0

∂φ
= 2

M2
Ae0

ux0 cosθ
µupue sinφ, (92)

dφ

dx
=
∂H0

∂w

=
M2

Ae0

ux0 cosθ

[
2 +

(
µup

ue
+

ue

µup

)
cosφ

]
−
(µ+ 1) cosθ

µux
, (93)

wherew=u2
e ,

u2
e = u2

e0 + µ

(
u2
x0 − u2

x −
21W

µ+ 1

)
, (94)

u2
p = u2

p0 +
1

µ

(
u2
x0 − u2

x −
21W

µ+ 1

)
, (95)

u2
e0 = µ2

u2
py0 +

(
upz0 −

µ+ 1

µ

tanθ

ux0M
2
A

)2
 , (96)

andW(ux) is the combined enthalpy of the electron-proton
plasma, given by Eq. (76), and1W=W(ux)−W(ux0). Note
that for the integrable caseδ0=0, andu2

e0 can be expressed
in terms ofupy0 andupz0 as in Eq. (96).

For hot plasmas, with1W(ux) a non-trivial function of
ux , u2

e and u2
p consist of a single hump-like function of

ux , that have maxima at the sonic point whereu2
x=c

2
s and

cs is the combined electron and proton sound speed given
by Eq. (32). Thus, for a given value ofw=u2

e , there are
in general two values ofu2

x , one withu2
x<c

2
s and one with

u2
x>c

2
s . Hence, there is a subsonic solution branch of the

Hamiltonian,H−

0 with ux<cs and a supersonic branchH+

0 ,
with ux>cs , in which the sonic lineux=cs separates the two
branches.

It is useful to supplement the Hamiltonian Eqs. (92–93)
with equations fordux/dx anddφ̃/dx (Eqs. (64and80) ):

dux

dx
= −

M2
Ae0uxueup sinφ

ux0 cosθ(u2
x − c2

s )
, (97)

dφ̃

dx
=
M2

Ae0ux0

cosθ

(
u2
e − µ2u2

p

µupue

)
cosφ

+
(µ− 1) cosθ

µux
. (98)

Introducing the state vector (Koet al. 2007, in preparation):

W =

(
x, u2

x, φ, φ̃
)t
, (99)

Equations (92)–(93) and (97)–(98) can be written in the
form:

dW
dλ

=


u2
x − c2

s

−2M2
Ae0u

2
xueup sinφ/(ux0 cosθ)
(u2
x − c2

s )dφ/dx

(u2
x − c2

s )dφ̃/dx

 ≡ N, (100)

where N is the column vector on the right hand side of
Eq. (100). In the first equation in Eq. (100), dx/dλ=(u2

x−c
2
s )

defines a convenient parameterλ along the solution curves,
which enables one to pass through the sonic point, without
encountering an infinite derivative during numerical integra-
tion. The critical points of the system Eq. (100) are points at
which the components of the column vectorN are simultane-
ously zero. This is the approach used by Koet al. (2007) in a
study of the integrable, travelling waves in the above model
of hot electron and proton plasmas withpe 6= 0 andpp 6= 0.

In the present paper, we restrict our attention to
cold electron-proton plasmas, in which the entropy
W(ux)=W(ux0)=0 and hence1W=0 in Eqs. (94–95). In
this case, there is a one-to-one relation betweenu2

e andu2
x .

In the cold plasma limit, the sound speedscj0→0 and the
sonic Mach numbersMj0→∞ (j=e, p), and the flow is su-
personic throughout. The critical points in this case, are sim-
ply the points in(φ,w) phase space where

dw

dx
= −

∂H0

∂φ
= 0 and

dφ

dx
=
∂H0

∂w
= 0. (101)

We note

(i). dw/dx = 0 whenφ = 0,±π or ue = 0 orup = 0,

(ii). dφ/dx = 0 when the right hand side of (93) is zero.

Consider the possibility of a critical point on the lineφ=0,
for whichdw/dx=0. Forφ=0,

dφ

dx
=
M2
Aux0 cosθ

1 + µ

(ue + µup)
2

µupue
−
(µ+ 1) cosθ

µux
≡ f (ux),

(102)

wheref (ux) is the function ofux obtained by using the so-
lutions Eq. (94) and Eq. (95) for u2

e andu2
p. Note thatue≥0

andup≥0 are required for physical solutions forue andup.
From Eq. (94)

u2
e = 0 when u2

x = u2
x1 = u2

x0 + u2
e0/µ. (103)

Similarly from Eq. (95):

u2
p = 0 when u2

x = u2
x2 = u2

x0 + µu2
p0. (104)
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From Eqs. (103–104):

u2
x1 − u2

x2 =
u2
e0 − µ2u2

p0

µ
≡
R
µ
, (105)

where R is the rotational integral. In generalR can
be positive or negative. For the conditions Eq. (90)
R=(1−µ2) tan2 θ<0 andux2>ux1.
Proposition 5.1

There is a critical point on the lineφ=0 in the (φ, ux)
plane atux=uxc where 0<uxc<um, um=min(ux1, ux2), and
ux1 andux2 refer to the values ofux for which ue=0 and
up=0 respectively (noteum>ux0). Furthermore, the critical
point is a centre.
Proof: The proof follows by noting that

df

dux
=
M2
Aux0 cosθuxR2

2(µ+ 1)µ2u3
eu

3
p

+
(µ+ 1) cosθ

µu2
x

>0, (106)

and by noting thatf (ux)→−∞ asux→0 andf (ux)→∞ as
u→um. The proof that(φ, ux)=(0, uxc) is a centre critical
point is given in Appendix B.
Comment:
The exact location of the centre critical point in Proposition
5.1 depends on the value of the parameters. For example, if
ue0=up0= tanθ andM2

Aux0=1 as in Eq. (90) then

f (ux0) =
(µ+ 1) cosθ

µux0
(ux0 − 1). (107)

Thus, ifux0>1 (i.e. for a sub-Alfv́enic travelling wave with
MA<1) thenuxc<ux0. However, for a super-Alfv́enic travel-
ling wave withMA>1 andux0<1,uxc>ux0. For an Alfv́enic
wave withMA=1 andux0=1, thenuxc=1.
Proposition 5.2

There are no critical points along the linesφ= ± π in the
(φ,w) phase plane.
Proof: For φ= ± π , dw/dx=0 in Eq. (92). Also from
Eq. (93) on the linesφ= ± π :

dφ

dx
= −

(
M2

Ae0(ue − µup)
2

ux0 cosθ
+
(µ+ 1) cosθ

µux

)
<0. (108)

Hencedφ/dx 6=0 alongφ= ± π , and there are no critical
points alongφ= ± π . This completes the proof.

5.1.1 Non-standard critical points and separatrices

The critical point(φ1, w1)=(0, u2
e1) in Proposition 5.1 is a

centre critical point. Inspection of Eqs. (92) and (93) for
dw/dx and dφ/dx reveals that points whereφ→ ± π/2
and eitherup→0 or ue→0 may behave like critical points
if approached from a specific direction in the(φ,w) phase
space. These points are not standard critical points, since
the behaviour ofdw/dx and dφ/dx near these points di-
verges if the points are approached from other directions. Be-
low we discuss the behaviour of the solutions in the vicinity

of the (φ2, w2)=(−π/2,0) and at(φ3, w3)=(π/2,0) in the
(φ,w) plane. We restrict our attention to the critical points
(φ,w)=(±π/2,0) (it is straightforward to carry out a simi-
lar analysis for the points for whichφ=±π/2 andup=0). It
turns out that the Hamiltonian contours passing through these
“critical points” act as separatrices in the(φ,w) phase space,
separating those solutions which are bounded inφ from those
which are not. Discussion of the conditions for separatri-
ces to appear in the phase space, associated with these crit-
ical points are given in Appendix C. Note that asue→0,
dw/dx→0 near these points. However, the behaviour of
dφ/dx in Eq. (93) is strongly dependent on the direction
of approach at these points, and depends on the limit of the
ratio ofµup cosφ/ue as both cosφ→0 andue→0 simulta-
neously. Using the perturbation expansionφ=−π/2 + α2ue
whereue<<1, one finds thatdw/dx→0 and anddφ/dx→0
as one approaches(φ2, w2) along the ray

δφ

δue
= α2 =

[(µ+ 1)2 − 2µuxc2(M2
Aux0)]

µ2uxc2upc2(M
2
Aux0)

, (109)

where

uxc2 =

(
u2
x0 + u2

e0/µ
)1/2

, upc2 =

(
µ2u2

p0 − u2
e0

)1/2

µ
,

(110)

However, along the rayδue=0, δφ 6=0 and dφ/dx is un-
bounded. Hence in general, the solution trajectories skirt
around(φ2, w2) except along the ray Eq. (109). Similarly,
for (φ3, w3)=(π/2,0), dφ/dx→0 anddw/dx→0 along the
ray φ=π/2−α2ue (i.e. δφ/δue=−α2). The above results
Eqs. (109–110) apply to the case of a cold plasma (similar
behaviour applies for a hot plasma), and it is assumed that
the rotational integralR<0.
Proposition 5.3

The separatrix passing through(φ,w)=(±π/2,0) for
cold plasma solutions, satisfying the integrability constraints
Eq. (89) also passes through the points(φ,w)=(0,0) and
(φ,w)=(0, u2

e0) where

ue0 =
2(µ+ 1)ux0 tanθ

(µ+ 1)2/µ− tan2 θ
. (111)

The proof is given in Appendix C. Note thatue0+µup0 = b,
ue0>0 andup0>0 must also be satisfied (see Appendix C for
details).
Comment:
It is also possible to have a separatrix passing through the
pointsφ= ±π/2 andup=0. The conditions for this to apply
are discussed in Appendix C.
Proposition 5.4

The condition for the centre critical point
(φ1, w1)=(0, w1) to be a stationary point of the differ-
ential equation system Eqs. (92–93) is that dφ/dx=0 and
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dw/dx=0 simultaneously at the initial point(φ0, u
2
e0) where

φ0 = 0 andux=ux0. This condition is satisfied if

tan2 θ = M2
Aup0ue0. (112)

Proposition 5.5
The conditions Eq. (89) for an integrable solution and the

condition Eq. (112) for (φ1, w1)=(0, w1) to be a stationary
critical point may be written in the form:

ue0 + µup0 =
ux0 sinθ cosθ

M2
Ae0

= b, (113)

µue0up0 =
µu2

x0 sin2 θ

(µ+ 1)M2
Ae0

. (114)

