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Abstract. A shallow-water model was used to understand
model error induced by non-Gaussian wind uncertainty. Al-
though the model was simple, it described a generic sys-
tem with many degrees of freedom randomized by external
noise. The study focused on the nontrivial collective behav-
ior of finite-amplitude perturbations on different scales and
their influence on model predictability. The error growth
strongly depended on the intensity and degree of spatial in-
homogeneity of wind perturbations. For moderate but highly
inhomogeneous winds, the error grew as a power law. This
behavior was a consequence of varying local characteris-
tic exponents and nonlinear interactions between different
scales. Coherent growth of perturbations was obtained for
different scales at various stages of error evolution. For the
nonlinear stage, statistics of prediction error could be ap-
proximated by a Weibull distribution. An approach based
on the Kullback-Leibler distance (the relative entropy) and
probability-weighted moments was developed for identifi-
cation of Weibull statistics. Bifurcations of the variance,
skewness and kurtosis of the irreversible predictability time
(a measure of model prediction skill) were detected when
the accepted prediction accuracy (tolerance) exceeded some
threshold.

1 Introduction

When circulation is simulated by a fine resolution regional
model in an area with open boundaries, the circulation dy-
namics often depends crucially on specified open bound-
ary conditions, wind forcing and sub-scale parameteriza-
tions. For atmospheric predictability, it is generally assumed
that the model forecasting is most sensitive to uncertainty
of initial conditions. However, for oceanic predictability in
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marginal seas with lengthy coastal zones, impact of uncer-
tainty of external forcing and/or subgrid parameterizations,
may be as significant as errors in initial conditions. The
model blow-up often sets in much faster than the model loses
its predictability due to errors in initial conditions (Jiang
and Malanotte-Rizzoli, 1999; Boffetta et al., 2000; Bogden,
2001; Auclair et al., 2003, among others).

Starting from the pioneering work of Lorenz (1963), the
dynamics of the prediction error (PE) due to uncertainty in
initial conditions has been deeply investigated in the theoret-
ical and numerical studies. The dynamics of model-related
errors has been paid much less attention to, probably due
to the large variety of possible modeling errors. Although
some general trends have emerged (Capotondi and Holland,
1997; Chu et al., 1999; Orrell et al., 2001; Vannitsem and
Toth, 2002; Nicolis, 2003, 2004, among others), more refined
theoretical investigations and additional experiments with an
hierarchy of ocean models of different levels of complexity
are necessary to get a more general view of the impact of
model-related error (particularly finite-amplitude) on model
predictability.

In the present paper, the dynamics of a model-related error
(hereafter, prediction error (PE)) generated by uncertainty in
wind forcing and its impact on predictability are studied in
the context of stochastic model stability (stability answered
in terms of probabilistic measures, such as expected values
or distribution functions (Freidlin and Wentzell, 1998)) for a
simplified regional model destabilized near an unstable equi-
librium state (an unstable fixed point in model phase space)
by stochastic wind.

In general, the stochastic stability and predictability dif-
fer from one another. However, if a time scale quantifies the
model predictability, and if this scale indicates the time when
the forecast uncertainty exceeds some boundary or when in-
formation on the initial condition is lost, the stochastic sta-
bility and predictability are interchangeable. Since such time
scales are widely used in meteorology (see, for example,
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Toth, 1991) and oceanography (Robinson et al., 1996), the
stochastic stability concept seems to be a useful tool for the
predictability analysis of large ocean models, and “the irre-
versible predictability time” (a prediction time scale) (Chu et
al., 2002) is a quantitative measure of model predictability.

Numerical computations discussed below can have a
twofold interpretation. First, the obtained results can be in-
terpreted as stability of a circulation regime relative to a high-
frequency component of wind forcing. Second, if we pa-
rameterize uncertainty of wind forcing as a stochastic noise,
the computation results are interpretable in the predictabil-
ity context. Therefore, hereafter, perturbations excited by
stochastic wind in an ocean basin will also be called a pre-
diction error.

