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Abstract. The knowledge of soil type and soil texture is
crucial for environmental monitoring purpose and risk as-
sessment. Unfortunately, their mapping using classical tech-
niques is time consuming and costly. We present here a way
to estimate soil types based on limited field observations and
remote sensing data. Due to the fact that the relation be-
tween the soil types and the considered attributes that were
extracted from remote sensing data is expected to be non-
linear, we apply Support Vector Machines (SVM) for soil
type classification. Special attention is drawn to different
training site distributions and the kind of input variables. We
show that SVM based on carefully selected input variables
proved to be an appropriate method for soil type estimation.

1 Introduction

Soils play an important role in the environment. They are
natural habitats for flora and fauna, determine plant growths,
store water, filter and/or transform infiltrating substances.
Soil texture strongly influences, for example, the water hold-
ing capacity, stability, erodability, and permeability of soil.
Soil type is important for agriculture, forestry and planning
purposes as it reveals knowledge about soil horizons, infor-
mation about ground water and back water influence and
leaching processes. Unfortunately, soil type and soil tex-
ture mapping is a very time and cost consuming task. Based
on the desire to reduce expensive field observations, the aim
of this work is to estimate soil types using limited ground
data and additional attributes. Due to the fact that the re-
lation between the soil types and the additional attributes is
expected to be non-linear, Support Vector Machines (SVM)
were used. Our experience on the performance of linear
analyses (e.g. logistic regression) supported the choice of a
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non-linear classifier. Unlike Bhattacharya and Solomatine
(2006) who based soil texture classification on Cone Pen-
etration Testing (CPT) data, and Pozdnukhov et al. (2002)
who solely used coordinates we propose to handle attributes
that can be derived from satellite images as input variables
for soil type SVM classification. Thus, the following input
variables were considered: landuse, altitude, aspect, slope,
geology, distance to rivers and coordinates. The study area is
located in the eastern part on the Erzgebirge, Germany. Dif-
ferent classifications were perfomed in order to address the
following three questions: (I) How does training site distri-
bution affect the performance of soil type classification using
SVM. (II) Should the coordinates always be considered as in-
put variables. (III) Does a sine and cosine representation of
the aspect return better results than the degree representation
of the aspect.

2 Main principles of Support Vector Machines (SVM)

This section gives a brief introduction on the basic princi-
ples of SVM classification. More detailed information about
SVM and their mathematical background, can be found in
Scḧolkopf and Smola (2002), Chen et al. (2005), Burges
(1998), Shawe-Taylor and Cristianini (2000) and Vapnik
(2000). SVM is a type of universal learning machine (Vap-
nik, 2000). In other words it is a learning algorithm used
for pattern recognition and classification and was originally
designed to solve binary classification problems. Therefore,
the performance of SVM will be described using a binary
classification problem. The linear, non-linear and the non-
separable cases and at last the multi-class case are addressed.

2.1 Linear SVMs for the separable case

Consider a training data set

{(xi, yi) | xi ∈ X ⊂ Rn, yi ∈ {−1, 1}} (1)
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Fig. 1. Linear separating hyperplane for the separable case (Burges,
1998).

where xi are input data points (called patterns) in a n-
dimensional space (the input spaceX), that are labeled by
yi . The variableyi defines the class membership of each
point, and in this caseyi can either be 1 or−1. For exam-
ple, x1∈R3 denotes one point in a three dimensional space,
constructed for instance by the first three spectral bands of
Landsat, hereafter referred to as attributes or input variables,
and is labeled byy1=1, which could code the landuse class
forest. SVM solve the classification problem by constructing
an optimal hyperplane that separates the data (Fig. 1). The
class of hyperplanes considered and the corresponding deci-
sion functions look as follow (Chen et al., 2005): Class of
hyperplanes

(w · x) + b = 0 w ∈ Rn, b ∈ R (2)

Decision functions

f (x) = sgn((w · x) + b) (3)

The vectorw is perpendicular to the hyperplane and called a
weight vector.b is called a treshold or bias and|b|/||w|| is
the perpendicular distance from the hyperplane to the origin
(Burges, 1998), with||w|| beeing the Euclidean norm ofw.
(Fig. 1).b=0 would force the hyperplane to pass through the
origin.

The points closest to the optimal hyperplane are situated
on the parallel hyperplanesH1 andH2 and are named sup-
port vectors. In Fig. 1 they are circled.
To find the optimal hyperplane, training points that are clos-
est to the hyperplane must be identified, andw andb must
be choosen such that the margin is maximised. The margin,
measured perpendicular to the hyperplane, is the sum of the
distances of the closest point of each class to the hyperplane
(Burges, 1998). Since the margin is proportional to 1/||w||

the optimisation problem can be expressed as follows:

minimise 1
2||w||

2

subject toyi · ((w · xi) + b) ≥ +1 i = 1, ..., m (4)

in other words

(w · xi) + b ≥ +1, f or yi = +1

(w · xi) + b ≤ −1, f or yi = −1

Fig. 2. Mapping of input variables into a higher dimensional space.
Left: input space; Right: feature space (Schölkopf and Smola,
2002).