Equations (113–114) are satisfied simultaneously ifue0 sat-
isfies the quadratic equation:

D ≡ u2
e0−

ux0 sinθ cosθ

M2
Ae0

ue0+
µ sin2 θ

(µ+ 1)M2
Ae0

u2
x0 = 0. (115)

From Eqs. (113–114) we obtain:

u±

e0 =
ux0 sinθ cosθ

2M2
Ae0

(
1 ±

√
δ1

)
, (116)

µu±

p0 =
ux0 sinθ cosθ

2M2
Ae0

(
1 ∓

√
δ1

)
, (117)

as the solutions forue0 andup0, where

δ1 = 1 −
4µ

(µ+ 1)
M2

Ae0 sec2 θ. (118)

Comment: 1
The conditions for the stationary point for integrable solu-
tions in Proposition 5.5 requiresδ1>0. This condition re-
quires that

MAe0 secθ<
1

2

√
µ+ 1

µ
. (119)

Comment: 2
It turns out that the integrable solutions of the system of dif-
ferential Eqs. (92–98) for the cold plasma case, can be classi-
fied in terms of whetherD>0,D<0 orD=0, and on whether
δ1>0, δ1<0 or δ1=0, whereD is given by Eq. (115) andδ1
by Eq. (117). The conditionD=0 is in fact a condition for
the functionR(ux) in the longitudinal structure Eq. (65) for
dux/dx to have a double zeroux=ux0 in the cold plasma
case.
Comment: 3
It is instructive to write the functionD(ue0) in Eq. (115) in
terms of the rotational integralR. Taking into account the
integrability constraint Eq. (89) for φ0=0, we obtain the two
equations:

ue0 + µup0 = b, R = u2
e0 − µ2u2

p0. (120)

From Eq. (120), we obtain the equations:

ue0 =
R+ b2

2b
, µup0 =

b2
−R
2b

, (121)

for ue0 andµup0. Because, we requireue0≥0 andup0≥0 for
a physical solution, then the rotational integralR in Eq. (121)
must lie in the range:

−b2
≤ R ≤ b2. (122)

The separatrix solutions associated withue0=0 andµup0=0
(Appendix C) correspond toR=−b2 andR=b2 respectively.
Using Eq. (121) for ue0 in the expression Eq. (115) for
D(ue0) we obtain:

D =
R2

− b4δ1

4b2
, (123)

whereδ1 is given by Eq. (118). The result Eq. (123) shows
the important role played by the rotational integralR and
MAe0 secθ (i.e. δ1) in determining the roots ofR(ux) in the
longitudinal structure Eq. (65) for dux/dx in the cold plasma
limit.

5.2 Hamiltonian contours

In this section we give examples of the Hamiltonian trajecto-
ries in the(φ,w) phase space, for the integrable cold plasma
solution cases satisfying one of the initial conditions Eq. (89)
or Eq. (90). The integrability constraints Eq. (86) force the
system trajectories to lie on a specific Hamiltonian contour,
H=H1, whereH1 depends on the initial data. We plot the
system trajectories in phase space (the contoursH=H1),
for a family of different Hamiltonian functions Eq. (84) ob-
tained by varying a particular parameter in the Hamiltonian
H (e.g.ux0) whilst keeping the other parameters fixed.

Figure 1 shows a family of contoursH=H1 in the(φ,w)
phase-plane, for a cold plasma satisfying the initial con-
ditions Eq. (90), i.e., M2

Aux0=1, ue0=up0= tanθ , where
θ=60◦. For this initial data, the transverse velocities of the
electrons and protons are zero atx=x0 in the travelling wave
frame, which is similar to the boundary conditions used by
Dubinin et al.(2003). The figure shows the effect of varying
the longitudinal flow speedux0 from ux0=0.0001 in steps of
0.1 up toux0=2.0. Theux0=0.0001 curve is the nearly hor-
izontal curve passing throughw=3. The parameterux0 in-
creases moving clockwise and downwards across the curves
on the right hand side of the figure (ux0=0.1(0.1)0.4) until
one encounters the separatrix (ux0≈0.5), which is the con-
tour with the cusps at(φ,w) = (±π/2,0). For the separa-
trix,

ux0 =
ue0

[
(µ+ 1)2/µ− tan2 θ

]
2(µ+ 1) tanθ

(124)

(see Appendix C). Settingue0= tanθ=
√

3 andµ=1836 in
Eq. (124) givesux0=0.4997≈0.5, for the value ofux0 for
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�3 �2 �1 0 1 2 3
0

2

4

6

8

10

12

Φ

w

Fig. 1. H1-level Hamiltonian contours forθ=60◦ andM2
A
ux0=1.

In this case ue0=up0= tanθ while ux0 takes the values
ux0=0.0001, 0.1(0.1)2.0. (and henceMA varies). The horizontal
contour corresponds to aux0 value of 0.0001.The separatrix (bold
curve) is the contour corresponding toux0=0.5.

the separatrix. The curves inw<3: ux0=0.6(0.1)1.0 for in-
creasingux0 correspond to a sequence of closed orbits of
decreasing area that converge onto the centre critical point
(φ,w)=(0,3) for ux0=1. Note that all the orbits pass
through the same initial point(φ,w)=(0,3) in the phase
plane. The contour forux0=1 consists of a single isolated
point (φ0, w0)=(0,3). It is an isolated, centre critical point
of H . The curves inw>3 correspond toux0=1.1(0.1)2.0,
in whichux0 increases monotonically moving outward from
φ=0 in both directions. The tops of the curves are not
shown. They consist of a sequence of closed ellipsoidal
shaped curves in the regionw≥3, where the topmost points
of the curves rise with increasingux0. BecauseM2

Aux0=1,
the Alfvén Mach number of the travelling waves decreases
asux0 increases. Thus, the largest value ofMA is the curve
ux0=0.0001 for whichMA=100 and the smallest value of
MA isMA=0.7071 obtained whenux0=2.0.

Figure 2 shows phase space trajectoriesH(φ,w)=H1 for
θ=30◦, MAe0=0.45, µ=1836 in whichux0 is changed in
steps of 0.02 fromux0=0.0001 toux0=0.4. The value of
ue0 is fixed by the equation:

ue0 =
2ux00(µ+ 1) tanθ

(µ+ 1)2/µ− tan2 θ
, (125)

whereux00=0.1. the curveux0=0.1 corresponds to the sep-
aratrix solution andup0 is chosen to satisfy the integrability
constraints Eq. (89). Note thatup0 6=ue0 in this example (in
Fig. 1,ue0=up0= tanθ ). In the lower plane (w<0.014), the
contours split into two families. The family withux0<0.1
lies outside the separatrix, with the near horizontal curve
corresponding toux0=0.0001, andux0 increases monoton-
ically moving downward across the curves until the separa-
trix ux0=0.1 is obtained. Inside the separatrixux0, the closed
loop contours decrease in size with increasingux0 until the
centre critical point solution is reached for whichux0=0.2.

�3 �2 �1 0 1 2 3
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Φ

w

Fig. 2. H1-level Hamiltonian contours generated by vary-
ing ux0 from 0.02 to 0.4 in steps of 0.02. The value of
ue0 was fixed by evaluating the condition for a separatrix
ue0=2ux0(µ+1) tanθ/[(µ+1)2/µ− tan2 θ ] for the particular case
of ux0=0.1. In other words the bell-shaped separatrix-like contour
(bold curve) corresponds to the caseux0=0.1. The horizontal con-
tour corresponds to a value ofux0 equal to 0.0001. Other parame-
ters are:θ=30◦,MAe=0.45

These contours are bounded inφ (i.e. |φ|<φm<π/2 where
φm is the maximum value ofφ). The contours in the up-
per plane in the regionw>0.014 are closed curves withux0
increasing moving upward and outward away from the criti-
cal point (ux0=0.4 is the outermost curve inw>0.014). If
one imagines the phase space trajectories(φ(x), w(x)) as
wrapped around the surface of a cylinder, whereφ is the
azimuthal angle, then the solutions are either: (i) bounded
in |φ|<φm<π (i.e. the contours inside the separatrix, and in
the upper half planew>0.014) or (ii) the trajectories stretch
fromφ=−π toφ=π and wrap around the cylinder in a con-
tinuous, periodic fashion asx changes.

The above two examples of Hamiltonian trajectories
H(φ(x),w(x))=H1 in the (φ,w) phase plane illustrate
phase trajectories in cases where there is a separatrix. How-
ever, the existence of a separatrix depends on whether condi-
tions Eqs. (C5andC6) in Appendix C are satisfied.

5.3 The longitudinal structure equation forux

There are further constraints imposed on the travelling wave
solutions that are related to the longitudinal structure Eq. (65)
describing the dependence ofux onx, which in present case
reduces to:

dux

dx
= −

σ(µ+ 1)ux0 cosθ
√
R(ux)

µux
, (126)

whereR(ux) is given by Eq. (74) but withP=ux0ux ,H=H1,
and1W=0, namely:

R(ux) =
2µ(M2

Aux0)u
2
x0

(µ+ 1)2
(ux − ux0)(u

2
x + βux + γ ), (127)
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where

β = −
1

2M2
Aux0

(
tan2 θ +

(µ+ 1)2

µ

)
, (128)

γ = − u2
x0 +

ux0

2M2
Aux0

(
(µ+ 1)2

µ
− tan2 θ

)

−

(
u2
e0 + µ2u2

p0

2µ

)
+
(µ+ 1)2

2µ

tan2 θ

(M2
Aux0)2

. (129)

Alternatively,R(ux) can be written in the form:

R(ux) =
2µ(M2

Aux0)u
2
x0

(µ+ 1)2
(ux − ux0)(ux − u−)(ux − u+),

(130)

where the equations:

u± =
1

4M2
Aux0

(
tan2 θ +

(µ+ 1)2

µ

)
±

√
1,

1 =

[
ux0 −

1

4M2
Aux0

(
(µ+ 1)2

µ
− tan2 θ

)]2

+
(ue0 − µup0)

2

4µ
, (131)

give the rootsu± of the quadratic equationu2
x+βux+γ = 0.