The principal motivation of the proposed study is formu-
lated as follows.

First, it is well-known from numerical modeling that wind
is one of the main energy sources of ocean currents and that,
naturally, prediction errors associated with wind forcing un-
certainty may grow quickly in numerical models (Robinson
et al., 1996; Berloff and McWilliams, 1999; Chu et al., 1999;
Sura et al., 2001; Burillo et al., 2002, and others). Behav-
ior of such model-related errors are highly dependent on the
properties of the underlying dynamical regime [attractor] re-
produced by the numerical model and statistics of wind un-
certainty. Circulation patterns with oscillations near quasi-
equilibrium states and transition dynamics between them
are typical for many marginal seas, such as the Black Sea
(Stanev and Staneva, 2000), and for large-scale jet-like cur-
rents like Kuroshio (Masuda et al., 1999). The proposed
study focuses on the case of evolution of finite-amplitude
non-Gaussian perturbations induced by stochastic wind error
when the ocean is near a quasi-stable equilibrium state (even
small perturbations can destroy such a state and stimulate a
transition to another one). Therefore, the obtained results are
important for understanding the regional model predictabil-
ity (Robinson et al., 1996) when local attractor features deter-
mine the phase-spatial organization of the local error growth
rate.

Second, in ocean models, unresolved dynamics is often
represented in terms of random forcing. For example, impact
of mesoscale eddies on large-scale currents can be approx-
imated as a space-time correlated, random-forcing process
(Berloff, 2005). Therefore, the results obtained in the present
study may be useful for interpretation of a wide spectrum of
problems related to model predictability in the atmosphere
and ocean.

The rest of the paper is organized as follows. Section 2
explains a predictability metrics used to quantify the model
predictability for both small- and large-amplitude perturba-
tions. Features of the reference solution (the control run) are
discussed in Sect. 3. The surface wind is decomposed into
two parts: steady (“climatic”) part and stochastic one caused
by unknown synoptic variability. Statistics of the wind un-
certainty is given in Sect. 4. The model phase space is intro-

duced in Sect. 5. Section 6 investigates the sensitivity of the
root mean square prediction error to variations of stochas-
tic wind and the tolerance level (the accepted prediction ac-
curacy). Section 7 analyzes finite-amplitude induced phase
transitions of predictability. Section 8 develops a technique
for identification of the probability density function of the ir-
reversible predictability time. Herein, we demonstrate that
the statistics of this time is rather Weibullian than Gaussian.
The predictability horizon is estimated in Sect. 9. Section 10
provides the conclusions. Appendix A contains analytical
representations for the wind error source term.

2 Predictability measures

We examine the sensitivity of a reference solution relative
to stochastic variations of wind forcing. Such sensitiv-
ity may be measured by the traditional non-dimension root
mean square difference between perturbed (“pert”) and non-
perturbed (“ref”) solution presented by a variable9, which
may stand for energy, temperature, salinity, the stream func-
tion etc. (Holland and Malanotte-Rizzoli, 1989; Brasseur
et al., 1996; Robinson et al., 1996; Wirth and Ghil, 2000,
among others),

< Ī(t) >=< I2
pert(t) > /I2

ref(t) (1)

and the irreversible predictability time (IPT) (Ivanov et al.,
1994) defined as

τ (ε̄) = inf
t≥0

(
t

∣∣∣Ī (t) > ε̄2
)
, (2)

whereIpert=
∥∥9pert−9ref

∥∥, Iref= ‖9ref‖, hereafter<...> is
the ensemble averaging,ε̄ = ε/Iref is the non-dimension
tolerance (the accepted prediction accuracy),‖‖ is the Eu-
clidean norm. According to Eq. (2) the irreversible pre-
dictability time is a time at which the prediction errorĪ1/2

reaches a predetermined levelε̄ for the first time, i.e. any re-
turns of model predictability are impossible afterτ(ε̄).

