
Nonlin. Processes Geophys., 15, 1013–1022, 2008
www.nonlin-processes-geophys.net/15/1013/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Nonlinear Processes
in Geophysics

An assessment of Bayesian bias estimator for numerical
weather prediction

J. Son1, D. Hou2, and Z. Toth3

1Numerical Prediction Center KMA, Seoul, Korea
2Environmental Modeling Center/NCEP/NWS/NOAA and SAIC, Washington DC, USA
3Environmental Modeling Center/NCEP/NWS/NOAA, Washington DC, USA

Received: 24 April 2008 – Revised: 6 November 2008 – Accepted: 6 November 2008 – Published: 16 December 2008

Abstract. Various statistical methods are used to process
operational Numerical Weather Prediction (NWP) products
with the aim of reducing forecast errors and they often re-
quire sufficiently large training data sets. Generating such a
hindcast data set for this purpose can be costly and a well de-
signed algorithm should be able to reduce the required size
of these data sets.

This issue is investigated with the relatively simple case of
bias correction, by comparing a Bayesian algorithm of bias
estimation with the conventionally used empirical method.
As available forecast data sets are not large enough for a
comprehensive test, synthetically generated time series rep-
resenting the analysis (truth) and forecast are used to increase
the sample size. Since these synthetic time series retained the
statistical characteristics of the observations and operational
NWP model output, the results of this study can be extended
to real observation and forecasts and this is confirmed by a
preliminary test with real data.

By using the climatological mean and standard deviation
of the meteorological variable in consideration and the statis-
tical relationship between the forecast and the analysis, the
Bayesian bias estimator outperforms the empirical approach
in terms of the accuracy of the estimated bias, and it can re-
duce the required size of the training sample by a factor of
3. This advantage of the Bayesian approach is due to the fact
that it is less liable to the sampling error in consecutive sam-
pling. These results suggest that a carefully designed statisti-
cal procedure may reduce the need for the costly generation
of large hindcast datasets.
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(jhson@kma.go.kr)

1 Introduction

Statistical methods are widely used to process Numerical
Weather Prediction (NWP) products with the aim of im-
proving the forecast. The adjustment of dynamically based
(NWP) forecasts with statistical models has a long history.
Model Output Statistics (MOS) techniques (e.g. Glahn and
Lowry, 1972; Woodcock, 1984; Vislocky and Fritsch, 1995)
have been widely used since the 1970s. It improves raw nu-
merical forecasts by reducing model bias and filtering out
the unpredictable. These statistical algorithms adjust the
raw forecast based on a database of retrospective forecasts,
preferably from the same model, and the corresponding ob-
servations. The size of the sample of forecast-observation
pairs is crucial for the application of these algorithms. As
the characteristics of the errors in NWP model output de-
pends on the model used in generating the forecast, a large
number of retrospective forecasts must be run prior to imple-
mentation of a new model or upgrading of an existing model.
As NWP models are continuously improved and periodically
upgraded, the cost associated with the generation of a large
sample of retrospective forecasts may hinder the application
of such statistical post processing algorithms. As an exam-
ple, Hamill et al. (2004) suggest that full benefit of the MOS
approach can be achieved with about 20 years of training
data.

On the other hand, some statistical methods based on
Bayes Theorem (Krzysztofowicz, 1983; Berger, 1985;
Bernardo and Smith, 1994) have been developed to process
NWP model products. They are able to generate probabilistic
forecast from a sample of deterministic NWP model output
and the corresponding truth. In contrast to the more tradi-
tional statistical approach, these Bayesian methods make use
of the information from a much larger, existing sample of the
truth (observation or analysis), from which the climatology
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of the meteorological variable in consideration can be de-
rived. Krzysztofowicz (1999) proposed a Bayesian Processor
of Forecast (BPF) which quantifies the uncertainty in terms
of probability density function of the real value of the fore-
cast variable, given the raw forecast (NWP model output).
By using the climatology distribution of the variable and a
statistical relationship between the raw forecast and the veri-
fication, BPF can estimate this probability distribution func-
tion (pdf) from a relatively small sample of the forecast-truth
pairs. In addition, the BPF implicitly corrects the bias in the
raw forecast.

Despite its sound theoretical basis, BPF is not widely used
in the statistical processing of NWP products. This paper
provides a preliminary test of the simplest Bayesian algo-
rithm, i.e., that used in bias correction.