5.3.1 Roots ofR(ux) = 0

In the case ue0=µup0, the rotational integral
R=u2

e0−µ
2u2
p0=0, 1 in Eq. (131) is a perfect square,

and the rootsu± of R(ux)=0 have a simple algebraic form.
The analysis of this class of solutions withR=0 is carried
out in Appendix D, where we show the connection between
these solutions and the Hamiltonian for parallel propagating
nonlinear whistler waves investigated byWebb et al.(2005).
More general solutions of the longitudinal stucture equation
in whichR 6=0 in general, are discussed below.
Proposition 5.6

The condition forR(ux) to have a double root, i.e.,
R(ux)=0 andR′(ux)=0 simultaneously, requires

(u2
x + βux + γ )(ux − ux0) = 0,

(ux − ux0)(2ux + β)+ u2
x + βux + γ = 0. (132)

Proof: There are two cases in which Eq. (132) are satisfied
simultaneously:

The proof splits into two cases.
Case (i)

If 1=0 thenu+=u− is a double root ofR(ux)=0. For this
rootu2

x+βux+γ=0 and 2ux+β=0, and hence Eq. (132) are
satisfied. Note that1 is a sum of two squares, and that1=0

only if each of the two squares are zero. Thus, the condition
1=0 is satisfied if

ue0 = µup0 =
b

2
≡
ux0 sinθ cosθ

2M2
Ae0

, (133)

M2
Ae0 sec2 θ =

µ+ 1

4µ

(
1 −

µ tan2 θ

(µ+ 1)2

)
. (134)

The conditions Eqs. (133–134) coupled with the solutions
Eq. (131) for u± imply

u+ = u− = ux0

(
1 +

sin2 θ

2(µ+ 1)M2
Ae0

)
=
H1

ux0
. (135)

whereH1 is the Hamiltonian integral Eq. (87). This solu-
tion case corresponds to an oscilliton solution, with zero ro-
tational integralR=u2

e − µ2u2
p=0.

Case (ii)
Equations (132) for a double root are also satisfied if:

u2
x0 + βux0 + γ = −

D

µ
= 0, (136)

where

D = µ

(
tan2 θ

M2
A

− ue0up0

)
≡ µ

(
u2
x0 sin2 θ

(µ+ 1)M2
Ae0

− ue0up0

)

≡ u2
e0 −

ux0 sinθ cosθ

M2
Ae0

ue0 +
µ sin2 θ

(µ+ 1)M2
Ae0

u2
x0. (137)

Thus, in this case, the condition forR(ux) to have a double
root,D=0, is equivalent to the condition that the integrable
solution has a stationary critical point (see Proposition 5.5).
Proposition 5.7

The rootsux=u± of R(ux) in Eq. (131) may be expressed
in the form:

u± =
u2

∗ ±
[
(u2

∗ − u2
x0)

2
+Du2

x0/µ
]1/2

ux0
, (138)

where

u2
∗ =

1

4M2
A

(
tan2 θ +

(µ+ 1)2

µ

)

≡
(µ+ 1)u2

x0

4µM2
Ae0 sec2 θ

(
1 +

µ tan2 θ

(µ+ 1)2

)
.

(139)

Proof: The proof of Eq. (138) follows from the identity:[
1

4M2
Aux0

(
tan2 θ +

(µ+ 1)2

µ

)
− ux0

]2

−1

= up0ue0 −
tan2 θ

M2
A

≡ −
D

µ
,

(140)

and the formulae Eq. (131) for u±.
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Comment: 1
The parametersδ1 of Eq. (118) andu∗ of Eq.( 139) are re-
lated by the equations:

u2
∗ = u2

x0 +
(µ+ 1)u2

x0

4M2
Ae0µ sec2 θ

(
δ1 +

µ tan2 θ

(µ+ 1)2

)
,

δ1 =
u2

∗ − u2
x0

(
1 + µ tan2 θ/(µ+ 1)2

)
u2

∗

. (141)

If δ1>0 (i.e. M2
Ae0 sec2 θ<(µ + 1)/4µ) then the roots

ue0=u
±

e0 of D=0 are real.
Comment: 2
If D=0 and u2

∗>u
2
x0 then u−=ux0 is a double root of

R(ux)=0. If u2
∗<u

2
x0 thenu+=ux0. However, this latter case

does not lead to physical solutions, because real solutions for
ue0 do not exist in this case.

The physically allowed solutions forux as a function of
x in Eq. (126) requires thatR(ux)≥0, and that the solution
pass throughux=ux0. In addition for integrable solutions,
ue0 andup0 must satisfy Eq. (89), andue0 andup0 must be
real and non-negative. The nature of the integrable solutions
for ux depends on the initial data forux0, ue0 andup0, which
in turn depend on whether (i)D>0, (ii) D<0 or (iii) D=0,
whereD(ue0) is given by Eq. (137).
Proposition 5.8

The physically allowed solutions forux versusx, for given
initial data forux0, ue0 andup0 requiresR(ux)≥0, which
depends on whether (i)D>0, (ii) D<0 or (iii) D=0. The
different possible solution cases are:
(i) CaseD>0

In this case R(ux)≥0 for ux in the range
u−≤ux≤ux0<u+. If δ1>0, then ue0 must be chosen
to lie in the range:{

0 ≤ ue0 ≤ u−

e0

}
∪

{
u+

e0 ≤ ue0 ≤
ux0 sinθ cosθ

M2
Ae0

}
. (142)

If δ1<0 thenue0 must be chosen in the range:{
0 ≤ ue0 ≤

ux0 sinθ cosθ

M2
Ae0

}
. (143)

up0 is obtained by using the integrability constraint Eq. (89):

µup0 =
ux0sinθ cosθ

M2
Ae0

− ue0. (144)

(ii) CaseD<0
In this case, the relative location of the roots depends

on whetheru2
∗>u

2
x0 or u2

∗<u
2
x0. If u2

∗>u
2
x0 andδ1>0 then

R(ux)≥0 forux in the range:ux0≤ux≤u−<u+ andue0 must
be chosen in the range

u−

e0 ≤ ue0 ≤ u+

e0, (145)

and µup0 is given by Eq. (144). Note that δ1>0,
using Eq. (141) implies u2

∗>u
2
x0. If u2

∗<u
2
x0, then

δ1<−µ tan2 θ/(µ+1)2 in Eq. (141), which leads to the con-
tradiction D>0. Hence, there are no exact solutions if
u2

∗<u
2
x0.

(iii) CaseD=0
In this case the roots Eq. (138) for u± reduce to:

u± =
u2

∗ ± |u2
∗ − u2

x0|

ux0
. (146)

If u2
∗>u

2
x0 thenux=u−=ux0 is a double root ofR(ux) and

u+ =
2u2

∗ − u2
x0

ux0
>ux0. (147)

A sketch ofR(ux) versusux reveals that the only solution
possible is the isolated pointux=ux0. We also requireδ1≥0
in order thatue0 andup0 are real. In fact

ue0 = u±

e0, (148)

are the only values ofue0 that are allowed, andµup0 is given
in terms ofue0 by Eq. (144). If u2

∗<u
2
x0 thenδ1<0, u±

e0 are
complex, and hence there are no solutions in this case.
Comment:
In addition to the above constraints onux , we requireu2

e>0,
which from Eq. (103) requires:

u2
x ≤ u2

x0 +
u2
e0

µ
, (149)

in order thatue is real.

5.3.2 Integration of the longitudinal structure equation

The longitudinal structure Eq. (126) can be integrated to give
x as a function ofux in the wave as:

x = −
µ√

2µM2
Aux0u

2
x0 cosθ

∫ ux

u1

σu′
x√

Q(u′
x)
du′

x, (150)

where

Q(ux) = (ux − u1)(ux − u2)(ux − u3). (151)

whereu1<u2<u3 are the roots ofR(ux)=0 in increasing or-
der. From Eqs. (130–131):

u1 = min(ux0, u−), u2 = max(ux0, u−), u3 = u+.

(152)

Thus, for Case (i)u1=u− and u2=ux0, but for Case (ii),
u1=ux0 andu2 = u−. In Eq. (150) we have chosen the inte-
gration constant so thatx=0 corresponds to the point where
ux=u1. Note we requireu1≤ux≤u2 in order thatQ(ux)>0
for a physical real solution forx.
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Using the change of integration variable:

z =

(
u′
x − u1

u2 − u1

)1/2

, (153)

the integral Eq. (150) can be reduced to a combination of
elliptic integrals of the form:

x = −
σ
√

2µ

u2
x0 cosθ

√
M2
Aux0

√
u3 − u1

(u3U − (u3 − u1)E(U |ν)) ,

(154)

where

U =

∫ y

0

dz√
(1 − z2)(1 − νz2)

≡

∫ ϕ

0

dϕ′√
1 − ν sin2 ϕ′

, (155)

E(U |ν) =

∫ y

0

(
1 − νz2

1 − z2

)1/2

dz

≡

∫ ϕ

0

√
1 − ν sin2 ϕ′dϕ′, (156)

y =

(
ux − u1

u2 − u1

)1/2

= sn(U |ν) = sin(ϕ),

ν =
u2 − u1

u3 − u1
. (157)

HereU=sn−1(y|ν) andE(U |ν) are standard elliptic inte-
grals of the first and second kind (Abramowitz and Stegun,
1965, Ch. 17, p. 589). The incomplete elliptic integral of the
second kindE(U |ν) can be expressed in a variety of different
forms (e.g.Abramowitz and Stegun, 1965, Ch. 17).

Note that Eq. (131) pertains to a range ofux where
σ=sgn(sinφ) is constant. It is straightforward to modify
Eq. (154) to account for the change of sign of sinφ through-
out the wave.

By noting thaty=0 whenux=u1 andy=1 whenux=u2 it
follows from Eq. (150) that the spatial period of the wave,L,
is given by

L =
2
√

2µ

u2
x0 cosθ

√
M2
Aux0

√
u3 − u1

[u3K − (u3 − u1)E] , (158)

K =K(ν) =

∫ 1

0

dz√
(1 − z2)(1 − νz2)

, (159)

E =E(K|ν) =

∫ 1

0

(
1 − νz2

1 − z2

)1/2

dz, (160)

whereK(ν) andE(K|ν) are complete elliptic integrals of the
first and second kind.
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Fig. 1. H1-level Hamiltonian contours forθ = 60◦ andM2
Aux0 =

1. In this caseue0 = up0 = tan θ while ux0 takes the values
ux0 = 0.0001, 0.1(0.1)2.0. (and henceMA varies). The horizontal
contour corresponds to aux0 value of0.0001.The separatrix (bold
curve) is the contour corresponding toux0 = 0.5.
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Φ
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Fig. 2. H1-level Hamiltonian contours generated by varyingux0

from 0.02 to 0.4 in steps of0.02. The value ofue0 was fixed
by evaluating the condition for a separatrixue0 = 2ux0(µ +
1) tan θ/[(µ+1)2/µ−tan2 θ] for the particular case ofux0 = 0.1.
In other words the bell-shaped separatrix-like contour (bold curve)
corresponds to the caseux0 = 0.1. The horizontal contour corre-
sponds to a value ofux0 equal to0.0001. Other parameters are:
θ = 30◦, MAe = 0.45
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Fig. 3. Contours of the HamiltonianH = H1 ((5.1) and
(5.7)) for ue0 = 0.9 and a range ofMAe0: 0.1 < MAe0 <
(ux0 sin θ cos θ/ue0)

1/2. θ = 30◦, ux0 = 1 andµ = 1836. There
are two different classes of solutions: one withu−

e0 < ue0 (con-
tours in the lower part of the figure whereue < ue0 = 0.9) and
another withue0 < u−

e0 (contours in the upper part of the figure
whereue > ue0 = 0.9). The upper contours are closed curves
whose apexes extend to large values ofu2

e (not shown).