The optimal hyperplane is thus characterised by the largest
margin between the two classes, and the ability to correctly
separate the data. This optimisation problem can be solved
through its Lagrangian dual, which leads to the following
decision function, withαi being dual variables (Chen et al.,
2005):

f (x) = sgn(

m∑
i=1

yiαi · (x · xi) + b). (5)

It needs to be pointed out that only a subset of the training
patterns, the support vectors, are relevant to construct the op-
timal hyperplane. The classification of a new data pointx

is based on a weighted comparison between this point and
the support vectors. The dot product is used as a similarity
measure.

2.2 Non-linear SVM for the separable case

Most of the time it is not possible to separate the data in the
input spaceX using a linear function. Therefore, the idea be-
hind SVM is to map the input data into a higher dimensional
space (feature spaceH ), where a hyperplane that separates
the two classes can be constructed (Fig. 2). The example in
Fig. 2 shows that the hyperplane in the feature space corre-
sponds to a non-linear surface in the input space.

φX → H

x → φ(x) (6)

Using a kernelk, it is possible to calculate the dot product
in feature space without mapping all input data points into a
higher dimensional space. Thus, using the kernelk as a simi-
larity measure, the computational effort can be reduced. The
decision function needs now to be changed to (Chen et al.,
2005)

f (x) = sgn(

m∑
i=1

yiαi · k(x, xi) + b) (7)

Widely used kernels are the polynomial kernel or
the Gaussian Radial Basis Function kernel (RBF:
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K(xi, xj )=exp(−||xi−xj ||
2/2σ 2)). Depending on the

kernel the user has to define certain kernel parameters. In
case of RBF, one needs to determineσ .

2.3 Non-separable case

In practice, a separating hyperplane often does not exist due
to a large overlap of the classes. Thus, to define a hyperplane
it is necessary to relax the constraints Eq. (4). Therefore,
slack variablesξi were introduced (Cortes and Vapnik, 1995)

ξi ≥ 0, wherei = 1, ..., m (8)

Relaxing the constraints to:

yi · ((w · xi) + b) ≥ 1 − ξi, i = 1, ..., m (9)

The aim of this approach is to find a hyperplane that max-
imises the margin and keeps the misclassification of training
examples small. “The trade-off between the margin and the
misclassification error is controlled by a user-defined con-
stant” (Pal and Mather, 2005). Applying the “Soft Margin
Support Vector Classifiers”C-SVC the user needs to define
a parameterC, with C>0, which controls the trade off.

minimise
1

2
||w||

2
+ C

m∑
i=1

ξi (10)

subject to the constraints Eqs. (8) and (9)

A largeC forces the creation of an accurate model, with very
few misclassifications that may not generalise well (Foody
and Mathur, 2004). Choosing a smallerC allows more mis-
classifications.C is called a regularisation parameter.

2.4 Multi-class case

Two main approaches have been developed for multi-class
classification using SVM: The one-against-all (OAA) and
one-against-one (OAO) method. OAA compares one class
with all the others taken together. Having n classes, n hyper-
planes are determined, n optimisation problems need to be
solved and n classifiers are generated. The OAO approach
performs a binary SVM on all possible pairs out of n classes.
Each classifier is trained on two out of n classes. The number
of classifiers therefore is n(n-1)/2. Applying these classifiers
to a test data point leads to n(n-1)/2 class votes. The test
data gets the class label from the class that received the most
votes. Thus, in comparison to the OAA approach, more clas-
sifiers have to be generated when the OAO method is applied.
On the other hand, the OAA approach suffers from problems
caused by unbalanced training set sizes (Foody and Mathur,
2004), (Huang et al., 2002). Both methods, OAA and OAO,
reduce the multiclass dataset to several binary problems that
have to be solved.
Some new approaches were developed to solve the multi-
class problem without reducing it to several binary cases (e.g.
Weston and Watkins, 1998; Hsu and Lin, 2002; Foody and
Mathur, 2004).

Fig. 3. Location of study area.

3 Study area and experimental design

3.1 Study area

To investigate the performance of SVM for soil type classi-
fication, with regards to training site distribution and certain
input variables,a study area was chosen where an exhaustive
data base was available. The area under investigation is sit-
uated in the eastern part of the Erzgebirge/Germany and is
part of the catchment area of the river Weißeritz (Fig. 3).
This region has a size of about 28 km2 with an altitude rang-
ing from 544 m to about 800 m above sea level. The topo-
graphically undulating area is dominated by fields, grassland
and coniferous forest. Urban areas are mainly located along
roads and are characterised by small houses surrounded by
gardens. Within the study region 12 soil types were distin-
guished using the German classification scheme. An accurate
transformation into international terms was difficult. Thus,
only the main soil types are named in the following and af-
terwards we refer to the different soil types using labels 1 to
12. Figure 4 shows the distribution of the 12 soil types within
the study area. The dominating soil types areCambisols
(label:3) andPlanosol– Cambisols(labels:4,5). Planosols
(label:6),Gleysols(label:9),Podzols(label:2),Fluvisols(la-
bel:8), Histosols(label:10) and some transitional soil types
(labels:7,12) also occur in this area, but occupy consider-
ably less space. In regions covered with forest the under-
lying soil type is mainlyCambisol, whereas grassland and
fields are mostly located onPlanosols/Cambisols. Gleysols
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Fig. 4. Distribution of soil types within the study area (based on soil
maps BK 5247 and BK 5248 provided by the Saxonian State Office
of Environment and Geology): Soil classification based on ”Bo-
denkundliche Kartieranleitung KA4”: 1: BB-PP; 2: PPn; 3: BBn;
4: 2SS-BB+3BBn; 5: 3SS-BB+2BBn; 6: SSh; 7: 1GG-SS+2SS-
GG+2GGn; 8: AB; 9: GG; 10: HH; 11: 2BB-SS+2SS-BB+1SSn;
12: 2ABn+3GG-AB.

andFluvisolsoccur around rivers and streams. Geologically,
gneiss, muscovite gneiss, albite and quarz phyllite and por-
phyry are dominant within the study area.