Most Numerical Weather Prediction (NWP) products are
subjected not only to random error but also to systematic er-
ror (i.e., bias). By definition, bias is the expected difference
between nature and a forecast of nature. Bias arises from
the limitations of the numerical models used in the integra-
tion (Toth and Pena, 2007), and their estimation and correc-
tion are of great interest in both research and forecast oper-
ations. Particularly, in the case of longer-lead time forecast,
bias correction is essential for correcting model drift in the
forecast. Interest in bias estimation and correction has been
on the rise in recent years with the emergence of ensemble
forecast products, especially those from multi-model ensem-
bles, such as the North America Ensemble Forecast System
(NAEFS). Because all forecast systems have their own sys-
tematic errors (e.g. Hou et al., 2001) and these errors would
cause bias in the first and second moments of the ensemble
distribution (Cui et al., 2005), they should preferably be re-
moved before single model ensembles are combined to gen-
erate a joint, multi-model ensemble. Removing bias also im-
proves highly quadratic scores, such as the root mean square
error (RMSE).

There are various schemes of bias estimation (e.g. Déqúe,
2003; Cui et al., 2005). A good bias estimation scheme has
two desired characteristics. First, the estimated bias should
converge to the true bias with increasing sample size used in
the bias estimation (i.e., should yield an unbiased estimate of
the model systematic error). Second, the rate at which the
estimated bias approaches the real bias should be high. The
second requirement is very important for operational appli-
cations, where the NWP model is continuously improved and
periodically upgraded. Before each implementation, a retro-
spective data set needs to be generated to facilitate bias esti-
mation and correction. Faster convergence of the estimated
bias to its real value implies a higher quality in bias estima-
tion, leading either to an improved forecast (with a speci-
fied size of the training sample), or reduced need for compu-
tational resources (with specified accuracy). Therefore, the
rate of convergence of bias estimation is the most important
issue to be analyzed when a bias correction scheme is as-
sessed.

To assess a bias correction scheme, the use of real obser-
vation (or analysis) and forecast data sets accumulated for
multiple years at operational forecast centers appears to be
the most straightforward. However, such analysis/forecast
data sets are typically not available. This is because every
forecast model evolves as time goes by and the computer re-
sources for regenerating retrospective forecasts are limited.
To avoid this limitation, some studies used either an earlier
version (cheaper for run) of an operational model (Hamill
et al., 2004), or a simpler model (Gneiting et al., 2005) to
generate large training data sets. Although the sample size
generated in this manner is larger, it is still insufficient for a
rigorous study of the basic issue, i.e. the rate of convergence
in the bias estimator, which requires a specification of the cli-
matological mean of the forecast. For this reason, a different
methodology is followed in this study, by using synthetically
generated time series to represent the truth and forecast. In
addition to providing arbitrarily long time series to define the
climate, this method rules out the regime dependence of bias,
and allows a controlled and detailed analysis of the bias es-
timation and correction methods for better understanding of
their performance.

The paper is organized as follows: Sect. 2 introduces the
bias estimator corresponding to the BPF and compares it with
the commonly used method of empirical bias estimation.
Section 3 describes how the synthetic analysis and forecast
data are generated. Results from experiments and analyti-
cal analysis with the synthetic data set are shown in Section
4, and those from a preliminary test with real NWP forecast
in Sect. 5. Finally, a summary and a brief discussion of the
results are presented in Sect. 6.

2 Empirical and Bayesian bias estimators

The mean systematic error, or bias, of a forecast system, is
typically defined as the statistical expectation of the differ-
ence between forecastf and the corresponding trutha, i.e.

B = E(f − a) = E(f ) − E(a) (1)

and empirically estimated (e.g. Déqúe, 2003; Cui et al.,
2005) from a sample of sizen

B̂ =
1

n

n∑
i=1

(fi − ai) (2)

In fact, if there is no other information available except the
sample of the forecast and analysis (a, f ) pairs, this is the
only way to estimate the bias. Ifn is small and the sample is
not representative of the population,B̂ will be significantly
different from the real biasB. In other words, to ensure a
reasonable estimation of the bias, a sufficiently large sample
and/or some special sampling technique is necessary.

However, in operational forecasting, the climate probabil-
ity distribution function (pdf) of a meteorological variable
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is often available with many years of observation or analy-
sis. It is also a common practice in both the traditional MOS
approach and the Bayesian approach (e.g. Krzysztofowicz,
1999) to assume that the forecastf is the sum of a function
of the verificationa, denoted byG(a), the constant biasB,

and a random errorε independent of the trutha and with zero
mean, or mathematically,

f = G(a) + B + ε (3)

An assumption behind Eq. (3) is that the expected value of
G(a) is the same as that of the analysisa itself, i.e.

E[G(a)] = E(a). (4)

By considering Eq. (4), the biasB can be expressed as the
expected value of the difference betweenf andG(a), i.e.

B = E[f − G(a)] (5)

And can be estimated from a sample of (f , a) pairs as

B̂ =
1

n

n∑
i=1

[fi − G(ai)] (6)

SinceE(ε)=0, G(a) is the expected value of(f −B) with
givena, i.e.