The IPT is clearly interpretable in a model phase space,
where perturbed and non-perturbed (reference) solutions are
represented byX′ andX trajectories, respectively, and the
equationĪ (t)=ε̄2 describes a spheroidal surfaceS(ε̄) mov-
ing along the trajectoryX (Fig. 1a). A distance

∣∣Xo−X′
o

∣∣
between the trajectories at time momentto (the initial er-
ror) usually grows with time due to model inaccuracy, and
becomes larger than̄ε (crossingS(ε̄)) after a timeτ(ε̄)
(Fig. 1a). This time is defined as the IPT.

For a steady reference solution (represented by a fixed
point in the model phase space), the IPT becomes the clas-
sical first passage time (FPT). The classical FPT is a time at
which a trajectory reaches a boundary for the first time (Gar-
diner, 1985). Therefore, the IPT can also be defined as the
FPT for varying boundaries (compare Fig. 1a and Fig. 1b).
The FPT plays an essential role in many applied fields. We
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(a) (b) 

Fig. 1. Definitions of (a) IPT and(b) FTP. Phase trajectoriesX
(the reference solution) with the initial position ofX0, andX′ (a
perturbed solution) with the initial position ofX′

0are denoted by
solid and dashed curves, respectively. A time whenX′ crossesS(ε̄)
in the point A is the IPT (a) or FPT (b).

can suppose that the IPT may become a useful tool for the
analysis of ocean model predictability too.

Statistics of the IPT (Ivanov et al., 1994; Chu and Ivanov,
2005) can be represented by the probability density func-
tion (τ -PDF) or the cumulative distribution function (τ -CDF)
[P(ε̄, t−t0)]. τ -CDF is the probability thatτ≥t−t0 for a
given tolerance level.

In practical applications, statistics of IPT (τ -CDF or τ -
PDF) may be identified fromτ -moments,

τl (ε̄) = l

∞∫
t0

(t − t0)
l−1P (ε̄, t − t0)dt, l=1, ..., L. (3)

Knowing these moments we may computeτ -mean , τ -
variance (τ -var) , τ -skewness (τ -sk) andτ -kurtosis (τ -ku).
For example,

τ -mean= τ1, τ -var = τ2 − (τ1)
2 etc.

If the cumulative distribution function P has a heavy tail
for large values oft−t0, high-orderτ -moments (l=2, ..., L)
sometimes do not exist because the integral in Eq. (3) does
not converge. In this case we suggested (Ivanov and Chu,
2007) to identifyτ -CDF or τ -PDF from the probability-
weighted moments (αl) defined originally by Greenwood et
al. (1979),

αl =

1∫
0

X(P ) (1 − P)l dP , l = 1, ..., L , (4)

whereX(P ) is the quantile function ( i.e., the inverse of cu-
mulative distribution function).

 

Fig. 2. Basin geometry. Thex1 andx2 axes point toward east and
north, respectively.

In practice the same momentsαl are estimated from an or-
dered random sample(τ )Nn=1 of sizeN (Hosking and Wallis,
1997) by

α̂l =
1

N

(
CN−l
l

)−1 N∑
n=1

Cn−ll (τ )Nn , (5)

whereCn−ll are the binomial coefficients.
The probability-weighted moments always exist and are

robust relative to sampling error. Therefore, the robust es-
timate ofτ -CDF or τ -PDF for small forecast ensembles is
possible. This is one of advantages of the IPT. An appropri-
ate method for estimating distribution functions from knowl-
edge of the probability weighted moments will be discussed
in Sect. 8.

The moments of IPT as functions ofXo−X′
o satisfy the

Pontryagin-Kolmogorov-Stratonovich equations (Pontryagin
et al., 1969), which are linear elliptic differential equations.
Their asymptotic solutions can be obtained in many cases.
For example, Chu et al. (2002) calculated analytically first
two moments of IPT for a low-order nonlinear atmospheric
model (Lorenz, 1984). Therefore, the analytical estimate of
model predictability in the IPT context is another advantage
of our approach.