3.2 SVM soil type classification

Soil formation processes and the relation between site char-
acteristics and soil types are very complex. Therefore, as
expected and demonstrated later in this paper, linear classi-
fiers perform poorly. We decided to apply SVM, as it is able
to handle non-linear as well as non-separable cases.

3.2.1 SVM settings

Soil type classifications were performed using RBF kernel
and the One-Against-One multi-class approach. The RBF
kernel was chosen because this kernel is able to handle non-
linear relations between class labels and attributes, and only
one kernel parameter has to be defined (Hsu et al., 2007).

Furthermore, Kanevski et al. (2007) state that the Gaussian
Radial Basis Functions (RBF) are suitable for environmen-
tal applications. The decision to use the OAO approach was
based on the experience that the OAO method yields better
results than the OAA approach (e.g. Pal and Mather, 2005)
and to avoid problems caused by unbalanced training set
sizes (refer to Sect. 2.4). Furthermore, we applied the Soft-
Margin Support Vector Classifier C-SVC. The kernel param-
eterσ and the regularisation parameter C were determined
using 10-fold cross-validation (CV). In case several param-
eter combinations led to the smallest average error, the one
leading to the smallest test error was chosen.

3.2.2 Input variables

Since soil type is closely related to soil formation, soil type
classification was based on variables known to influence soil
formation: altitude, aspect, slope, geology, distance to rivers
and streams, and landuse. These variables can be derived
from remote sensing data. In the present study the land
use data were obtained from SVM classifications based on
ASTER visible and shortwave infrared data. For some clas-
sifications coordinates were additionally used as input vari-
ables. The input of geographical coordinates were proved
valuable for soil texture mapping (Pozdnukhov et al., 2002)
and are assumed to enhance modelling of the spatial distri-
bution of the soil types. Special attention was also drawn to
the input variable aspect. Aspect is commonly represented
in degree. Thus, very small and very large values represent
a northern aspect. This would cause problems for classifiers
using descriptive statistics, such as mean and standard devi-
ation, to separate the data. However, it should be no problem
for SVM, as they are not based on descriptive statistics and
can handle non-linear cases. Sine and cosine of the angle are
able to describe the aspect explicitly and are thus used here
to investigate whether it holds true that SVM can handle the
degree representation of the aspect. Combinations of input
variables considered within this work are listed in Table 1.
All input variables were linearly scaled to range from−1 to
1. Regarding categorical attributes, like landuse and geology,
each category was represented as a vector of−1 and 1. For
example, three different landuse classes were represented
as follows: forest (1,−1,−1), field (−1,1.−1), grassland
(−1,−1,1).

3.2.3 Considered distributions of training data

For any supervised classification method an efficient train-
ing site selection is crucial. Typically, training site selec-
tion aims to provide an accurate description of each class in
the sense of descriptive statistics. To achieve this, a rather
large training data set is generally required. However, Foody
and Mathur (2006) point out that the training data should
provide the classifier with information neccessary to sepa-
rate the classes, not to describe the classes. Hence, different
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Table 1. Input variable combinations considered in this study.

Label Input variables

A altitude, slope, landuse, distance to rivers, geology, degree representation of the aspect
B altitude, slope, landuse, distance to rivers, geology, sine and cosine representation of the aspect
C altitude, slope, landuse, distance to rivers, geology, degree representation of the aspect, coordinates
C* altitude, slope, landuse, distance to rivers, geology, sine and cosine representation of the aspect, coordinates

classifiers may require different training data, depending on
how they separate the data. In contrast to MDC or MLC,
SVM only use marginal data, the support vectors, to con-
struct the hyperplane, which separates the data. Thus, the
training data set should especially contain data points located
close to the hyperplane. Based on this knowledge, Foody and
Mathur (2006) present a new training data selection method
for remote sensing data which would be easier and cheaper in
comparison to conventional methods. They focus on mixed
pixels located at class boundaries and tested their method on
classifications of agricultural crops.
However, this approach cannot realistically be applied for
soil type classification because, firstly, no real class bound-
aries exist, but rather transitions from soil type to soil type
and, secondly, one cannot observe soil types surfaces in the
field as soils are usually covered by vegetation. It is not pos-
sible to determine the location of class boundaries based on
just the few ground data points that are available. Within
this study, training data points were randomly or evenly se-
lected. Soil type classifications were performed on four dif-
ferent training data sets (Fig. 5) to investigate the effect of
training site distribution for SVM classification of soil types.
The first training data set is characterised by an almost uni-
form distribution of data points spread over the whole study
area (Fig. 5A). Training set 2 is based on a random sampling
of 1/14 of all data points (Fig. 5B). In training set 3 and 4 the
data points are not spread over the whole study area. Train-
ing set 3 is arranged in a chequerboard like pattern, i.e. data
points are randomly distributed in three distinct parts of the
study area (Fig. 5C). Training set 4 is evenly distributed in the
southern part of the study area (Fig. 5D). For all four training
data sets the corresponding test data sets were large enough
to enable good accuraccy assessment. However, the test data
set belonging to training set 3 contains no samples of classes
6 and 10. Thus, it could not be tested if the classifier would
be able to assign these two class memberships correctly.
Looking at Table 2 it is obvious that the training data sets
are highly unbalanced. Such unbalanced data sets are un-
favourable for SVM classification, and problematic for the
CV approach as optimization parameters depend on the av-
erage CV error. Having an unbalanced data set with some
classes comprising only one to ten and other more than 1000
data points (Table 2, training set 4), only the large classes de-
termine the average error and thus parameter selection. How-

Table 2. Number of training and test data in the four training sets.
This table describes the unbalanced repartition of the training sets.