G(a) = E[(f − B)|a] (7)

and it reflects the statistical relationship between the fore-
cast and the verification. In addition, the first moment of the
climate pdf of the analysis,E(a), is used in definingG(a).

Therefore, Eq. (6) is the same as the bias estimated by BPF
(Krzysztofowicz, 1999) discussed in section 1. As the Bayes
Theorem is applied implicitly by usingE(a), Eq. (6) is re-
ferred as a Bayesian estimator of biasB, in contrast to the
empirical bias estimator Eq. (2).

An advantage of the Bayesian Bias Estimator (BBE) over
the Empirical Bias Estimator (EBE) is that its accurate form
Eq. (5) holds not only for the expected value, but also for the
conditional expected value, given analysisa, i.e.,

B = E[{f − G(a)}|a] (8)

Equation (8) can be easily proved by noting that
f −G(a)=B+ε andε is a random number with 0 mean and
independent of the trutha. This property of BBE indicates
that the biasB can be accurately estimated by using only a
subsample of (a, f ) pairs with a specific value or a small
range of values of analysisa, instead of a large sample span-
ning all of the possible values ofa. Consequently, it can be
used to increase the rate of convergence in bias estimation
and hence reduce the required sample size if a specific accu-
racy is required.

The application of BBE in Eq. (6) requires specifying
functionG(a). With both the traditional MOS approach and
the Bayesian Forecast Processor (Krzysztofowicz, 1999), a
linear relation is commonly assumed. As this assumption is

valid in most cases, it is also accepted in this study, although
other functions, such as logistic function, can be used. To
satisfy Eq. (4), the following linear function is the most nat-
ural choice:

G(a) = α[a − E(a)] + E(a) (9)

Note that this is different from the linear assumption in tradi-
tional MOS techniques in that the climatological information
of the truth,E(a), is employed. It will be noted later that
this distinction is very important. With this linear function,
Eq. (3) takes the form of

f = α[a − E(a)] + B + E(a) + ε (10)

and, with an estimation of the slopeα the BBE in Eq. (6)
becomes

B̂ =
1

n

n∑
i=1

[fi − α̂(ai − E(a))] − E(a) (11)

With the traditional MOS approach,E(a) is unknown or not
used. When the mean values off anda are required (as in
bias correction) they are often substituted with an estimation
from the sample mean. It can be shown that, with this type of
substitution, the BBE in Eq. (11) decays to EBE in Eq. (2).
Therefore, the difference between BBE and EBE is not only
in the forms of formulation, but also in the nature of the
methodology. While the traditional MOS approach, includ-
ing EBE, adjusts the forecastf based only on the available
sample of (a, f ) pairs, BBE uses some information of the
truth from the whole population. When there is only a partial
sample, the difference is significant. For example, when the
forecast skill is very low (α=0), EBE in Eq. (2) adjusts the
forecasts to the sample mean while BBE in Eq. (11) adjust
them towards to the climatological mean.

For convenience in calculation and discussion, the model
can be further simplified by denotingb=B+(1−α)E(a) and
rewriting Eqs. (10) and (11) as

f = αa + b + ε (12)

and

b̂ =
1

n

n∑
i=1

(fi − α̂ai) (13)

As in the traditional MOS approach, the interceptb of the lin-
ear function in Eq. (12) is not the bias defined in Eq. (1) and
a bias estimation has to be obtained by adding (α−1)E(a) to
the result of Eq. (13). The real simplification is by assuming
E(a)=0, or working in normal space. For this special case,b

is the bias defined in Eqs. (1) and (13) is the Bayesian Bias
Estimator, while the Empirical Bias Estimator in Eq. (2) be-
comes

b̂ =
1

n

n∑
i=1

(fi − ai) (14)
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Fig. 1. Autocorrelation coefficient (line) and Partial autocorrelation
coefficient (histogram) as a function of time lag (days), calculated
from the time series of 40 years of daily reanalysis of 2 m tempera-
ture at 37.5 N, 117.5 W.

In this article, calculation and discussion are performed in
normal space with Eq. (12) as the linear model, and Eqs. (14)
and (13) used as EBE and BBE, respectively. The results
can be easily extended to the original space. However, when
comparing the two estimators, one should keep in mind that
BBE has a general form of Eq. (11) and its usage requires the
information of the climatological mean of the truth.

3 Generation of the synthetic data set

3.1 General considerations

The synthetic data set used in this study seeks to represent
the truth with an arbitrarily long time series resembling the
major characteristics of the observation, and express its re-
lationship to the forecast with an analytical formula. Linear
models are commonly used in the traditional MOS approach
and the Bayesian processor (Krzysztofowicz, 1999), and this
practice is followed in this study. As can be seen later, fur-
ther simplification is made by working in a standard space
and unit variance will be specified for both the truth and the
forecast.