3 The reference solution

We consider a rectangular semi-closed basin with the hori-
zontal dimensions:L1=1050 km andL2=1000 km, and with
constant depthH=2 km, which is situated on a mid-latitude
β-plane. The basin has rigid(0) and open(0′) boundaries.
The geometry of the basin and its sizes are shown in Fig. 2.
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Our numerical model is the nonlinear shallow-water equa-
tions with nonlinear bottom friction, wind and boundary
forcing

∂Du1

∂t
+L(Du2,Du1)−fDu2=−gD∇1ζ+W1−αE

1/2u1, (6)

∂Du2

∂t
+L(Du1,Du2)+fDu1=−gD∇2ζ+W2−αE

1/2u2, (7)

and the mass conservation equation

∂ζ

∂t
+ (∇1Du1 + ∇2Du2) = 0, (8)

where L(..., ...) is the nonlinear advective operator;
[∇1,∇2]=[

∂
∂x1
, ∂
∂x2

]; u1 andu2 are the zonal and meridional
velocities, respectively;D=H+ζ , ζ is the sea surface ele-
vation; the drag coefficientα=2.5×10−3; the gravityg; and
E=u2

1+u
2
2.

The Coriolis parameter varies linearly with a beta
plane approximationf=f0+βx2, wheref0=2� sin(ϕo) and
β=(2�/a) cos(ϕo). Here, � and a are the rate of ro-
tation and the radius of the Earth, respectively;ϕ0=350.
For the chosen model parameters:fo=7.3×10−5 s−1,
β=2.0×10−11 m−1 s−1.

A flow in the semi-closed basin bounded by0 ∪ 0′ is
forced by both the zonal wind forcingW1 (W2=0) varying
with latitude as

W1 = −
ws

ρw
cos(

πx2

L2
), (9)

where ρw=1025 kg m−3, ws is the wind stress,
ws
ρw

=1.0×10−3 m2 s−2 ,and a prescribed net flux (char-
acterized by the normal velocitȳub(x2, t) and surface
elevation ς̄b(x2, t) along the boundary0′). Zero normal
velocity and zero Neumann conditions for the surface
elevation are imposed on the rigid boundary0.

The chosen model configuration is suitable for the analysis
of ocean model predictability affected by different kinds of
stochastic uncertainties: errors inserted in initial conditions
(Ivanov and Chu, 2007), wind (the present study) and open
boundary conditions1. Cross-correlations between these er-
rors can also be studied.

Model (6–8) is similar to that used by Veronis (1966) for
the analysis of nonlinear wind-driven circulation in a closed
basin. But in contrast to Veronis (1966) we parameterize bot-
tom friction by the quadratic drag law (Pedlosky, 1987).

The barotropic mode of Princeton Oceanographic Model
(Blumberg and Mellor, 1987) was applied to Eqs. (6–8) with
the following model parameters: spatial resolution – 50 km;
time step – 2 min.

The prescribed non-stationary net flux across the open
boundary is computed as it was explained in Chu et

1Ivanov, L. M. and Chu, P. C.: Effects of stochastic open bound-
ary uncertainty on predictability of regional ocean models, Mon.
Weather Rev., in preparation, 2007.)

al. (1997). The structure of open boundary conditions on
day-0 and day-60 is demonstrated in Figs. 3a and b, respec-
tively. The initial condition represents a non-closed anti-
cyclonic gyre shown in Fig. 3a. The corresponding initial
surface elevation is not shown because its structure is obvi-
ous.

After 30 days of integration the model reaches a spin up
when the spatially averaged kinetic energy oscillates with a
period of 120 days. Amplitude of this oscillation reduces
with time exponentially with rate of 1000 day−1. The spa-
tially averaged kinetic energy for the first 60 days is shown
in Fig. 4a only because this time period is used for sensi-
tivity studies. The circulation pattern formed after day-30
presents a multi-gyre structure with maximum velocities up
to 0.9..1.0 m/s (Fig. 3b) and high surface elevation near 1m
(not shown).