Training set 1 Training set 2 Training set 3 Training set 4
soil type train test train test train test train test

1 8 16 3 21 0 24 0 24
2 87 190 20 257 2 249 5 272
3 943 1887 201 2629 222 1070 1687 1143
4 794 1594 152 2236 155 1360 1752 636
5 710 1444 156 1998 138 1088 1313 841
6 36 70 17 89 15 0 78 28
7 184 358 45 497 50 79 228 314
8 8 15 2 21 1 22 1 22
9 23 50 3 70 6 41 23 50
10 13 23 5 31 3 0 21 15
11 265 525 43 747 28 623 390 400
12 147 263 31 379 30 229 253 157

total 3218 6435 678 8975 650 4785 5751 3902

ever, the unbalanced distribution of training data points be-
tween the soil types is a realistic representation of the overall
class distribution in the whole study area. Real field measure-
ment campaigns would lead to similar unbalanced samples.
Thus, training sets presented above were used for classifica-
tion without modification. Training set 2 is the most realistic
training set, in case the area under investigation is easily ac-
cessible. Training set 3 and 4 represent data sets acquired in
regions which are only partly accessible.

3.3 Minimum Distance Classification (MDC) and Maxi-
mum Likelihood Classification (MLC)

To demonstrate the need for a non-linear classifier for soil
type classification, MDC and MLC were performed as well.
MLC, which in general yields better results than MDC, was
only performed on numerical input variables. For categorical
input variables the presupposition of normal distribution can-
not be fulfilled. Leaving out such categorical data reduced
classification performance for SVM significantly.
MLC and MDC were applied to training set 2, the most real-
istic training data set, in case the study area is easily acces-
sible. The input variable combinations C and C* (Table 1)
were considered for MDC to investigate whether a sine and
cosine representation yields indeed better results than a de-
gree representation of the aspect. All input variables were,
as for SVM, scaled to range between−1 and 1. Categorical
input variables were also treated the same way as for SVM
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Fig. 5. Different distributions of training data,(A) (Uniform): Training set 1 contains 3218 data points, which is one third of all data points
available in the study area,(B) (Random): Training set 2 comprises 678 data points,(C) (Chequerboard): T raining set 3 includes 650
training data points,(D) (Localized): Training set 4 contains the largest number of training data, 5751.

classification (refer to Sect. 3.2.2). Considering a coordinate
system, each category, e.g. forest, forms one axis.

3.4 Applied accuracy measures

Accuracy assessment was based on validation data sets. As
suggested by Foody (2002), for all classifications performed
within this study different measures of accuracy, i.e. overall
accuracy (OA) and the estimate of Kappa (K̂), were calcu-
lated and confusion matrices are presented. The calculation
of the various accuracy measures was based on equations
presented by Congalton and Green (1999). The confusion
matrix, also called error matrix, contains information about
the real class membership of data points and the class mem-
bership assigned to data points by a classification method.
Correctly classified points are recorded along the matrix di-
agonal. Overall accuracy (OA) is the most frequently used
accuracy measure and represents the percentage of correctly
classified points.K̂ takes into account not only the actual
agreement, represented by the matrix diagonal, but also the
chance agreement, indicated by the row and column totals.K̂

values greater than 0.8 represent a strong agreement between
the classification and the reference data, whereas values be-
tween 0.4 and 0.8 represent moderate agreement and values
less than 0.4 stand for poor agreement. TheK̂ value can be
used to determine whether the agreement between a classi-
fication and the reference data is significantly greater than
0, meaning better than random labelling, and to test whether
two confusion matrices are significantly different. For this
purpose Z andZp values were calculated (Congalton and
Green, 1999, p. 51):

Z =
K̂

ˆvar(K̂)
(11)

Zp =
|K̂1 − K̂2|√

ˆvar(K̂1) + ˆvar(K̂2)

(12)

A Z value greater than 1.96 shows that at a confidence level
of 95% the classification is significantly better than random.
A Zp value greater than 1.96 means that the two confusion
matrices are significantly different, considering a confidence
interval of 95%. The equation for the estimated variance
of Kappa ( ˆvar(K̂)) can be found in Congalton and Green
(1999, p. 50). Foody (2004) shows that Kappa values can un-
derestimate the accuracy of the classification if the data sets
on which the values are estimated are not independent. In
the present study, kappa values are measured on very differ-
ent data sets, as independent as natural data sets can be, and
therefore give a good estimation of the classification accu-
racy. The McNemars test (Bradley, 1968; Agresti, 1996), an
alternative proposed by Foody (2004), gave similar results in
the present study. Additionally Kappa are standard values in
the scientific community. Finally, Liu et al. (2007) show that
other estimators, including those proposed by Foody (2004)
do not offer alternatives as there is no way to decide which
model of chance agreement is correct.
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Table 3. SVM classification results for all training site distributions and input variable sets, their appliedσ and C as determined by 10-folds
CV, and accuracy assessment (see text for details).