While observation is widely used to represent the truth,
objective analysis (which, in addition to the observation, uses
the same NWP model as used to generate the forecast) is
more commonly used in the major operational centers for
model verification and calibration. With this in mind, the
truth used in this study is based on real analysis and referred
as synthetic analysis, or simply analysis.

As this study is focused on the problem of bias correction,
or the adjustment of the first moment, the adjustment of the
second and higher moments of the probabilistic distribution
is ignored. Therefore, the corrected forecast will have the
same variance as the truth.

3.2 Synthetic analysis

To represent the truth, a synthetic analysis data set was gener-
ated based on the statistics from the National Centers for En-
vironmental Prediction (NCEP) – National Center for Atmo-
spheric Research (NCAR) reanalysis (Kalnay et al., 1996).
The reanalysis data set consists of daily analyses, from Jan-
uary 1959 December 1999, for a number of near-surface and
upper air variables on a 2.5×2.5 latitude/longitude global
grid. Temperature at 2 m height at the grid point 37.5 N,
117.5 W (near Fresno, California) is used for this study. The
selection of this point is arbitrary but comparisons with other
grid points suggest that the generated time series is represen-
tative of mid-latitude regions of North America.

To focus on the basic characteristics of bias estimation
methods, it is useful to disregard the fluctuations related to
the annual cycle. Therefore, the reanalysis time series is stan-
dardized by subtracting climate mean from each temperature
value and then divided by the standard deviation. Both the
climate mean and the standard deviation are calculated from
the 40-year (1959–1998) climate data for the Julian day of
the year corresponding to the date under consideration.

After removing the annual cycle by standardization, the
reanalysis time series is used to determine the parameters of
an ARMA model, which is then applied to generate the syn-
thetic analysis. An ARMA model (Box and Jenkins, 1976;
Gershenfeld and Weigend, 1994) consists of two parts, an au-
toregressive (AR) part and a moving average (MA) part, and
is usually referred to as an ARMA(p,q) model, wherep is
the order of the autoregressive part andq is the order of the
moving average part. It can be written as

xt =

p∑
i=1

φixt−i +

q∑
j=1

θjεt−j + εt (15)

where φi and θi are the autocorrelation parameters and
the moving average parameters of the model, respectively.
The error termsεt are generally assumed to be indepen-
dent and identically-distributed random variables, sampled
from a normal distribution with zero mean and unit variance:
εt∼N(0, 1).

To select the proper orderp for the autoregression, the
Autocorrelation Function (ACF) and the Partial Autocorrela-
tion Function (PACF) (Pourahmadi, 2001) of the normalized
reanalysis time series were computed and shown in Fig. 1.
It can be seen that the ACF decreases most rapidly between
lags of 0 to 10 and the time series has an autocorrelation no-
ticeably different from zero only for lags less than 20. PACF
at lagk is defined as the correlation coefficient betweenXt

andXt+k that is not accounted for by lags 1 throughk−1.
For an AR(p) model it drops off to zero after lagp. There-
fore, it is more convenient to use PACF in identifying the
order p (Quenouille, 1949). The fact that PACF vanishes
after lag 3 suggestsp=3 is an acceptable choice. However,
in order to retain as much information as possible from the

Nonlin. Processes Geophys., 15, 1013–1022, 2008 www.nonlin-processes-geophys.net/15/1013/2008/



J. Son et al.: An assessment of a Bayesian bias estimator with a synthetic 1017

real analysis time series, a conservative selection ofp=20 is
used. In fact, the resulted time series withp=3 andp=20 are
very similar. The order of moving average was selected as
q =1, after several tests with higherq showed no significant
improvement.

The coefficients of the ARMA model in Eq. (15) (with
p=20 andq=1) are estimated from the normalized reanaly-
sis time series with a size of 14610, using subroutines in the
commercial IMSL Stat/Library from Visual Numerics, Inc.
The algorithm is similar to that of Box and Jenkins (1976,
pages 498–500). The ARMA(20.1) model is then used to
generate an arbitrarily long time series, which is used as the
synthetic analysis data set. Figure 2 shows a section of the
standardized reanalysis time series (t=1 to 365) and a section
of the synthetic analysis time series (t=366 to 730), which is
generated by the ARMA(20.1) model fitted to the reanaly-
sis. The two sections are hardly distinguishable from each
other. Therefore, we conclude that the synthetic analysis is
a good approximation of the standardized reanalysis or ob-
servational time series. For convenience of calculation and
comparison, the synthetic analysis is slightly adjusted so that
its mean over a period of 100 000 days (about 270 years) is
exactly 0.