4 Wind forcing uncertainty

Governing Eqs. (6–8) are perturbed by adding the stochastic
wind forcingw= (w1, w2) to W= (W1,W2). The stochastic
wind forcing is traditionally parameterized in the following
form

w(x1, x2, t) =
ρair

ρw
Cd |U(x1, x2, t)| U(x1, x2, t), (10)

whereρair is the air density (1.3 kg m−3), Cd (2×10−3) is the
drag coefficient, andU is the stochastic wind.

Following Sura et al. (2001)U is represented by

U= [U1(x1, x2, t), U2(x1, x2, t),] =µ(t)σG1/2(x1, x2), (11)

whereµ(t)= [µ1(t), µ2(t)] are white Gaussian vector pro-
cesses with zero mean and unit variance;σ 2 is the wind vari-
ance; the spatial structure function G characterizes a degree
of spatial inhomogeneity of wind perturbations above an area
of interest.

Two different structure functionsG are used. The first one
is given by

G1(x1, x2) = cos(
πx2

L2
). (12)

In this case only the amplitude of wind stress (Eq. 9) is dis-
torted by the non-Gaussian white noise.

The second one is chosen as

G2(x1, x2) = αscale

[
πβ1β2erf

(
L1

2β1

)
erf

(
L2

2β2

)]−1/2

exp

(
−
(x1 − L1/2)2

2β2
1

−
(x2 − L2/2)2

2β2
2

)
.(13)

Here, erf is the error function;αscale is a scaling parame-
ter; (β1, β2) are the decorrelation scales;G2 shows the im-
pact of the localized atmospheric eddy activity near the point
(L1/2, L2/2) on the surface wind perturbations (Sura et al.,
2001).
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Fig. 3. Spatial structure of the reference solution at the initial state(a) and after integration for 60 days(b). Open boundary conditions (ūb)
corresponding to the reference solution are shown to the right of the circulation patterns.

In most numerical experiments the scaling constantαscale
is chosen to adjust the weight function in Eq. (13) to 1 for
βc=β1=β2=600 km. However, a number of computations
useβc between 100 km and 600 km.

The noise in the surface wind withσ 2=28.0 m2 s−2 cor-
responds to typical observed atmospheric conditions in the
North Atlantic region (Wright, 1988). Therefore, the
stochastic forcing (Eqs. 10–13) is a conceptual tool to study
the effect of noise on simple and more complex wind-driven
regional ocean models.

To understand statistics of wind forcing, Eq. (10) is re-
written into

w(x1, x2, t) =
ρair

ρw
Cdσ

2G(x1, x2) |µ(t)| µ(t)

=
ρair

ρw
Cdσ

2G(x1, x2)w̃, (14)

wherew̃= |µ(t)| µ(t). Then, the probability density function
f (w̃1, w̃2) is calculated using the elementary zero-memory
transformations, which are discussed in most textbooks of
probability theory (see, for example, Stratonovich, 1963).
Accordingly to the general theory

f (w̃1, w̃2) = f [g−1
1 (w̃1, w̃2), g

−1
2 (w̃1, w̃2)] · |J | , (15)

whereJ is the Jacobian of the transformation from the ran-
dom variablesµ1 andµ2 to the random variables̃w1 andw̃2;
g−1

1 andg−1
2 are the inverse functions.

Simple calculations result into

f (w̃1, w̃2)=
1

4π
(
w̃2

1+w̃
2
2

)1/2 exp

[
−

(
w̃2

1+w̃
2
2

)1/2
/2

]
.(16)

The means〈w̃1〉,〈w̃2〉 and variances̃σ 2
1 ,σ̃ 2

2 computed from
Eq. (16) have the following values

〈w̃1〉 = 〈w̃2〉 = 0.0 andσ̃ 2
1 = σ̃ 2

2 = 3.0. (17)

Both w̃1(t) and w̃2(t) are delta-correlated processes (Kly-
atskin, 2005).
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Fig. 4. Characteristics of the reference solution:(a) the kinetic
energy averaged over the semi-closed basin,(b) the relative variance
Sm computed for the initial state of the reference solution (solid
curve) and after integration for 60 days (dashed curve).