Training set Input domain C σ train error test error OA (%) K̂ ˆvar(K̂) Z

1 A 64 1 0.1339 0.2193 78 0.72 4.2111e-05 111
B 16 1 0.1352 0.2214 78 0.72 4.2479e-05 110
C 256 1 0.0311 0.1726 83 0.78 3.5041e-05 132

2 A 16 1 0.1298 0.2985 70 0.62 3.6197e-05 103
B 64 4 0.2212 0.2906 71 0.63 3.5628e-05 105
C 1024 4 0.0796 0.2568 74 0.67 3.3032e-04 117

3 A 64 1 0.0554 0.5255 47 0.32 7.7086e-05 36.8
C 1024 1 0.0031 0.556 44 0.29 7.7125e-05 33.0

4 A 4 0.25 0.0659 0.6258 37 0.17 1.3761e-04 14.4
B 64 1 0.0915 0.5812 42 0.29 8.4886e-05 31.5
C* 16 1 0.0828 0.5931 41 0.23 1.1756e-04 21.1

Table 4. Zp: Comparison between SVM, MDC and MLC (training
set 2).

Input OA Pairwise
Domain Method (%) K̂ Comparison Zp

C* SVM 73 0.66 SVM vs. MDC 40.56
C* MDC 42 0.32

C SVM 74 0.67 SVM vs. MDC 46.69
C MDC 39 0.30
C MLC 32 0.23

4 Results

All classifications were significantly better than random,
considering a confidence level of 95% (Table 3), and SVM
clearly outperformed MDC and MLC (Table 4). As ex-
pected, confusion matrices (e.g. Table A3) reveal that most
classifications are biased towards classes that where suffi-
ciently represented within the training data sets, meaning
class 3, 4 and 5. Despite the fact that all classifications are
better than random, the agreement between a classification
and the reference data greatly differed depending on the clas-
sification method, the distribution of the training sets and the
input variables (Table 3, column̂K). The best soil type clas-
sification was based on a large amount of training data homo-
geneously distributed over the whole study and on all input
variables including coordinates. This classification led to an
overall accuracy of 83% and âK value of 0.78. The most re-
alistic data set (training set 2), in combination with the input
domain C, led to an overall accuracy of 74 % and aK̂ value
of 0.67.

4.1 Classification methods: SVM, MLC and MDC

Table 4 clearly demonstrates that SVM outperformed MLC
and MDC. SVM yielded significantly better results than
MDC (Zp>1.96). In addition, the minimum distance clas-
sifier led to quite high training errors (input domain C*:
e=0.58; input domain C: e=0.62). This indicates a very large
class overlap in input space and demonstrates the complexity
of the data. This all together supports the choice of SVM as
the preferred method.

4.2 Influence of training site distribution

Training sites distributed over the whole study area led to bet-
ter classification results than training sites that occur rather
clustered (training set 3 and 4). ThêK values for classifi-
cations performed on training sets 1 and 2 lie between 0.62
and 0.78 and represent moderate agreement. Classifications
based on training set 3 and 4 only show poor agreement with
the reference data (̂K<0.4). They are also more biased to-
wards classes largely represented in the training data set than
classifications based on training set 1 and 2. The correspond-
ing confusion matrices are presented in the Appendix (Ta-
ble A1, A2, A3 and A4).
A higher number of training sites enhanced classification per-
formance considerably (training sets 1 and 2). TheK̂ value
increased from 0.62 to 0.72 (Table 3). However, training
set 4 led to the worst classification results (Table 3) despite
the large amount of training data. Also a 30-fold CV and a
fine-grid search did not enhance the classification. There are
mainly two reasons for the bad performance. Training set 4
is the most unbalanced data set, containing classes with more
than 1300 data points as well as classes not represented at all
(class 1) or represented only by 1, 5 or 20 data points (class
8, 2, 9, 10). However, the main reason is that the altitude of
the validation area, ranging from 544 m to 730 m above sea
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Fig. 6. Modelling of spatial patterns. Even when the assigned class membership is not correct, the classifier is able to retrieve the correct
geometry.

Table 5. Descriptive statistics for the input variable altitude (m
above sea level), regarding training set 4 and soil types with more
than 200 training data points.

soil types 3 4 5 7 11 12

min 547 601 557 546 613 622
max 816 808 806 791 743 807
mean 691 735 698 608 688 710
median 682 742 693 598 690 703
std 71 45 57 54 31 53

total training
data points 1687 1752 1313 228 390 253

level, does not lie within the range of the training data set
(721 m to 816 m above sea level). This explains why most
data points where assigned to class 3 and class 7, and not to
class 4, which is the largest class within the training set (Ta-
bles A4, A5 and A6). Soil types 3 and 7 are sufficiently rep-
resented within the training data set and are located on lower
altitudes (Table 5). Soil type 4, on the other hand, occurs on
more elevated places.
All classifications, including classifications based on train-
ing set 3 and 4, were able to retrieve certain spatial patterns,

as for example the characteristic occurrence of soil types lo-
cated close to rivers or streams (Fluvisol label:8, Gleysol la-
bel:9), in the valley in the north-western part of the study area
(Fig. 6). These classes where generally badly represented
within the training data sets (Table 3), and especially clas-
sifiers trained on training data sets 3 and 4 were not able to
assign the correct class memberships to these map units. In-
stead, these points were allocated to classes sufficiently rep-
resented in the training data set, which are partly also located
along streams (Gleysol-Planosol label:7). The main point
here is that all classifiers assign different class memberships
to this region than to the surrounding area. Thus, they reveal
the spatial characteristics of soil type distribution in this area.