Fig. 3. Contours of the Hamiltonian H=H1
(Eqs. 81 and 87) for ue0=0.9 and a range ofMAe0:
0.1<MAe0<(ux0sinθ cosθ/ue0)

1/2. θ=30◦, ux0=1 andµ=1836.
There are two different classes of solutions: one withu−

e0<ue0
(contours in the lower part of the figure whereue<ue0=0.9) and
another withue0<u

−

e0 (contours in the upper part of the figure
whereue>ue0=0.9). The upper contours are closed curves whose
apexes extend to large values ofu2

e (not shown).

5.4 Examples

In the cold plasma, travelling wave examples below, we
use, in the main, the following fixed parameters:θ=30◦,
µ=1836 andux0=1. The solutions are obtained by integrat-
ing the transverse electron and proton momentum Eqs. (6)
with δ0=0, and by using the rotational integralR and energy
integral in the dHT frameεHT , to expressux in terms ofue,
i.e.,

ux =

[
u2
x0 + (u2

e0 − u2
e)/µ

]1/2
, (161)

Note that the constant term in Eq. (161) can be expressed
in terms ofR and εHT (see Eqs.71 and 72). The initial
conditions used in the numerical integration of Eq. (6) are
those in Eq. (89), i.e.,

φe0 = φp0 = π/2, ue0 + µup0 = b ≡
ux0 sinθ cosθ

M2
Ae0

,

(162)

which ensures that the total, transverse momentum fluxes
in the dHT frame are zero (i.e.δ0=0). The initial data
arise from imposing a particular choice of the initial phases,
namelyφe0=φp0=π/2 in the more general integrability con-
ditions Eq. (86). More general solutions of Eq. (86) (i.e., the
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Fig. 4. Velocity components as a function ofx for theH1-level
curve withMAe0=0.231918 in Fig. 3 (all other parameters as given
in Fig. 3). This is the third curve moving inwards inw<0.81 in
that figure and it corresponds to a negative value of the rotational
integralR= − 50.32.

Eqs.δ0=0) are discussed in Appendix A. Note that the initial
data Eq. (162) imply that uey0=upy0=0 and thatuez0≡ue0
andupz0≡up0 are both non-negative. From Eq. (162) it fol-
lows that

0 ≤ ue0 ≤ b and 0≤ µup0 ≤ b. (163)

The choice Eq. (162) does allow for the possibility of paral-
lel propagating waves, but only for the caseue0 = up0 = 0.
In other words, it rules out a large number of physical solu-
tions that are possible in this case (see Appendix A for other
possible cases). The condition Eq. (163) for ue0 implies the
restriction to oblique travelling waves with:

θ ≥ θc =
1

2
arcsin

(
2M2

Ae0
ue0

ux0

)
, (164)

(noteue0 can also depend onθ ). One can investigate the case
of quasi-parallel propagating waves with 0<θ<θc by using
other initial data described in Appendix A (e.g. the solutions
of δ0=0 given in Eq.A11 andA12). However, in the present
paper, we restrict our attention to solutions satisfying the ini-
tial data Eq. (162). The numerical accuracy of the solutions
was monitored by checking the constancy of the known inte-
gralsεHT ,R andH1 during the computations.
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Fig. 5. Electron (upper panel) and proton (lower panel) per-
pendicular velocity “hodographs” for theH1-level curve with
MAe0=0.231918 in Fig. 3 (all other parameters as given in Fig. 3).
This is the third curve moving inwards in that figure (w<0.81) cor-
responding to a rotational integralR= − 50.32. Same parameter
values as in Fig. 4.

Figure 3 shows the(φ,w) phase space contoursH=H1,
of a sequence of different Hamiltonians, obtained by vary-
ing MAe0, and withue0=0.9, θ=30◦, ux0=1 andµ=1836
fixed. The contours represent two distinct types of solution,
distinguished by whetherue0<u

−

e0 or ue0>u
−

e0, whereu−

e0 is
the smaller root ofD(ue0)=0. Note thatu−

e0 varies asMAe0
changes. For the lower, tear shaped contours inw<0.81,
D(ue0)<0 and it is necessary thatue0 lie in the range
u−

e0<ue0<u
+

e0 and ux0<ux<u− for the physically allowed
solutions. For the upper sequence of contours,D(ue0)>0.
If D(ue0)>0 then it is necessary that eitherue0<u

−

e0 or
ue0>u

+

e0 if δ1>0 (δ1=0 whenMAe0=0.4333 in the present
example). However, ifδ1<0, thenue0 must lie in the range
0<ue0<b. The values ofux lie in the rangeu−<ux<ux0
for the upper contours. For the examples in Fig. 3,ue0<u

−

e0
for the upper contours. For the isolated centre critical point
(φ0, w0)=(0,0.81),D(ue0)=0 andux0=u− is a double root
of R(ux)=0. The transition from the lower (w<0.81) to the
upper curvesw>u2

e0=0.81 occurs whenD(ue0)=0 (in fact
when ue0=u

−

e0). Using Eq. (115) for D(ue0), and setting
D(ue0)=0, we obtain an equation forM2

Ae0 where the curves
transit from the lower to the upper sequence of contours,
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Fig. 6. Velocity components as a function ofx for theH1-level
curve withMAe0=0.561714 in Fig. 3 (all other parameters as given
in Fig. 3). This is the second curve moving inwards in thew>0.81
part of that figure and it corresponds to a positive value of the rota-
tional integralR=0.586868.

namely when

M2
Ae0=

ux0 sinθ

u2
e0

(
ue0 cosθ −

µ sinθ

µ+ 1
ux0

)
. (165)

This corresponds toM2
Ae0=0.17247 orMAe0=0.415294.

At this value of MAe0, u−=ux0 is a double root of
R(ux)=0, and the contour consists of the centre critical point
(φ0, w0)=(0,0.81). On the upper branchw>0.81,δ1>0 for
low Mach numbers: 0.415294<MAe0<0.4333,δ1=0 when
MAe0=0.4333, andδ1<0 for larger values ofMAe0. The
largest value ofMAe0 allowed occurs whenue0=b, which
from Eq. (162) occurs when

M2
Ae0 =

ux0 sinθ cosθ

ue0
= 0.4811 or MAe0 = 0.6936.

(166)

It should be noted that only a portion of the upper contours
is shown, in order to emphasize the contour structure in the
vicinity of (φ0, w0)=(0,0.81). The upper contours form
closed curves, which begin at the right hand side of the fig-
ure and return on the left hand side. The top of the curves
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Fig. 7. Electron (upper panel) and proton (lower panel) per-
pendicular velocity “hodographs” for theH1-level curve with
MAe0=0.561714 in Fig. 3 (all other parameters as given in Fig. 3).
This is the second curve moving inwards in thew>0.81 part of that
figure, corresponding to a rotational integralR=0.586868.

in w>0.81 occur whenux=u−. For the lower contours
(w<0.81), the bottom of the loops correspond toux=u−.

The behaviour of the velocity components of the electrons
and protons for representative cases are shown in Figs. 4–
5 and Figs. 6–7. Figures 4–5 show an example for which
w<0.81 andMAe0=0.231918 (it corresponds to the third
H1 level curve moving inwards in Fig. 3). For this solution
ue0>u

−

e0, and the rotational integralR= − 50.32. The fluid
velocity variations in this example are predominantly in the
transverse directions, with very little variation in the longitu-
dinal velocityux (this is reminiscent of the Alfv́en wave in
MHD, which is an incompressible mode, in which there are
no variations inux : e.g.Chen, 1984, p. 136 et seq.,Webb et
al., 1996). The transverse velocities of the electrons consist
of a long scale variation, on which are superimposed finer
scale variations, whilst the protons exhibit only a long scale
variation. This difference in the behaviour of the protons and
electrons, is more vividly illustrated in Fig. 5 which show
hodograph type plots of the transverse velocity components
of the electrons (top panel) and the protons (lower panel). It
is seen that the protons execute an almost circular, smooth ro-
tational motion in the (µupy, µupz) plane, but the electrons
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Fig. 8. Contours of the HamiltonianH=H1 for fixed
ue0=2ux0(µ+1) tanθ/((µ+1)2/µ− tan2 θ) and a se-
quence of MAe0 values beginning at 0.1 and ending at
(ux0 sinθ cosθ/ue0)

1/2 (note that this represents a sequence
of different Hamiltonian functions).θ=30◦, ux0=1 andµ=1836.
The lower sequence withu−

e0<ue0 correspond to separatrix-type
solutions.

execute a rosette type motion, in which the orbit precesses in
a circular type pattern. It turns out that the type of motion of
the protons and the electrons in the transverse plane, depends
very much on the value of the rotational integralR (in this
example,R is large and negative).

Figures 6 and 7 show the electron and proton velocities
for a travelling wave withMAe0=0.56174. This example
corresponds to the secondH1 contour, moving inward, in
the regionw>0.81 of the(φ,w) phase-plane in Fig. 3. The
rotational integralR=0.586868 in this example. The pro-
file for ux shows a long flat section withux≈1, followed by
a fast deceleration and acceleration phase. The transverse
electron and proton fluid velocities(ujy, ujz) (j=e, p) also
show a long flat section, whereue≈0 andup≈0, followed
by a fast spatial evolutionary phase. Thus, the wave exhibits
both a slowly varying phase, followed by a rapid evolution-
ary phase. Figure 7 shows the transverse electron and pro-
ton velocity hodographs:uez versusuey (upper panel) and
µupz versusµupy (bottom panel). Both the protons and the
electrons exhibit complex rosette patterns, that resemble pre-
cessing ellipses. The slow and fast evolutionary phases are
reflected in the hodographs in Fig. 7, where the electrons
spend a large part of their time in the vicinity ofue≈0. This
is followed by a fast acceleration to largerue, followed by a
deceleration back toue≈0, which appears as a loop on the
hodograph plot. A similar pattern occurs for the protons.
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Fig. 9. Velocity components as a function ofx for theH1-level
curve withMAe0=0.392848 in Fig. 8. This is the second curve
moving outwards in the lower part of that figure and it corresponds
to a rotational integral ofR= − 1.39505.