Both the standardized reanalysis and the synthetic analy-
sis exhibit variability at various frequencies. Although the
annual cycle has been removed, some fluctuations with their
frequency lower than the random noise still exist in the syn-
thetic analysis time series. Consequently, the average of the
time series over a period of about 100 days or shorter is sig-
nificantly different from its climate mean (0). For example
the periods fromt=365 to 465 andt=630 to 730 in Fig. 2 are
dominated by positive values. These lower frequency fluctu-
ations in the synthetic analysis time series can be interpreted
as quasi-seasonal variations associated with the changes in
dominant circulation patterns over seasonal or longer time
scales and will be further discussed in Sects. 5 and 6.

Finally, by specifying different seed value for the random
number generator in running the ARMA model, a number of
time series of synthetic analysisa can be generated. They
are different from each other but have the same statistics and
each of them is called a random case of the synthetic analysis
in this study.

3.3 Synthetic forecasts

Consistent with Eq. (12), a synthetic forecast time seriesf is
generated using the following normal-linear model:

fi = αai + βei + b (16)

where

0 < α < 1, β =

√
1 − α2 (17)

e is a random number from a normal distribution with zero
mean and unit variance, and the subscripti is the index of
the time series. The choice of the relationship betweenα and

Fig. 2. The time series constructed from both the real and synthetic
analyses. The sectiont=1 to 365 is from the standardized reanalysis
data, andt=366 to 730 from the synthetic analysis generated with
ARMA(20.1).

β in Eq. (17) is necessary for the variance of the synthetic
forecastf to match that of the synthetic analysisa. α can
be easily shown to be the temporal correlation coefficient be-
tween the forecastf and the analysisa in standard space, or
the anomaly correlation in the original space. In Krzyszto-
fowitcz (1992) this parameter is referred as Bayesian Cor-
relation Score and shown to be meaningful for comparing
alternative forecasts. Murphy and Epstein (1989) also relate
it to skill scores. In this study,α is varied between 1 and 0
to roughly represent NWP forecasts with lead times varying
between 0 (perfect correlation, and no random error) and 15
days (no correlation and the forecast is dominated by ran-
dom errors). Before proceeding to testing different bias esti-
mation methods, we assess whetherf as defined in Eq. (16)
is consistent with the statistics of real NWP forecasts. In
particular, we are interested to see whether the operational
forecasts are approximately normally distributed with an ex-
pected valueαᾱ (the sample average of the corresponding
analysis multiplied by the correlation between forecast and
analysis), given analysisa. This assumption should hold for
a larger sample ranging over all possible values of the anal-
ysis, and for sub samples of analysis values over a particu-
lar range. Operational Global Forecast System (GFS) fore-
casts of NCEP and the corresponding analysis for the pe-
riod from April 2004 to August 2005 were used in the latter,
more stringent test. Figure 3 shows the histograms of the sub
sample of forecasts with corresponding analyses between 3.0
and 4.0 degrees, and the hypothetical normal distribution,
for the 3-day and 10-day forecast. It can be seen that the
normal distribution roughly fits the histogram for both cases.
Chi-square (Conover, 1980; Wilks, 2006) and Kolmogorov-
Smirnov (Conover, 1980) tests were performed to quantify
the goodness of fit and the result of Kolmogorov-Smirnov is
shown in Table 1. For 13 out of the 16 lead times, the em-
pirical and the theoretical distribution are close to each other,
justifying the use of Eq. (16).
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Fig. 3. Histogram of the real operational forecast distribution and
the hypothetical pdf of the normal distributionN(αā, σ2) whereā

is the sample mean of the corresponding analysis,α the forecast-
analysis coefficient andσ2 the sample variance (see the text for
details).

Table 1. The Kolmogorov-Smirnov test of the goodness of fit
for various forecast lead times.D denotes maximum difference
between the theoretical and the empirical cumulative distribution
functions, and Prob the probability of the statistic exceedingD un-
der the null hypothesis of equality and against the one-sided alter-
native. The approximation is very close for Prob less than 0.10.

Lead time D Prob Lead time D Prob

day 1 0.2786 0.0103 day 9 0.2982 0.0053
day 2 0.1656 0.1934 day 10 0.2944 0.0060
day 3 0.1867 0.1253 day 11 0.3613 0.0004
day 4 0.4537 0.0000 day 12 0.2766 0.0110
day 5 0.3709 0.0003 day 13 0.3145 0.0029
day 6 0.4311 0.0000 day 14 0.2860 0.0080
day 7 0.3959 0.0001 day 15 0.2557 0.0211
day 8 0.2668 0.0150 day 16 0.1246 0.3871

4 Results with the synthetic data set

With the synthetic data set described in Sect. 3, the Bayesian
Bias Estimator is Eq. (13) and, if using the specified value of
the correlation coefficient, it takes the form of

Fig. 4. Bias error,b̂−b, as a function of sample sizen, for a ran-
domly selected case using the EBE (grey) and BBE (black).α=0.3.