4.3 Input variables: coordinates

Previous SVM classifications were solely based on coordi-
nates (Pozdnukhov et al., 2002). Within this work coordi-
nates were not considered as the only input variables be-
cause there are several advantages to base soil type classifi-
cation additionally, or solely, on input variables listed above.
Firstly, accurate coordinates are not always available. Addi-
tionally, using other input variables, it is possible to somehow
account for the underlying soil formation processes. Further-
more, the performed classifications show that if the training
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Table 6. Zp: Effect of coordinates on training sets 1 and 2.

training input Pairwise
set domain K̂ Comparison Zp

1 A 0.72 A vs. C 7.0338
C 0.78

2 A 0.62 A vs. C 6.8103
C 0.67

Table 7. Zp: Effect of coordinates on training sets 3 and 4.

training input Pairwise
set domain K̂ Comparison Zp

3 A 0.32 A vs. C 2.6859
C 0.29

4 B 0.29 B vs. C* 4.3460
C* 0.23

sites are not distributed homogeneously but concentrated in
specific parts of the study area, for example due to accessibil-
ity problems, coordinates should not be considered as input
variables. It is therefore important to test the influence of in-
cluding the coordinates on the resulting classification.
In case training sites are randomly distributed over the whole
study area (training sets 1 and 2), the input of coordinates
significantly enhance soil type classification (Table 6).
In case training sites are not homogenously distributed over
the whole study area but occur rather clustered in some dis-
tinct parts of the study region (training set 3 and 4), classifi-
cations based additionally on coordinates were significantly
worse than classifications solely based on input variables al-
titude, slope, aspect, landuse, geology and the distance to
rivers (Table 7). The validation data set belonging to train-
ing set 4 is located north of the training data set and thus
the values of the coordinates of the test data points lie not
within the range of the coordinate values of the training data
set. This is the same problem as with the input variable al-
titude presented above. In the test set belonging to training
set 3 the coordinate values are within the range of the coordi-
nate values of the training data set. Nevertheless, considering
coordinates as input variables deteriorates the classification.
The reason is that a classifier based on coordinates is able to
account for the spatial distribution of the classes, and in case
there are large areas without training data, modelling spatial
distribution becomes a disadvantage.

4.4 Input variables: aspect

As expected, for MDC the sine and cosine representation of
the aspect yielded significantly better results than the degree
repersentation (Zp=3.59, Table 4). Regarding SVM, no such

Table 8. Zp: Influence of aspect on training set 1 and 2.

training input Pairwise
set domain K̂ Comparison Zp

1 A 0.72 A vs. B 0.3305
B 0.72

2 A 0.62 A vs. B 1.0905
B 0.63

Table 9. Zp: Influence of aspect on training set 4.

training input Pairwise
set domain K̂ Comparison Zp

4 A 0.17 A vs. B 8.1153
B 0.29

clear statement can be formulated. For the classifications
based on training sites 1 and 2, the Zp values are smaller than
1.96, i.e. classifications based on a degree representation of
the aspect and classifications based on a sine and cosine rep-
resentation are not significantly different (Table 8). In this
case SVM is able to handle the degree representation of the
aspect (refer to Sect. 3.2.2).
Regarding training set 4, however, the classification based
on a sine and cosine representation of the aspect (input do-
main B) is significantly better than the classification based
on a degree representation (input domain A) (Table 9). There
is no obvious reason why the sine and cosine representation
of the aspect significantly enhanced the classification based
on training set 4, but did not enhance classification perfor-
mance for training set 1 and 2. But as Weston et al. declares:
”Identifying the reasons why an algorithm works better than
another one is difficult”.

5 Discussion

The conducted experiments demonstrate that SVMs can be
applied for soil type classification and clearly outperform lin-
ear classifiers. Training site distribution and the selection
of input variables strongly influence the performance of the
soil type classification. A realistic training data set and care-
fully selected input parameters lead to a classification with
an overall accuracy of 74% (̂K value of 0.67; training set
2, input domain C). Such results show that the method can
be used operationally. We show that the largest set of ho-
mogeneously distributed training data points (training set 1)
yielded the best results. This might be surprising because one
promoted strength of SVM is that it not depends on a good
description of the classes and is thus able to derive good re-
sults using only a small amount of training data points which
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are generally not evenly distributed over the whole study area
(Foody and Mathur, 2006). On the other hand soil types vary
hugely both locally, within a soil type surface, and region-
ally, where soils might have a similar type but with different
genetic parameters. In such case, it is not only difficult to
map soil type boundaries but selective training on these spa-
tial transitions might lead to decreasing performances. For
all decision functions the same parameter combination ofσ