Figure 8 shows contours of the HamiltonianH=H1 in the
(φ,w) phase plane similar to the plots in Fig. 3, except that
ue0 is now determined from the condition:

ue0 =
2ux0(µ+ 1) tanθ

[(µ+ 1)2/µ− tan2 θ ]
, (167)

which gives separatrix type solutions ifD(ue0)<0 and
u−

e0<ue0<u
+

e0. These solutions pass through the non-
standard critical points at(φ,w)=(±π/2,0). As MAe0 in-
creases,u−

e0 increases and approachesue0 until u−

e0=ue0,
at which pointD(ue0)≡D(u

−

e0)=0. At this value ofMAe0,
MAe0=Mc, the contour consist of a single point, the centre
critical point. For largerMAe0, there are no separatrices, and
the contours form loops in the upper portion of the(φ,w)-
plane wherew>u2

e0. By differentiation ofD(ue0)=0 with
respect toM2

Ae0, we obtain

due0

dM2
Ae0

=
u2
e0

b
√
δ1M

2
Ae0

, (168)

which shows thatu±

e0 both increase with increasingM2
Ae0. In

Fig. 8,MAe0 varies from 0.1 up to(ux0 sinθ cosθ/ue0)1/2.
Figure 9 shows the fluid velocity components of the elec-

trons and protons for a separatrix type solution withMAe0 =
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Fig. 10. Electron (upper panel) and proton (lower panel) per-
pendicular velocity “hodographs” for theH1-level curve with
MAe0=0.392848 in Fig. 8. This is the second curve moving out-
wards in the lower part of that figure, and corresponds to the plots
in Fig. 9. The rotational integralR= − 1.39505.

0.392848, corresponding to the second curve moving out-
ward in the lower portion of Fig. 8. The dynamics are
dominated by the transverse velocity variations, and there
is only a very small change inux (note 1<ux<1.0004).
The hodographs of the transverse electron and proton ve-
locities in Fig. 10 again show complex rosette patterns.
Noteworthy is the fact that the perpendicular electron speed
ue=(u

2
ey + u2

ez)
1/2 periodically passes through zero. At this

point, there is a very fast change inφ=φp−φe, without a
significant change inue. Note that this is consistent with the
separatrix solution plots in the(φ,w) phase plane (Fig. 8),
because the separatrix nearue≈0 joins the two non-standard
critical points (φ2, w2)=(−π/2,0) and (φ3, w3)=(π/2,0)
where there is a change ofδφ=π in the value ofφ, without
any significant change inue.

Comment: To understand the behaviour of the travelling
wave solutions illustrated in Figs. 4–10, it is useful to have
at hand, the zeros of the functionR(ux) in the longitudinal
structure Eq. (126) and to know the zeros ofD(ue0). Fig-
ure 11 illustratesR(ux) (top panel) andD(ue0) (lower panel)
corresponding to the solutions in Figs. 4 and 5. Theux vari-
ation in the solution is confined to the regionux0<ux<u−

whereR(ux)>0. The solution varies periodically between

0 2 4 6 8
ue0

-10

-7.5

-5

-2.5

0

2.5

5

D

0.99995 1 1.00005 1.0001 1.00015 1.0002 1.00025
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5·10-9

R

Fig. 11. The functionsR(ux) andD(ue0) for the solution shown
in Figs. 4 and 5. The velocity componentux oscillates periodically
between its initial valueux0=1 and the rootu−=1.0002 (see upper
panel). The initial value ofue0 is equal to 0.9, which corresponds
to a negative value ofD (lower panel).

its initial valueux0=1 and the rootu−=1.0002. In the nu-
merical solutions,ue0=0.9 and henceD(ue0)<0. Note the
extremely small range ofux for the solution: 1<ux<1.0002,
which implies the need for both accurate computations and
rigorous algebraic analysis in order to explore the interesting
regions of phase space.

Figures 12 and 13 illustrate a solution example in
which R(ux)=0 has a double rootux=ux0=u−, for
which (φ0, w0)=(0, u2

e0) is a centre critical point in the
(φ,w) phase plane. The parameters used wereux0=0.5,
MAe0=0.255,θ=30◦ andue0=3.01049. Noteux=ux0=0.5
does not vary throughout the wave. The electron and proton
fluids rotate in phase with a finite wave period inx, in which
φ=φp − φe=0 andux=ux0 throughout the wave. The elec-
tron and proton hodographs in Fig. 13 show that the trans-
verse velocities(uey, uez) for the electrons and(upy, upz)
for the protons simply rotate in circle with constant radius
ue for the electrons (top panel) and radiusup for the protons
(lower panel), whilst maintaining a constant phase difference
φ=φp−φe=0 throughout the wave.
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Fig. 12.Velocity components for the case whenR(ux) has a double
root. The parameters used were:ux0=0.5, MAe0=0.255, θ=30◦

andue0=3.01049. The fluids simply rotate in phase, maintaining
φ=0 andux=ux0 throughout.

Another double root case forR(ux) = 0 occurs ifu− = u+

(see Proposition 5.6, Eqs.136–138 et seq.). This occurs
when the rotational integralR=0 and the Alfv́en Mach num-
berMAe0 is given by the equation:

M2
Ae0 sec2 θ =

1

4

(
µ+ 1

µ
−

tan2 θ

µ+ 1

)
. (169)

The values

ue0 = µup0 =
ux0 sinθ cosθ

2M2
Ae0

≡
b

2
, (170)

ensure that both the rotational integralR=u2
e0 − µ2u2

p0=0
and the integrability conditionue0 +µup0=b in Eq. (89) are
both satisfied. For this solution,

u+ = u− = ux0

(
1 +

sin2 θ

2(µ+ 1)M2
Ae0

)
≡
H1

ux0
, (171)

are the two equal rootsu± of R(ux)=0.
Figure 14 shows a plot ofR(ux) versusux for a case

whereu−=u+ is a double root ofR(ux). The parameters
are ux0=1, θ=30◦, µ=1836. The parametersMAe0, ue0,
µup0, andu± are determined from Eqs. (169–171). The

-3 -2 -1 1 2 3
uey

-3

-2

-1

1

2

3

uez

-0.3 -0.2 -0.1 0.1 0.2 0.3
Μ upy

-0.3

-0.2

-0.1

0.1

0.2

0.3

Μ upz

Fig. 13. Perpendicular electron and proton “hodographs” for the
case whenR(ux) has a double root. The parameters are the same as
in Fig. 12. The fluids simply rotate in phase, maintainingφ=0 and
ux=ux0 throughout.

travelling wave solution corresponding to theR(ux) plot in
Fig. 14 has a simple zeroux=ux0=1 and a double zero at
ux=u+=u−=1.00036. The physical solution is restricted to
the rangeux0≤ux≤u+ whereR(ux)≥0. The pointux=ux0
corresponds to the centre of the wave and the double zero at
ux=u+ corresponds tox→ ± ∞ whereue→0 andup→0.
The spatial profiles of the electron and proton transverse fluid
velocities and the longitudinal speedux for the above pa-
rameters are displayed in Fig. 15. The wave is an oblique,
whistler oscilliton of the type investigated bySauer et al.
(2001, 2002), Dubinin et al.(2003), McKenzie et al.(2004),
and Webb et al.(2005). Figure 15 shows only half of the
wave in the regionx>0. The wave is symmetric aboutx=0.
Thus, the wave envelope for the transverse velocities, stretch-
ing from x= − ∞ to x= + ∞ has a bell shape profile rem-
iniscent of that of a classical soliton, on which there is su-
perimposed a high wave number oscillating component. The
present analysis shows that the obliquely propagating oscil-
liton is an integrable solution, and that there are very strin-
gent conditions required to obtain an oscilliton in the oblique
propagation case. Figure 16 shows hodographs of the trans-
verse electron and proton velocities, which have a distinctive
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Fig. 14. Plot of R(ux) for the special case whereR=0. The pa-
rameters areux0=1, θ=30◦, µ=1836. MAe0, ue0, andµup0 are
determined from Eqs. (169–171). This case corresponds to an os-
cilliton solution.

spiral structure, in which the maximum amplitudes ofue and
µup occur at the centre of the wave and withue→0 and
µup→0 asx→ ± ∞.

5.4.1 Rosette winding patterns

In this section we discuss the results of C. M. Ko (private
communication) on the winding pattern of the transverse ve-
locity hodographs of the electron and proton fluids, as illus-
trated in Figs. 5 and 7. Figure 7 shows clearly that in general,
both the electron and proton fluids exhibit rosette patterns in
the the(uey, uez) and(upy, upz) hodograph planes. First, it
is useful to note that the Hamiltonian contours in the(φ,w)
phase plane in Figs. 1 and 2 split into two different cases de-
pending on whether the contours ofH are bounded(Cb) or
unbounded(Cu) in φ. The bound orbits are restricted to the a
region|φ(x)| ≤ φm<π , whereas the unbound orbits assume
all values|φ(x)| ≤ π (note the contours are 2π periodic in
φ). The functionux(x) is a periodic function ofx with pe-
riodL, i.e.ux(x +L)=ux(x) where the periodL is given by
Eq. (158). The conditions for the transverse electron and pro-
ton fluid velocity hodographs to consist of a closed pattern of
M large leaves (cloves) are discussed below.