b̂ =
1

n

n∑
i=1

(fi − αai) (18)

In this section, BBE is compared with EBE defined in
Eq. (14), in terms of accuracy of the bias estimate and re-
quirement of sample size for a specified accuracy. For each
case of the analysis times series, a forecast time series is gen-
erated with a specifiedα using Eq. (16) and the bias estima-
tion b̂ is calculated from the firstn (a, f ) pairs forn=1, 2,
3. . . and so on. This sequential sampling, without skipping,
is commonly used in both research and operations of NWP
output processing (e.g. Hamill et al., 2004; Cui et al., 2005).

b=1 is assumed in the calculations but the results can apply
to any value ofb because the bias error is independent of
the bias level. This can be shown mathematically. For the
synthetic forecast used in this study (Eq.16), the two bias
estimators can be generalized by

b̂n =
1

n

n∑
i=1

[(α − γ )ai + βei + b] (19)

whereγ=1 for EBE andγ=α for BBE. From Eq. (19) one
can see that

b̂ − b =
1
n

n∑
i=1

[(α − γ )ai + βei + b] − b

=
1
n

n∑
i=1

[(α − γ )ai + βei] +
1
n

n∑
i=1

b − b

=
1
n

n∑
i=1

[(α − γ )ai + βei]

(20)

is independent ofb.
Figure 4 depicts the error in the estimated bias,b−b̂ as

a function of the sample sizen in a randomly selected case
with α=0.3 (corresponding to lead time of 12 days). The er-
ror is characterized by large values and rapid variations with
n<100. However, compared with EBE, the error with BBE
is much smaller. For 100<n<400, the error becomes rela-
tively stable and its size is significantly reduced with both
methods, but BBE clearly outperforms EBE with a ratio of
the error size of about 1/5. Whenn exceeds 400, the error
becomes even smaller and the difference between the two
methods becomes less distinctive except that oscillations are
still visible with the traditional approach EBE.
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Figure 5. Absolute bias error of EBE (left) and BBE (right), averaged over 100 random cases, 

as functions of sample size n. The solid, dashed and dotted lines correspond to the correlation 

between forecast and analysis of 0.3, 0.6 and 0.9, respectively. 

Fig. 5. Absolute bias error of EBE (left) and BBE (right), averaged over 100 random cases, as functions of sample sizen. The solid, dashed
and dotted lines correspond to the correlation between forecast and analysis of 0.3, 0.6 and 0.9, respectively.

The performance of the two bias estimators is measured by
the absolute bias error, or the absolute value of the bias error,
averaged over 100 randomly selected cases. This measure,
as plotted in Fig. 5, smoothing out the noises and reducing
fluctuations seen in individual cases, represents the general
behavior of the two bias estimators. As the sample size in-
creases from 1 to the order of 100, the absolute error in the
bias estimate decreases steadily with minor fluctuations in
both methods, indicating that̂b gradually converges to the
actual biasb. Generally speaking, the rate of convergence
is higher with BBE than that with EBE. Aftern=200, the
absolute bias error continues to decrease steadily and con-
verges to zero as the sample size increases, with a signifi-
cantly lower error level with the Bayesian approach. Com-
paring the three curves corresponding to various correlation
values in each panel of Fig. 5, it can be seen that the error is
larger for forecasts with lower correlation. Another compar-
ison between the two panels suggests that the biggest impact
of the Bayesian approach is on these less skillful forecasts.

From Eq. (20), it can be seen that the larger error in the
estimated bias, its profound fluctuations and slower conver-
gence toward the real bias level are caused by the analysis or
the truth, which appears in the summation for EBE, but not
in BBE. As discussed in Sect. 3.2, there is noticeable lower
frequency fluctuations associated with the analysis time se-
ries. At the existence of these quasi-seasonal variations, the
sequential sampling is likely to result in a sample substan-
tially different from the population of the (f , a) pairs, if the
sample sizen is about 100 or smaller.

A major argument for a large sample size in NWP output
processing (including bias correction) is the higher accuracy
achieved in the bias estimation. Figure 6 shows the sample
size required for the absolute error to be less than specific

Fig. 6. The sample size required for the absolute bias error to be
less than 0.05 (solid line for EBE and dashed line for BBE) and 0.1
(dot-dashed line for EBE and the dotted line for BBE) as a function
of correlationα.

thresholds of 0.05 and 0.1. With EBE, the required sample
sizes are 2500 days and 850 days respectively when the cor-
relation is 0.1. If BBE is used, they are only 550 days and
180 days. In other words, the Bayesian method can reduce
the required training sample size by a factor of 4 to 5, indi-
cating a significant reduction in computational expenses in
generating the hindcast data set. For forecast of moderate
skill, such asα=0.4, the factor of reduction is about 3. As the
correlationα increases to 1.0 the two approaches are virtually
the same, and this is clear from Eqs. (19) and (20). Another
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Fig. 7. The time series of the absolute bias error of BBE, averaged
over 100 cases. Unlike in the right panel of Fig. 5, the calculation is
based on the estimated value of forecast-analysis correlation from
the training sample, instead of the exact value specified in generat-
ing the forecast data set.

advantage of the Bayesian Bias Estimator is that the required
sample size is less dependent on the level of the forecast cor-
relation. As seen from Fig. 6, when the correlation is less
than 0.6, nearly identical sample sizes can be used to meet
the required accuracy, regardless of the skill level.