and C was applied in this study (class-insensitive multi-class
approach). However, it would be also possible to define C
andσ for each decision function separately (class-adaptive
approach). Pozdnukhov et al. (2002) state that for their soil
texture classification the class-adaptive approach delivered
the best results, as it allows somehow to take into account the
different spatial variability of classes. Thus, applying a class-
adaptive approach here, might enhance classification perfor-
mance. According to Chen et al. (2005) it is not clear which
approach is favourable. In the class-insensitive approach, a
uniform parameter combination might not be good for all de-
cision functions, and a class-adaptive approach might lead
to overfitting. Working with realistic data sets revealed sev-
eral problems that need to be discussed here. Within an area
of the size of 28 km2 many soil types, 12 in our case, are
present, each varying considerably in their spatial extend.
Training data sets are thus also mostly very unbalanced, rep-
resenting one class with 100 or 1000 times more data points
than another one. The second problem is that in some cases
training data sets might not contain all classes present within
the study area (training set 3 and 4). This is a general prob-
lem regarding supervised classifications that assign discrete
class memberships to the map units. Assigning probabilities
rather than discrete class memberships to map units that are
to be classified, would help identifying critical areas. Man-
tero et al. (2003) explicitly addressed the problem of unkown
classes within the study area and suggest a partially super-
vised classification. Regarding the problem of unbalanced
data sets, this study shows that, as expected, classifications
are biased towards classes largely represented in the train-
ing data set. This again is a problem commonly encountered
when working with realistic data sets (e.g. Bhattacharya and
Solomatine, 2006). Down-sampling large classes or over-
sampling of small classes may help to avoid this problem.
However, down-sampling large classes lead to a loss of infor-
mation, which is critical in case potential SVs are excluded.
Over-sampling, on the other hand, may lead to overfitting.
Another way to deal with unbalanced data is to penalise mis-
classifications of samples belonging to small classes more
than those of samples belonging to big classes, by assign-
ing higher C values to small and smaller C values to large
classes (Osuna et al., 1997, p. 15). A high C value in gen-
eral would also force the classifier to built an accurate model,
but here all classes would be overfitted. Eitrich and Lang
(2005) explicitely addressed this problem and presented a
way how to tune SVM parameters for large and unbalanced
data sets. Regarding the classifications performed within this

study, the CV already determined a relatively high C value,
and classifiers trained on training set 1 and 2 classified small
classes reasonably good. Nevertheless, it would be worth-
while to test whether the methods presented above enhance
classification performance for the given data set. Besides
the training data sets also the test data sets were unbalanced
(Table 2). Thus, overall accuracy mainly evaluates whether
large classes are classified correctly. To get around this, ac-
curacy assessment was mainly based on confusion matrices
and theK̂. K̂ was regarded the more appropriate accuracy
measure here, as it accounts for chance agreement.

6 Conclusions

The performed classifications show that SVM based on an
RBF kernel, the C-soft margin support vector classifier and
the One-Against-One multi-class approach can successfully
be used to classify soil types. The attributes altitude, slope,
aspect, distance to rivers or streams, landuse and geology
turned out to be appropriate input variables for soil type clas-
sification in the eastern part of the Erzgebirge region. Using
coordinates as additional input variables is not always ad-
visable, it strongly depends on the training set distribution.
Nevertheless, all these input variables can be derived from
remote sensing data or are already widely available, as, for
example, the input variable geology. Due to the facility to
gather input data, this method is very robust and can be eas-
ily used elsewhere.

This study showed, that the best SVM soil type classifica-
tions were obtained on the basis of training data, which were
more or less homogeneously distributed over the whole study
area. Regarding such a distribution of the training data, co-
ordinates enhanced classification performance significantly
and are therefore valuable input variables. Thus, given such
well distributed training sites, coordinates should generally
be considered as input variables. Classifications based on
training sites which are not homogeneously distributed over
the whole area but occur rather clustered in certain regions
of the study area, leaving behind big areas without training
sites, only showed poor agreement between reference data
and the classification. However, even classifiers trained on
such an undesirable training data set were able to detect cer-
tain spatial patterns.
Regarding the input variable aspect, it was approved that
classifiers based on descriptive statistics (MDC) yield bet-
ter results using the sine and cosine representation instead
of the degree representation. In contrast, SVM should gen-
erally be able to handle the degree representation of the as-
pect, and for two out of three classifications it indeed did not
matter whether the degree or the sine and cosine represen-
tation was used. However, in one case the the sine and co-
sine representation produced significantly better results than
the degree representation. Thus, it might be worth to try
both aspect representations. We propose now to investigate
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whether methods concerning the handling of unbalanced data
are able to indeed enhance classification results. To account
for the fact that the training data sets might not represent all
classes within the study region, it would be favourable to as-
sign probabilities to the classified map units, rather than dis-
crete class values and to applied such partially supervised
methods as presented by Mantero et al. (2003). Furthermore,
additional input variables should be tested, as for example
morphology, meaning for instance the position of a map unit
on a hill top or in a depression. This attribute might enhance
classification performance, because the position on a relief
has a strong influence on soil type formation. However, it
should be kept in mind that each attribute adds not only addi-
tional information but also some noise. Thus, it is favorable
to assess the importance of the input variables and to apply
feature selection methods. This becomes especially impor-
tant if a large number of input variables are available.

Appendix A

Confusion Matrices

Confusion matrices calculated for the test data are listed be-
low.

Table A1. Confusion Matrix: Training set 1, input domain A.