A natural question to ask is: given that the electrons ro-
tate throughNe complete orbits inφe, in which the change
of φe, 1φe=2πNe in the(uey, uez) hodograph plane, corre-
sponding toM orbits in the(φ,w) phase plane, then what are
the conditions for the hodograph orbits to consist of closed
orbits withM large leaves? Note that one large leaf in the
(uey, uez) plane in general corresponds to1φe>2π in that
plane (i.e. portions of the orbit at smallue can be convo-
luted and contribute substantially to1φe). A similar ques-
tion can be posed for the protons. One finds that for bound
closed orbits in the(φ,w) phase plane, the rosette patterns in
the (uey, uez) plane with1φe=2πNe and in the(upy, upz)
plane with1φp=2πNp consist of closed orbits withM large
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Fig. 15. Velocity components as a function ofx for the solution
corresponding to the case given in Fig. 14. This is an oscilliton-
type solution. Only half of the wave is shown. The parameters are
ux0=1, θ=30◦, µ=1836, andMAe0, ue0 andµup0 are determined
from Eqs. (169–171).

leaves requires thatNe=Np. However, for the unbound or-
bits (Cu) in the (φ,w) plane, the orbits consist ofM large
leaves in the hodograph planes only ifNp−Ne=M. The
conditions for closed orbits in the hodograph planes also re-
quires1φ̃ ≡ [φ̃(x+L)−φ̃(x)]=4πp/q wherep/q is a ra-
tional number. We refer toNe andNp as the electron and
proton winding numbers.

To prove the above assertions, first notice thatdφ̃/dx is a
periodic function ofx with periodL, and hence

φ̃(x) = 〈φ̃x〉x +

∫ x

0
δφ̃xdx + φ̃(0), (172)

gives the variation of̃φ(x) with x, whereδφ̃x=φ̃x−〈φ̃x〉 has
zero mean over one periodL in x and the angle brackets in
〈φ̃x〉 denote an average over one period inx. Settingx=L in
Eq. (172) we obtain:

〈φ̃x〉 =
φ̃(L)− φ̃(0)

L
=
1φ̃

L
, (173)

(noteφ̃=φe +φp). Similarly, the variation ofφ(x)=φp −φe
for unbound orbits in the(φ,w) phase-plane may be written
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Fig. 16.The perpendicular electron (upper panel) and proton (lower
panel) velocity components corresponding to the oscilliton solution
of Figs. 14 and 15.

as:

φu(x) =〈φx〉x + φ(0)+ δφ(x)mod(2π)

≡
2πx

L
+ δφ(x)mod(2π),

(174)

where δφ=φ−〈φ〉. In our case φ(0)=0 because
φp0=φe0=π/2, andδφ(x)=φ where|φ|≤π . Similarly for
the bound orbitsCb we obtain:

φb(x) = δφ(x)mod(2π), (175)

Using Eqs. (172–175) we obtain:

φp(x) =
1

2

(
(1φ̃ + 2πδku)x

L
+ φ̃(0)

+

∫ x

0
δφ̃x dx + δφ(x)mod(2π)

)
, (176)

φe(x) =
1

2

(
(1φ̃ − 2πδku)x

L
+ φ̃(0)

+

∫ x

0
δφ̃x dx − δφ(x)mod(2π)

)
, (177)

where k=u, b refer to unbound and bound orbits in the
(φ,w) plane respectively.

The conditions that theφj (j=e, p) undergo a change of
2πNj in phase duringM periods ofux(x) to give closed
orbits ofM large leaves in the hodograph planes may be ex-
pressed in the form:

φj (x +ML)− φj (x) = 2πNj , j = e, p. (178)

Using Eqs. (176–177) for φp andφe, the conditions Eq. (178)
reduce to:

Np

M
=
1φ̃

4π
+
δku

2
, (k = u, b), (179)

Ne

M
=
1φ̃

4π
−
δku

2
, (k = u, b). (180)

Thus, if1φ̃/(4π)=p/q is a rational number, then the hodo-
graph orbits in the(upy, upz) plane will consist ofM large
leaves corresponding to a winding numberNp (Np integer)
of the proton orbits. Similarly, for1φ̃/(4π)=p/q a rational
number, the electron orbits will consist ofM leaves in the
(uey, uez) plane corresponding to an electron winding num-
ber of Ne. Using Eqs. (179–180) the bound orbits in the
(φ,w) plane, correspond to closed orbits withM large leaves
in the transverse hodograph planes ifNp = Ne. Similarly,
using Eqs. (179–180), the unbound orbits in the(φ,w) plane,
will correspond to closed orbits ofM large leaves in the
hodograph planes only ifNp−Ne=M and1φ̃/(4π)=p/q
is a rational number. This completes the discussion of the
rosette winding patterns of the electron and proton transverse
velocities in their respective hodograph planes.

6 Summary and concluding remarks

High resolution satellite observations of a variety of wave
forms in the near-Earth plasma environment by FAST, Polar,
Geotail and Cluster spacecraft (e.g.Cattel et al., 2002, Mozer
et al., 1997, Ergun et al., 1998, andPickett et al., 2003, Du-
binin et al., 2007) has stimulated the development of theo-
retical models to explain the observations based on travelling
waves in multi-fluid plasmas (e.g.Sauer et al., 2001, 2002,
2003, Dubinin et al., 2003, McKenzie et al., 2004, Verheest
et al., 2004, Webb et al., 2005, 2007, Dubinin et al., 2007).

Analysis of travelling waves in multi-fluid plasmas by
Webb et al.(2005, 2007) and McKenzie, Mace and Doyle
(2007) revealed that many of the travelling wave models are
Hamiltonian systems.Webb et al.(2007) showed that the
quasi-charge-neutral two-fluid model used in the present pa-
per has a dual Hamiltonian structure.

We used one of the Hamiltonian formulations ofWebb et
al. (2007), in which the Hamiltonian is identified with the
total conserved, longitudinal momentum integral of the sys-
tem,Px , in which the energy integralε=const. is regarded
as a constraint, andd/dx is the Hamiltonian evolution oper-
ator wherex denotes position in the travelling wave frame.
Hamilton’s equations for the system reduce to the transverse
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momentum Eqs. (6) for the electron and proton fluids in the
dHT frame, where

(q1, p1) = (u+
e , u

−
e ) and (q2, p2) = (u+

p ,−µ
2u−
p ),

(181)

are the canonical variables,u±
e = uey ± iuez, u±

p = upy ±

iupz are the complex, transverse electron and proton fluid
velocities in the dHT frame, andµ = mp/me is the ratio of
the proton and electron masses. The transverse electron and
proton momentum Eqs. (6) are exactly integrable if the total
transverse momentum integrals are zero in the dHT frame
(i.e. δ0=0 in Eq. 1). If the initial values for(uey, uez) and
(upy, upz) are specified atx=x0 in the dHT frame, thenδ0=0
if:

uey0 + µupy0 = 0, uez0 + µupz0 =
ux0 sinθ cosθ

M2
Ae0

≡ b,

(182)

whereMAe0=ux0/VAe is the electron Alfv́en Mach number
of the flow atx=x0. If conditions Eq. (182) are satisfied,
then Eq. (6) admit an extra integral, namely the rotational in-
tegralR=u2

e−µ
2u2
p=const., which combined with the other

integrals of the system, allows the integration of the system
in terms of quadratures over the longitudinal flow speedux .
The phase space of the system reduces from a four dimen-
sional space to a two dimensional space in the integrable case
(Sect. 4) (this is technically known as Hamiltonian reduction:
e.g.Marsden and Ratiu, 1994).

In the integrable cases Eq. (182), the Hamiltonian can be
expressed in terms of the canonical variables(q, p)=(φ,w)

where φ=φp−φe is the difference between the proton
and electron phases for the complex transverse velocities:
u+

j =ujy + iujz=uj exp(iφj ) (j=e, p) andw=u2
e . It turns

out, that the conditions Eq. (182) for the system to be in-
tegrable force the HamiltonianH(φ,w) to take only one
valueH=H1 (see Appendix A). In other words, the sys-
tem trajectories in the phase space satisfy the equations
H(φ(x),w(x))=H1, which essentially fixes the solutions to
lie on a particular invariant torus (i.e., only one value of the
Hamiltonian contours, namelyH(φ,w)=H1 is allowed in
the(φ,w) phase plane: see Eq. (81) et seq.). The integrable
solution examples in Sect. 5, were restricted to satisfy a spe-
cial case of the initial conditions Eq. (182) in which the elec-
tron and proton phases have the values:

φe0 = φp0 = π/2 and ue0 + µup0 = b, (183)

(more general solutions of Eq. (182) are discussed in Ap-
pendix A). Despite this restriction, one obtains a rich variety
of travelling wave solutions depending on the initial Alfvén
Mach numberMAe0 and rotational integralR=u2

e0 − µ2u2
p0

of the wave.
The examples of travelling waves for cold plasmas inves-

tigated in Sect. 5, depend on the roots of the cubicR(ux) ap-
pearing in the longitudinal structure Eq. (126) for dux/dx.

R(ux)=0 has rootsu = ux0 andux=u±, whereu± are given
by Eq. (131). In the double root caseu−=u+ andux0<u−,
one obtains an obliquely propagating whistler oscilliton so-
lution analogous to the parallel propagating whistler oscil-
liton investigated bySauer et al.(2001, 2002), Dubinin et
al. (2003), McKenzie et al.(2004) andWebb et al.(2005).
The hodograph of the transverse fluid velocities in Fig. 16
consist of inward spirals with maximum radius at the centre
of the wave atx=0 and decrease monotonically to zero as
x→ ± ∞. The double root solution case, in whichux0=u−

and u+>ux0 corresponds to a centre critical point in the
(φ,w) phase plane. For this solutionux=ux0 is constant
throughout the wave, and the transverse velocities of the elec-
trons and the protons simply rotate in phase, maintaining
φ=φp−φe=0 throughout the wave. The velocity hodographs
in Fig. 13 are circles.

Other solution examples in Sect. 5 correspond to cases
whereR(ux)=0 has simple roots (i.e.ux0, u+ andu− are
distinct). In these cases, the transverse velocity hodographs
show complex rosette type patterns.

The family of travelling wave solutions with rotational in-
tegralR=0 is described in detail in Appendix D. This class
of solutions is relatively simple to analyse, and the Hamilto-
nian in this case can be related to the Hamiltonian for par-
allel propagating whistler waves investigated byWebb et al.
(2005).