In the polar coordinate system{z, θ}[w̃1=z cos(θ),
w̃2=z sin(θ)], probability density function (Eq. 16) trans-
forms to the following form:

f (z, θ) =
1

4π
exp(−z/2) . (18)

Two-dimensional distribution Eq. (18) is easily transformed
to a one-dimension formfint simply by integratingf (z, θ)
with respect toθ ,

fint(z) =
1

2
exp(−z/2), (19)

which is the exponential distribution.
The above calculations clearly indicate that althoughU is

a white Gaussian process, the wind stressw is not. Therefore
PE has non-Gaussian statistics even if the wind uncertainty is
small. For large values of stochastic wind stress, distribution
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Fig. 5. Four orthonormal modesψm with numbersm=1,3,9, and 30. The contour interval is non-dimensional, with positive vorticity in dark
and negative vorticity in light, and non-dimensional velocity vectors are overlaid in each panel.

function (19) decays slower than the Gaussian one. This indi-
cates that rare high-energetic wind events can strongly con-
tribute tow statistics. Therefore, even for small-amplitude
errors,τ -PDF has asymmetric shape with a tail stretching
into short prediction time scales.

A weak second-order algorithm (Cao and Pope, 2003)
is applied to numerical integration of stochastically forced
Eqs. (6–8). Although the time step for the model integra-
tion is 5 min, the stochastic wind is updated every hour. A
correlation time (tc) for such a noise is shorter than one
hour. Since characteristic time scales for the reference so-
lution and PE aretref≈10–20 days (determined from Fig. 4a)
andterror≈3–5 days (determined from Fig. 7b), respectively,
tc/tref�1 andtc/terror�1. Such a stochastic wind represents
a white noise-like process (Stratonovich, 1963).

PE statistics is insensitive to more often update of the
stochastic wind. We made computations with update varying
from less than one hour to 5 min. These computations re-
quired very large computer resources. Therefore, the choice
of one-hour update is a trade-off between accuracy in repre-
sentation of the wind forcing and the computational cost.

Ensembles of perturbed model trajectories were used to
computeτ -PDF. Little difference inτ -statistics is obtained

between ensembles of 1×103, 5×103, 1×104, 2×104, and
5×104 samples. The optimal size of an ensemble sampling,
i.e. a number of ensemble realizations providing a trade-
off between the ensemble ability to reproduce main features
of PE statistics, and the computational cost, is estimated
as 103 for any values ofσ̄ 2. Hereafter the non-dimension
variance of wind perturbations introduced asσ̄ 2

=σ 2/σ 2
0 ,

σ 2
0 =1.0 m2 s−2, is used. The optimal size is found using the

non-symmetrical Kullback- Leibler distance (White, 1994).
An interested reader is referred to Chu and Ivanov (2005),
Ivanov and Chu (2007) for more details of such an approach.

5 Model phase space

For the chosen model parameters, a quasi-geostrophic ap-
proximation (Pedlosky, 1987) is applicable to interpret the
reference and perturbed flows in a model phase space. The
basis of M-dimension phase space is formed from orthonor-
mal functions (modes)ψm, which are the eigenvectors of the
plane Laplace operator∇2 (Eremeev et al., 1991, 1992),

∇
2ψm = −λmψm, ψm |0∪0′ = 0, m = 1, ...,M. (20)
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L. M. Ivanov and P. C. Chu: Stochastic stability of models with uncertain wind forcing 661

Then, the geostrophic stream function is decomposed as

ψ(x1, x2, t)=

M∑
m=1

Am(t)ψm(x1, x2)+ψharm(x1, x2, t)+C(t),

M = 100 , (21)

whereψharm is the harmonic function; the constantC(t) is
determined from the mass conservation constraint imposed
upon the stream function (McWilliams, 1977).