Classification
1 2 3 4 5 6 7 8 9 10 11 12

G
ro

un
d

re
fe

re
nc

e

1 1 0 13 0 0 0 0 1 0 0 0 1
2 2 101 67 7 6 0 2 1 0 0 0 4
3 3 32 1631 49 88 4 25 3 9 6 22 15
4 0 0 36 1370 139 0 4 0 0 0 28 17
5 1 6 113 178 1094 0 9 0 3 0 15 25
6 0 1 27 0 0 24 11 0 4 0 0 3
7 0 4 35 16 46 1 217 0 4 4 12 19
8 0 0 3 0 0 0 3 9 0 0 0 0
9 0 1 15 0 1 3 12 0 14 3 0 1
10 0 0 5 0 0 2 3 0 0 13 0 0
11 0 0 35 37 19 0 12 0 0 0 416 6
12 0 4 24 36 56 0 8 0 0 0 1 134

Table A2. Confusion Matrix: Training set 2, input domain A.

Classification
1 2 3 4 5 6 7 8 9 10 11 12

G
ro

un
d

re
fe

re
nc

e

1 4 0 10 0 2 0 5 0 0 0 0 0
2 2 37 173 6 6 20 5 2 5 0 0 1
3 5 18 2234 44 143 43 69 2 8 3 32 28
4 0 3 70 1659 399 0 3 0 0 0 88 14
5 0 7 170 309 1380 0 34 0 1 0 42 55
6 0 0 31 1 1 33 16 0 4 1 0 2
7 0 1 70 37 70 12 245 2 0 8 13 39
8 0 0 4 0 0 0 4 11 0 0 0 2
9 0 0 23 0 7 2 27 5 1 5 0 0
10 0 2 11 0 0 3 2 0 0 11 0 2
11 0 0 82 64 49 0 21 0 0 0 523 8
12 0 1 46 48 91 0 32 0 1 0 2 158

Table A3. Confusion Matrix: Training set 3, input domain A.

Classification
1 2 3 4 5 6 7 8 9 10 11 12

G
ro

un
d

re
fe

re
nc

e

1 0 0 8 2 9 3 2 0 0 0 0 0
2 0 0 150 1 26 22 46 0 1 0 0 3
3 0 11 658 22 163 15 59 0 11 8 54 69
4 0 12 75 913 331 0 1 0 0 0 13 15
5 0 1 163 348 546 1 4 0 0 0 12 13
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 6 17 16 3 19 0 2 1 6 9
8 0 0 11 0 0 0 9 0 2 0 0 0
9 0 0 25 0 6 0 8 0 2 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 57 90 355 0 22 0 0 0 92 7
12 0 8 51 45 83 0 11 0 2 0 0 29

Table A4. Confusion Matrix: Training set 4, input domain A.

Classification
1 2 3 4 5 6 7 8 9 10 11 12

G
ro

un
d

re
fe

re
nc

e

1 0 0 24 0 0 0 0 0 0 0 0 0
2 0 0 220 0 29 0 6 0 0 0 0 17
3 0 0 924 43 104 8 46 0 0 1 7 10
4 0 0 315 133 133 0 11 0 0 0 38 6
5 0 0 610 13 166 1 7 0 0 0 3 41
6 0 0 12 0 0 0 9 0 0 7 0 0
7 0 0 216 0 9 0 86 0 0 2 1 0
8 0 0 15 0 0 0 7 0 0 0 0 0
9 0 0 12 0 10 2 26 0 0 0 0 0
10 0 0 8 0 0 0 6 0 0 1 0 0
11 0 0 121 57 65 0 22 0 0 0 132 3
12 0 0 129 0 13 0 4 0 0 0 2 9

Table A5. Confusion Matrix: training set 4, input domain B.

Classification
1 2 3 4 5 6 7 8 9 10 11 12

G
ro

un
d

re
fe

re
nc

e

1 0 0 9 0 0 2 13 0 0 0 0 0
2 0 0 222 5 12 0 15 0 1 0 0 17
3 0 0 715 73 119 25 169 0 2 2 24 14
4 0 0 53 284 112 0 53 0 0 0 85 49
5 0 1 132 118 212 3 145 0 0 0 34 196
6 0 0 2 0 0 0 12 0 0 14 0 0
7 0 0 56 2 20 0 207 0 1 7 10 11
8 0 0 1 0 0 0 20 0 1 0 0 0
9 0 0 6 0 7 4 32 0 0 1 0 0
10 0 0 8 0 0 0 4 0 0 3 0 0
11 0 0 36 52 76 0 51 0 0 0 183 2
12 0 0 54 13 19 3 31 0 0 0 17 20

Table A6. Confusion Matrix: training set 4, input domain C.

Classification
1 2 3 4 5 6 7 8 9 10 11 12

G
ro

un
d

re
fe

re
nc

e

1 0 0 22 0 1 0 1 0 0 0 0 0
2 0 0 249 0 15 0 8 0 0 0 0 0
3 0 0 899 0 130 11 46 0 0 7 44 6
4 0 0 384 64 63 0 17 0 0 0 76 32
5 0 0 428 3 275 0 47 0 0 0 29 59
6 0 0 3 0 1 0 5 0 0 19 0 0
7 0 0 181 0 10 0 101 0 0 10 10 2
8 0 0 1 0 0 0 21 0 0 0 0 0
9 0 0 7 0 11 4 27 0 0 1 0 0
10 0 0 6 0 0 0 6 0 0 3 0 0
11 0 0 131 16 26 0 11 0 0 0 207 9
12 0 0 58 0 33 2 28 0 0 0 7 29
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