An analysis of the rosette patterns for the transverse ve-
locities of the electrons(uey, uez) and protons(upy, upz)
respectively in Sect. 5.4.1 revealed that for bound orbits in
the (φ,w) Hamiltonian phase plane to correspond to closed
orbits with M large leaves required thatNe=Np where
Ne andNp are the winding numbers for the electrons and
protons, whereas for unbound orbits in the(φ,w) phase
plane, the condition for the orbits to consist of closed or-
bits with M large leaves in the hodograph planes requires
Np−Ne=M. The conditions for closed orbits withM large
leaves in the hodograph planes also requires1φ̃ ≡ [φ̃(x +

L)−φ̃(x)]=4πp/q wherep/q is a rational number.
The solutions in Figs. 1–16 are a representative class of the

integrable cold plasma, travelling wave solutions. However,
there are many other solutions, both for the integrable (δ0=0)
and non-integrable (δ0 6=0) cases that are are not covered by
our analysis (e.g., the hot plasma solutions). It remains an
open question as to the nature of the non-integrable solutions
with δ0 6=0, and in particular the role of KAM theory in the
near-integrable cases (e.g.Zaslavsky et al., 1991),as well as
the role of chaos in the non-integrable cases. These problems
lie beyond the scope of the present paper, and remain to be
explored in other investigations.

Appendix A

In this appendix we discuss the general solution of the in-
tegrability conditionδ0=0. The cases for which sinφ0=0
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are singular. We first discuss the non-singular case with
sinφ0 6=0, followed by a discussion of the singular case
sinφ0=0. We show that for sinφ0 6=0, (ue0, µup0) for a fixed
φ0 must lie on an ellipse. The conditionδ0=0 is equivalent
to the two momentum balance Eqs. (14) in the dHT frame.
Using

ujy0 = uj0 cosφj0, ujz0 = uj0 sinφj0, j = e, p, (A1)

Equation (14) can be written in the matrix form:

A
(
ue0
µup0

)
=

(
cosφe0 cosφp0
sinφe0 sinφp0

)(
ue0
µup0

)
=

(
0
b

)
, (A2)

The determinant of the matrixA, detA = sinφ0, in Eq. (A2).
Assuming that sinφ0 6= 0, Eq. (A2) has the general solution:

(
ue0
µup0

)
=

b

sinφ0

(
− cosφp0
cosφe0

)
. (A3)

Note that we requireue0 andup0 must both be non-negative.
Writing (ue0, µup0) = (ξ, η), Eq. (A3) can be combined

to give the equations:

ξ + η cosφ0 = b sinφe0,

η sinφ0 = b cosφe0. (A4)

Squaring and adding the two equations in Eq. (A4) gives the
equation:

ξ2
+ η2

+ 2ξη cosφ0 = b2. (A5)

Equation (A5) is that of an ellipse. To show this, introduce
new coordinates(ξ ′, η′) corresponding to a rotation of coor-
dinates through an angle�:(
ξ

η

)
=

(
cos� − sin�
sin� cos�

)(
ξ ′

η′

)
, (A6)

and choosing�=π/4 corresponding to a rotation of 45◦,
Eq. (A5) reduces to the standard equation for an ellipse:

ξ
′2

α2
+
η

′2

β2
= 1, (A7)

where

α =
b

√
2| cos(φ0/2)|

and β =
b

√
2| sin(φ0/2)|

. (A8)

If φ0<π/2, thenβ andα correspond to the semi-major and
semi-minor axes of the ellipse respectively. The semi-minor
axisξ ′ lies along the lineη=ξ and the semi-major axisη′ lies
along the lineη= − ξ corresponding to a 45◦ rotation of the
ξ andη axes. Ifπ/2<φ0<π thenξ ′ is the major axis andη′

is the minor axis. Again note thatξ=ue0 andη=µup0 must
be non-negative for a physical solution.

In the limit asφ0→0 Eq. (A5) reduces to

ue0 + µup0 = b. (A9)

The solution Eq. (A9) corresponds to the initial data

φ0 = 0, φp0 = φe0 =
π

2
, (A10)

of Eq. (81), investigated in detail in Sect. 5. If 0<ue0<b/2
then the rotational integralR<0, but if b/2<ue0<b, R>0
andR=0 if ue0=b/2.

The solution case

φ0 = π, φp0 =
π

2
, φe0 = −

π

2
, µup0 = ue0 + b,

(A11)

and the case

φ0 = −π, φp0 = −
π

2
, φe0 =

π

2
, ue0 = µup0 + b,

(A12)

can also be thought of as degenerate ellipses in the
limit as φ0→ ± π . For Eq. (A11) R<0 and for
Eq. (A12) R>0. In the case Eq. (A9), the semi-major
axis β = b/|

√
2 sin(φ0/2)|→∞ as φ0→0. Similarly in

cases Eq. (A11) and Eq. (A12) the semi-major axisβ =

b/(
√

2| cos(φ0/2)|)→∞ asφ0→ ± π .
The value of the HamiltonianH=H1 at the initial point

x=x0 from Eq. (81) is given by:

H1 = u2
x0 +

M2
A0

2(µ+ 1)2

(
u2
e0 + µ2u2

p0 + 2µup0ue0 cosφ0

)
.

(A13)

Using Eq. (A5) with ξ=ue0 andη=µup0, Eq. (A13) reduces
to:

H1 = u2
x0 +

M2
A0b

2

2(µ+ 1)2
. (A14)

Using the expression Eq. (13) for b in Eq. (A14) we obtain:

H1 = u2
x0

(
1 +

tan2 θ

2M2
A0

)
≡ u2

x0

(
1 +

sin2 θ

2(µ+ 1)M2
Ae0

)
,

(A15)

which is the result Eq. (87) for H1.

Appendix B

In this appendix we discuss the critical points of the Hamil-
tonianH0=2(µ + 1) cosθH for the travelling wave solu-
tions. We show that the point(φ1, w1)=(0, wc) on the line
φ=0 in the(φ,w) plane wheredφ/dx=0 is a centre critical
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point. At this pointdφ/dx=f (ux)=0 anddw/dx=0. The
points(φ2, w2)=(−π/2,0) and(φ3, w3)=(π/2,0) could be
thought of as critical points in the sense thatH0w→0 and
H0φ→0 along the ray directionδφ/δue=α2 in Eq. (109).
However, along the rayδφ=0, dφ/dx=H0w becomes un-
bounded as one approaches the critical point. In other words,
the points(±π/2,0) are non-standard critical points.

Below we study Hamilton’s equations in the vicinity of
these points. Linearizing Hamilton’s Eqs. (61) and (62) about
the centre critical point(φ1, w1) we obtain the matrix equa-
tion system:

d

dx

(
δφ

δw

)
= A

(
δφ

δw

)
, A =

(
H0,wφ H0,ww

−H0,φφ −H0,φw

)
.

(B1)

Searching for linearized solutions of the linearized Hamil-
ton’s equations (C1) of the form:(
δφ

δw

)
= r exp(λx), (B2)

results in the eigen-equations:

(A − λI) r = 0 where det(A − λI) = 0. (B3)

Evaluation of the determinantal equation det(A − λI) = 0
in Eq. (B3) gives the eigenvaluesλ in the form:

λ2
= H 2

0,wφ −H0,φφH0,ww ≡ G = − det(A). (B4)

The nature of the critical point depends on whetherG>0 or
G<0. ForG>0 the critical point is a saddle, but ifG<0 the
point is a centre.

Using the Hamiltonian Eq. (63) for the cold gas case with
MA=1, we find:

H0,φφ = −
2M2

Aux0 cosθ

µ+ 1
µupue cosφ,

H0,φw = −
M2
Aux0 cosθ

µ+ 1

(u2
e + µ2u2

p) sinφ

µupue
,

H0,ww = −
M2
Aux0 cosθ

µ+ 1

(u2
e − µ2u2

p)
2 cosφ

2µ3u3
pu

3
e

−
(µ+ 1) cosθ

2µ2u3
x

. (B5)

Using Eq. (B5) in Eq. (B4), we find that at the critical point
(φ1, w1)=(0, w1) that

λ2
= −

M4
Au

2
x0 cos2 θµupue
(µ+ 1)2

(
(u2
e − µ2u2

p)
2

µ3u3
pu

3
e

+
(µ+ 1)2

µu3
x

)
.

(B6)

Becauseλ2<0 this implies(φ1, w1) is a centre. Note that
λ=± i|λ| is pure imaginary in Eq. (B6). In the neighborhood
of (φ2, w2) and(φ3, w3), one can show thatG>0, indicating
saddle type behaviour. HoweverG→∞ in the neighborhood
of the points(±π/2,0), so that the usual procedure of lin-
earizing about these points becomes questionable.

Appendix C

In this appendix we discuss the conditions for the Hamil-
tonian contourH=H1 to correspond to a separatrix in the
(φ,w) phase-plane wherew=u2

e . There are two cases: either
(i) the contour passes through the points(φ, ue)=(±π/2,0)
or (ii) the contour passes through the points whereφ=±π/2
and up=0. In Case (i) the rotational integralR=u2

e −

µ2u2
p<0 but in Case (ii)R>0.

Proposition C1
Consider the integrability constraint Eq. (89) for which

δ0=0, i.e.

φe0 = φp0 =
π

2
, φ0 = 0, ue0 + µup0 = b. (C1)

A condition for the contourH=H1 of the Hamiltonian
Eq. (75) for the cold plasma case to be a separatrix pass-
ing through the points(φ,w)=(±π/2,0) in the(φ,w) phase
plane, wherew=u2

e , is that either

ue0 = 0, (C2)

or

ue0 =
2(µ+ 1)ux0 tanθ

(µ+ 1)2/µ− tan2 θ
. (C3)

In the case Eq. (C3)

µup0 =b − ue0

≡
ux0 sinθ cosθ

M2
Ae0

(
1 −

2(µ+ 1)M2
Ae0 sec2 θ

(µ+ 1)2/µ− tan2 θ

)
.

(C4)

In order thatue0 andµup0 in Eqs. (C3) and (C4) are non-
negative requires

tan2 θ<((µ+ 1)2/µ, (C5)

M2
Ae0 sec2 θ<

µ+ 1

2µ

(
1 −

µ tan2 θ

(µ+ 1)2

)
. (C6)

The rotational integralR<0 if the separatrix passes through
(φ,w) = (±π/2,0).

From Eq. (94) ue=0 when

u2
x = u2

x1 = u2
x0 + u2

e0/µ. (C7)

From Eq. (C1) the rotational integral

R = u2
e0 − µ2u2

p0 = b(b − 2µup0) = −µ2u2
ps, (C8)

whereup=ups at ux=ux1 and ue=0. Using Eq. (75) the
value ofH passing through the initial pointx=x0 where
ue=ue0, up=up0 andφ=φ0 for the cold plasma case is:

H = H1 = u2
x0 +

M2
Au

2
x0b

2

2(µ+ 1)2
. (C9)
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If theH=H1 contour corresponds to a separatrix, then

H = Hs = ux0

(
u2
x0 +

u2
e0

µ

)1/2

+
M2
Au

2
x0

2(µ+ 1)2
b(b − 2ue0).