In the above discussions, it is assumed that the parameter
α is known. If the Bayesian Bias Estimator is to be applied in
operational forecast, the parameter has to be estimated from
the available sample of analysis-forecast pairs. As noted in
Sect. 3.3,α is the correlation coefficient between the two
time series, the forecastf and the analysisa. The accu-
racy of its estimation is also dependent on the sample sizen.
Calculations show that the estimated correlation coefficient
approaches the real value ofα as n increases (not shown)
and the difference is small withn>100. This suggests that
the rate of convergence is similar to that of the bias estima-
tion and thus will not hinder the application of BBE. Bias
estimation with BBE is re-conducted by using this estimated
α to replace the specified value, and the result is shown in
Fig. 7. Comparison of Fig. 7 and the right panel of Fig. 5 re-
veals that the value of the absolute error, and its change with
increasingn, are very similar in the two calculations, and the
error is only slightly larger when the correlation is estimated
from the training data set. The difference is negligible when
the training sample size is larger than 100.

5 Preliminary results with real forecast

A rigorous test of the bias estimators BBE and EBE with a
real NWP forecast data set requires a very long time series

Fig. 8. The time series of 120 h forecast of temperature at 2 m
height from GEFS control forecast (solid line), and the correspond-
ing analysis (dashed line) at 37.5 N, 117.5 W (near Fresno, Califor-
nia). The smooth curves are the moving average (with a window of
45 days, see the text) of the corresponding time series.

of the model output from the same model. Frequent model
upgrading and improvements made the data accumulated at
operational NWP centers over the last a few decades unsuit-
able for such a test. Even the reforecast data set generated
using a much older model version (Hamill et al., 2004) can
not match the length of the analysis data set used in this study
to define the climate mean. Nevertheless, a preliminary test
was conducted and the result is presented in this section. The
forecast data set used is the 120 h forecast of temperature at
2 m height, output from Global Ensemble Forecast System
(GEFS) running operationally at NCEP, during the year of
2005. All 11 member forecasts and the corresponding veri-
fying analysis are standardized using the mean and standard
deviation calculated from the 40-year climate data, as de-
scribed in Sect. 3.2. The forecast model is NCEP’s Global
Forecast System (GFS) at T126 horizontal resolution with
28 levels in the vertical.

The time series of the analysis (dashed) and the control
forecast (solid) are depicted in Fig. 8 with a cubic polyno-
mial expression (which is equivalent to a moving average
with a window of about 45 days) plotted as smooth curves.
For the analysis, the following can be observed: (1) within
this 360-point sample, there are more negative values than
positive; (2) the period day 1–100 is dominated by positive
values, and day 100–320 by negative values; (3) the sample
mean of the analysis is negative. In other words, this one year
sample is not representative of the climatology (population)
in terms of its mean and distribution due to the existence of
quasi seasonal variations. This is the same as what is seen in
Fig. 2 for the real reanalysis and the synthetic analysis. From
the moving averages of the two time series, represented by
the smooth curves, it can be seen that the forecast is larger
than the analysis on most days and the difference is gener-
ally larger when the analysis is negative. This suggests that
the biasb is positive and the linear-normal relationship be-
tween forecast and analysis, i.e. Eq. (16), holds for this set

Nonlin. Processes Geophys., 15, 1013–1022, 2008 www.nonlin-processes-geophys.net/15/1013/2008/



J. Son et al.: An assessment of a Bayesian bias estimator with a synthetic 1021

of real forecasts. Based on the results with the synthetic data
discussed in Sect. 4, one expects that BBE will be a better
bias estimator than EBE.

Figure 9 plots the bias estimation from BBE (solid) and
EBE (dashed). It can be seen that the BBE estimation be-
comes stable earlier, reaching 0.8 at day 50, and the varia-
tion is smaller afterwards. In contrast, the EBE estimation
reaches the same 0.8 level at day 180 and the variation af-
ter that is also larger. The properties of the two curves are
very similar to what are seen in Fig. 4 for the synthetic data.
Based on these observations, one has reasons to believe that
0.8 is a reasonable estimate of the real bias, which cannot
be exactly determined from the unrepresentative partial sam-
ple. To reach this optimal estimation of 0.8, BBE requires a
significantly smaller sample size than EBE does. While be-
lieving that these observations are valid, we must admit that
a more rigorous investigation is needed to confirm the con-
clusion.