The spatial modesψm are determined only by the geom-
etry of a basin, and can be easily computed for any non-
rectangular domain. Figure 5 shows the spatial structure of
a few basis functionsψm involved in the present analysis.
The spatial modes, in general, have no physical significance
by themselves, but only when they imply a flow. However,
they are useful to identify the energy-dominated scales for
the reference and perturbed flows.

The harmonic functionψharm is obtained from

∇
2ψharm = 0 , ψharm|0 = 0 ,

ψharm|0′ = −

x2∫
0

ūb(t, y)dy, (22)

It is a highly predictable component of the flow because of
the exact value of̄ub in Eq. (22).

The PE presents the sum of the mean or systematic error
ψref−

〈
ψpert

〉
and the transient or random errorδψ :〈

I2
pert

〉
=

〈∥∥ψref −
〈
ψpert

〉
− δψ

∥∥2
〉

=
∥∥ψref −

〈
ψpert

〉∥∥2
+

〈
‖δψ‖

2
〉
. (23)

The inertial (nonlinear) terms of the governing equations
hardly contribute to

〈
ψpert

〉
at the initial stage of PE growth,

and their contribution is negligible at later stages. The ran-
dom error grows faster than the systematic error. Therefore,
we suggest quantifying the PE behavior through the growth
of the random error only.

The reference and perturbed solutions are repre-
sented in the model phase space as the reference
A= [A1(t), ..., AM(t)] and error a= [a1(t), ..., aM(t)]
trajectories, respectively. Using these notations the variance
of the random prediction error becomes

〈‖δψ‖〉 =

M∑
m=1

〈
a2
m

〉
, (24)

and the wind error source term (see Appendix A) is written
by

Rm = γ 2
m

(
b2
m + c2

m

)
, (25)

where γm=
ρair
ρw
CdH

−1λ−1
m σ 2, bm=

∫∫
∂G
∂x1
ψmdx1dx2 ,

cm=
∫∫

∂G
∂x2
ψmdx1dx2, the double integration is made over

the semi-closed basin area.

 

Fig. 6. Phase portrait in a phase sub-space generated by the basis
functionsψp, ψq andψs .

Applying the classical linear stability analysis (Gucken-
heimer and Holmes, 1983) to the model (6–8) linearized
near the spin up solution, we find that the spin up represents
an unstable focus (spiral point) in the model phase space.
The growth and decay of infinitesimal perturbations near this
point are characterized by the spectra of positive and negative
local characteristic exponents only.

Therefore, an error trajectory should tend to this focus (de-
noted by B in Fig. 6) along stable manifolds corresponding to
the large-scale negative exponents and simultaneously drifts
from B along the small-scale unstable manifolds correspond-
ing to the positive exponents. Such a model trajectory is
asymptotically unstable in Lyapunov sense ast→∞ (Guck-
enheimer and Holmes, 1983).

Figure 6 shows projections of error trajectories onto the
phase subspace. The trajectories tend to reach the focus
along the stable manifolds projected onto the phase plane
[ap, aq ]. However, they move away from the focus along un-
stable manifolds projected on the phase planes[ap, as] and
[aq , as].

We useM=100 and confirm that such a choice does not
smooth the reference trajectory for 70 days of model integra-
tion. The relative varianceSm=

(
Ap·Ap

)m
p=1 ·I−2

ref converges
to 1 very quickly as m increases (Fig. 4b). The first fifty-sixty
modes contain more than 99% of variance for the reference
solution.