(C10)

Equating the expressions forH in Eqs. (C9) and (C10) and
noting that

M2
Ab =

(µ+ 1) tanθ

ux0
, (C11)

gives the equation:

ue0

[(
(µ+ 1)2

µ
− tan2 θ

)
ue0 − 2(µ+ 1)ux0 tanθ

]
= 0.

(C12)

Equation (C12) implies thatue0 is given by either (C2) or
(C3). This completes the proof.
Proposition C2

If the integrability constraint Eq. (C1) is enforced, the con-
tourH=H1 of the Hamiltonian Eq. (75) for a cold plasma,
will be a separatrix passing through the pointsφ=±π/2 and
up=0, if either:

up0 = 0, (C13)

or

µup0 =
2(µ+ 1)ux0 tanθ

(µ+ 1)2/µ− tan2 θ
. (C14)

The value ofue0 is ue0=b in case Eq. (C13). In case
Eq. (C14):

ue0 =b − µup0

≡
ux0 sinθ cosθ

M2
Ae0

(
1 −

2(µ+ 1)M2
Ae0 sec2 θ

(µ+ 1)2/µ− tan2 θ

)
.

(C15)

Proof: The method of proof is essentially the same as in
Proposition C1, but the details are different.

Appendix D

In this appendix we consider the class of travelling waves in
which the rotational integralR=0. This is instructive on two
accounts. First, the caseR=0 can be related to the Hamilto-
nian formulation for parallel travelling whistler waves inves-
tigated byWebb et al.(2005). Secondly, the formulae for the
roots of the cubic equationR(ux)=0 occurring in the longi-
tudinal structure Eq. (126), namelyux=ux0 andux=u± are
relatively simple in the caseR=0. This allows one to ob-
tain a picture of the relative movement of the roots ofR(ux),

ux=ux0, ux=u± with increasing electron Alfv́en Mach num-
berM=MAe0 secθ , and hence to classify the different trav-
elling wave types that occur for the caseR=0.

Setting the rotational integralR=u2
e0−µ

2u2
p0=0, in

Eqs. (84–85), the formulae forup(w) andux(w) become:

µup(w) = w1/2, ux(w) =

(
u2
x0 + (u2

e0 − w)/µ
)1/2

,

(D1)

and the Hamiltonian Eq. (84) reduces to:

H = ux0

(
u2
x0 +

u2
e0 − w

µ

)1/2

+
M2

Ae0 sec2 θ

µ+ 1
w(1+ cosφ).

(D2)

Settingux0=1 andue0=0 in Eq. (D2) we obtain the Hamil-
tonian

H =

(
1 −

w

µ

)1/2

+
M2

Ae0 sec2 θ

µ+ 1
w(1 + cosφ), (D3)

which is the Hamiltonian used byWebb et al.(2005) (except
for a scaling factor of 2µ) in describing parallel propagating
whistler waves.

Next consider the roots of the cubic polynomialR(ux)
given in Eq. (130) and in the longitudinal structure Eq. (126),
in the special case whereR=0. Note thatR=0 if ue0=µup0,
and that for this case1 in Eq. (131) is a perfect square. In
this case we obtain:

u± =
u2

∗ ± |u2
∗ −H1|

ux0
, (D4)

where

u2
∗ =

u2
x0

4M2
Ae0(µ+ 1)

(
sin2 θ +

(µ+ 1)2

µ
cos2 θ

)
. (D5)

H1 = u2
x0

(
1 +

sin2 θ

2M2
Ae0(µ+ 1)

)
. (D6)

HereH1 is the value of the Hamiltonian integral Eq. (87) and
u2

∗ is defined in Eq. (139). There are two cases to consider,
listed below.
Case

(i) u2
∗≥H1

In this case, we obtain from Eq. (D4) the expressions:

u+ =
ux0

M2
Ae0 sec2 θ

(
µ+ 1

2µ
−M2

Ae0 sec2 θ

)
, (D7)

u− = ux0

(
1 +

sin2 θ

2M2
Ae0(µ+ 1)

)
≡
H1

ux0
, (D8)

for the rootsu±. The conditionu2
∗≥H1 is equivalent to

M2
Ae0 sec2 θ ≤

1

4

(
µ+ 1

µ
−

tan2 θ

µ+ 1

)
. (D9)

Nonlin. Processes Geophys., 15, 179–208, 2008 www.nonlin-processes-geophys.net/15/179/2008/



G. M. Webb et al.: Integrable, oblique travelling waves in two-fluid plasmas 207

The roots ofR(ux)=0 are ordered so thatux0<u−<u+.
Case (ii)u2

∗≤H1
From Eq. (D4) we obtain:

u+ = ux0

(
1 +

sin2 θ

2M2
Ae0(µ+ 1)

)
≡
H1

ux0
, (D10)

u− =
ux0

M2
Ae0 sec2 θ

(
µ+ 1

2µ
−M2

Ae0 sec2 θ

)
, (D11)

The conditionu2
∗ ≤ H1 is equivalent to

M2
Ae0 sec2 θ ≥

1

4

(
µ+ 1

µ
−

tan2 θ

µ+ 1

)
. (D12)

We require:

1

4

(
µ+ 1

µ
−

tan2 θ

µ+ 1

)
≤ M2

Ae0 sec2 θ ≤
µ+ 1

2µ
, (D13)

to ensure thatu−≥0. Hereu−=0 at the upper limit on
M2

Ae0 sec2 θ in Eq. (D13).
Based on the formulae Eqs. (D7–D13) we obtain the fol-

lowing classification for the roots ofR(ux)=0. Using the
notation

M2
= M2

Ae0 sec2 θ, M2
1 =

1

4

(
µ+ 1

µ
−

tan2 θ

µ+ 1

)
,

M2
2 =

µ+ 1

4µ
, M2

3 =
µ+ 1

2µ
, (D14)

we find for increasingM the following scheme:

(i). If M2<M2
1 thenux0<u−<u+.

(ii). If M2
= M2

1 , thenu− = u+>ux0, andu− = u+ is a double
root. This case corresponds to an oscilliton solution.

(iii). If M2
1<M

2<M2
2 , thenux0 < u− < u+ is the order of the

roots ofR(ux). This is the same order for the roots in (i).

(iv). If M2
=M2

2 , thenu−=ux0<u+. This is a double root case.
ux=ux0 is a centre critical point andux=ux0 is constant throughout
the wave. Rotation of the transverse fluid velocity componentsujy
andujz of the electron and proton fluids (j=e, p) as well as rotation
of the transverse magnetic field occurs.

(v). If M2
2<M

2<M2
3 thenu−<ux0<u+. Note that the order of

the rootsu− andux0 is reversed compared to (i).

(vi). If M2
=M2

3 , thenu−=0. The order of the roots is the same

as in (v). ForM2>M2
3 , u−<0. Solutions exist foru−<0, but they

must involve a shock, becauseux>0 is required for physical solu-
tions.

Using the expression Eq. (123) for D(ue0) in terms ofR
andδ1, withR=0, we obtain:

D = −
b2δ1

4
, (D15)

whereδ1 is given by Eq. (118). We find thatD<0 if M<M2
(i.e. δ1>0) andD>0 if M>M2. If D<0 thenux0<u−<u+,
and ifD>0, thenu−<ux0<u+ as discussed in Eq. (142) et
seq.

Acknowledgements.The work of GMW and GPZ was sup-
ported in part by NASA grant NN05GG83G and NSF grant
nos. ATM-03-17509 and ATM-04-28880.The work of C. M. Ko
was carried out for the most part, during sabbatical leave at the
IGPP at the University of California Riverside in 2006 and 2007.
C. M. Ko was supported by the Taiwan National science council
grant NSC95-2112-M-008-006. C. M. Ko and J. F. McKenzie
acknowledge support from the IGPP at the University of Califor-
nia Riverside, and the hospitality of the director of the IGPP, G. P. Z.

Edited by: R. Grimshaw
Reviewed by: G. Belmont and another anonymous referee

References

Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical
Functions, (Dover: New York), 589 pp., 1965.

Bridges, T. J.: Spatial Hamiltonian structure, energy flux and the
water wave problem, Proc. Roy. Soc. Lond. A, 439, 297–315,
1992.

Bridges, T. J.: Multi-symplectic structures and wave propagation,
Math. Proc. Camb. Philos. Soc., 121, 147–190, 1997a.

Bridges, T. J.: A geometric formulation of the conservation of wave
action and its implications for signature and the classification of
instabilities, Proc. Roy. Soc. A, 453, 1365–1395, 1997b.

Cattel, C., Johnson, L., Bergman, R., Klumpar, D., Carlson, C.,
McFadden, J., Strangeway, R., Ergun, R., Sigsbee, K., and Pfaff,
R.: FAST observations of discrete electrostatic waves in associa-
tion with down-going ion beams in the auroral zone, J. Geophys.
Res., 107, A9, 1238, doi:0.1.029/2001JA000254, 2002.

Chen, F. F.: Introduction to plasma physics and controlled fusion,
(New York: Plenum Press), 136 pp., 1984.

Cotter, C. J., Holm, D. D. and Hydon, P. E.: Multi-symplectic for-
mulation of fluid dynamics using the inverse map, Proc. Roy.
Soc. Lond. A, 463, 2617–2687, 2007.

de Hoffmann, F. and Teller, E.: Magnetohydrodynamic shocks,
Phys. Rev., 80, 4, 692–703, 1950.

Dubinin, E., Sauer, K. and McKenzie, J. F.: Nonlinear stationary
whistler waves and whistler solitons (oscillitons). Exact solu-
tions, J. Plasma Phys., 69, 305–330, 2003.

Dubinin, E. M., Maksimovic, M., Cornilleau-Werhlin, N., Fontaine,
D., Travnicek, P., Mangeney, A., Alexandovna, O., Sauer,
K., Fraenz, M., Dandouras, I., Lucek, E., Fazakerley, A.,
Balogh, A., and Andre, M.: Coherent whistler emissions in the
magnetosphere-Cluster observations, Ann. Geophys., 25, 303–
315, 2007,http://www.ann-geophys.net/25/303/2007/.

Drury, L. O.’C.: An introduction to diffusive shock acceleration of
energetic charged particles in tenuous plasmas, Rept. Progress
Phys., 46, 973–1027, 1983.
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