6 Discussion and conclusions

There are two reasons to work with synthetic analysis and
forecast data sets in the investigation of the performance of
various bias correction methods and other statistical process-
ing schemes. First, it is possible to generate a time series
as long as a user wants, without too much computational ex-
pense. Second, employment of synthetic data sets makes it
possible to perform analytical analysis so the results of the
experiments can be compared with theoretical solutions to
thoroughly understand the performance of different schemes.

The synthetic analysis time series used in this study are
generated based on the 2 m temperature reanalysis and retain
the major characteristics in its temporal variation. The syn-
thetic forecast is generated by a linear-normal model which
reflects the forecast-analysis correlation, random error and
the systematic bias in the real forecasts. The linear-normal
model, although not the only choice, is the simplest statisti-
cal descriptions of the relationship between the forecast and
the analysis. In addition, this model has been widely used
since the MOS technique was proposed. Therefore, the re-
sults of this study are based on a realistic data set and the
results can be applicable in real cases. However, the relation-
ship between the forecast and the analysis in real forecasting
may not follow Eq. (3) as strictly as in this synthetic case, and
the parameters in the analytic form ofG(a) may not be esti-
mated as accurately as the correlation coefficientα. There-
fore, the advantage of the Bayesian approach is expected to
be less impressive than what is seen in this study.

Two bias estimators are compared in this study. Using
information from the climatological distribution of the me-
teorological variable in consideration, and the statistical re-
lationship between the forecast and the verification (analy-
sis) inferred from the available sample of limited size, the
Bayesian Bias Estimator (BBE) overperforms the tradition-

Fig. 9. The estimated bias from BBE(solid line) and EBE(dashed
line) from the data in Fig. 8.

ally used empirical approach (EBE). The formulation of BBE
is effectively independent of the value of the analysis and
thus requires a smaller-sized training sample for a prescribed
accuracy in the estimated bias. This is important in reduc-
ing computational cost in operational NWP product process-
ing, as the numerical weather prediction models are upgraded
frequently and the initial training sample at each implemen-
tation is provided by reforecast. While Hamill et al. (2004)
demonstrated that the ensemble reforecast of large sample
size using an older model has significant value in improving
medium range forecast skill, the difference in the error char-
acteristics between the current and the older model is a poten-
tial problem. If a reforecast data set is to be generated each
time the model is upgraded, the extra computational cost re-
quired to update the large archive of hind casts may limit the
application of the method. On the other hand, using the lat-
est model and a shorter archive is also competitive in terms of
bias correction (Cui et al., 2005). With the reduced require-
ment for sample size with the Bayesian approach, maximum
benefit can be achieved with minimum cost in running the
reforecast with the latest model, only for a short period. As
a rule in operational forecast centers, an experimental run
with the new model has to be executed in parallel to the op-
erational run with the older model for at least a few months
before the official implementation. Therefore, a sample large
enough with the Bayesian approach may already exist by the
time the new model is implemented for operation. In this
case, the extra expense can be eliminated.

It should be pointed out that the requirement for a larger
sample size by the traditional approach EBE is largely from
the consecutive sampling and the existence of the quasi-
seasonal variations in the meteorological variable in consid-
eration. As discussed in Sect. 3.2, these fluctuations with
lower frequencies in the synthetic time series, to some extent,
reflects the characteristics of the real reanalysis time series.
Although it is not clear how well they reflect the nature, sim-
ilar characteristics are found with the real analysis in a time
period not covered by the 40-year reanalysis data set used to
generate the synthetic analysis. This suggests these fluctua-
tions with lower frequencies do exist in the real world. The
required sample size will be reduced with EBE if the popula-
tion is sampled randomly, instead of in a consecutive manner
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as in the present study. Hamill et al. (2004) showed that the
performance score can be improved when the same number
of (a, f ) data pairs is used but one pair is selected every 2,
3, 4 or 5 days. Therefore, the requirement of a larger sample
size in EBE and other traditional algorithms is actually a re-
quirement for the representativeness of the training sample.
In the current study, the seasonality in the synthetic analysis
time series makes a consecutive sample less representative of
the population and thus the traditional approach (EBE) leads
to an estimate of conditional bias (given analysis) instead of
the overall bias. This problem can be avoided by using the
Bayesian Bias Estimator (BBE) as its calculation is less af-
fected by the analysis or observation.

In summary, Bayesian approach can improve bias estima-
tion by using the climatology and the forecast-observation
relationship. The same approach may be extended to other
methods of NWP output processing, including the traditional
MOS type techniques and adjustment of higher moments,
although further investigation is required to further address
these issues.
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