One hundred mode representation is also quite suf-
ficient to approximate the error trajectory for 60–
70 days of model integration. The relative variance

S′
m=

(
<ap·ap>

)m
p=1 ·

〈
I2
pert

〉−1
converges to 1 asm in-

creases, slower thanSm (compare Figs. 4a and 7a), but the
speed of the convergence is quite high.
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6 Error evolution

Typical growth of an ensemble averaged PE with time for
G=G1 and σ̄ 2 varying between 0.1 and 2.0, is given in
Fig. 7b. Perturbations excited by uncertainty of stochastic
wind grow at all scales and during the whole 50–60 day
period. That is in contrast to the case when there is un-
certainty in the initial condition only. In the last case the
high predictability of the dynamical regime within the initial
15–20 day period was clearly demonstrated by Ivanov and
Chu (2007): the PE at first decays with time for all scales
due to dissipation caused by nonlinear bottom friction, and
only after day-20 grows faster than [quasi]-exponentially.
Therefore, the presence of the spatio-temporal noise (Eq. 10)
in wind forcing (Eq. 9) causes the monotonic error growth
shown in Fig. 7b.

At least four predictability regimes are identified from
Fig. 7b. In all the cases the PE grows in a monotonic
manner but with different speeds. More accurately, these
regimes can be identified using the growth rate defined as
Q=

d
dt

ln<I2
pert>.

A set of growth rates computed for differentG and σ̄ 2

is presented in Figs. 8a, b, c, d. These results clearly indi-
cate that error dynamics strongly depends on the intensity
and spatial inhomogeneity of wind uncertainty.

6.1 Linear growth of perturbations

At the initial stage (transient phase) where the stochastic
forcing term dominates the governing equations,Q∼1/t
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Fig. 8. The growth rateQ (solid curve) for different̄σ2 andG: (a)
σ̄2

= 0.1, G=G2; (b) σ̄2
=1.0,G=G1; (c) σ̄2

=1.0, G=G2, and
(d) σ̄2

=2.0,G=G2. Dashed line, white dots and asterisks show
exponential, linear, and power (with scaling exponent of 8.8×10−1)

laws, respectively.

(Figs. 8a, b, c, d). It corresponds to the linear growth of
the mean square error:〈
I2
pert

〉
≈ Defft, (26)

Duration of this regime is typically up to 4-5 days ifσ̄ 2
∼0.1–

1.0. The effective coefficientDeff is determined by sum-
mation of contributions from the error source term at all

wavenumbersDeff=
M∑
m=1

Rm.

Linear law Eq. (26) was earlier documented in a num-
ber of studies (see, for example Vannitsem and Toth, 2002).
We have analytically determined the wind error sources for
model (6–8) (Appendix A). Our calculations show strong de-
pendence of the effective coefficient on the variance of wind,
as∼σ 4, as well as on degree of spatial inhomogeneity of the
wind forcing.

6.2 Power growth of perturbations

For moderate but inhomogeneous winds the power growth of
perturbations are observed in our numerical experiments af-
ter the transient phase (for example, see Figs. 8a, b, c). For
small values of̄σ 2

�1.0 the power growth is replaced by the
exponential growth (shown by the dashed line in Fig. 8a).
If σ̄ 2 exceeds 1, there is no exponential growth and the PE
grows with the power law with power exponent of about
8.8×10−1. This regime exists between day-5 and day-15 in
Fig. 8a, between day-7 and day-23 in Fig. 8b, between day-
4 and day-14 in Fig. 8c, but there is no power-law regime
in Fig. 8d when the stochastic wind uncertainty is too large
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Fig. 9. Spectra of wind error term with(a) G1, (b) G2 and
λ=600 km, and(c)G2 andλ=100 km. A critical wavenumber is de-
termined from the condition ofRm/max(Rm)=1.0×10−2 (shown
by dashed line). Black arrows indicate the critical numbers.

(σ̄ 2>2.0). For such a variance the linear growth of PE dom-
inates.

For G=G1 the spectrum ofRm is linear with dominat-
ing peaks at wavenumbersm=1,3, and 5 (Fig. 9a). These
wavenumbers indicate modes with maximum response to the
stochastic wind forcing. The weak wind forcing (σ̄ 2

�1.0)
essentially affects the large scales of the flow and excites
only several low-order modes. In this case the PE at first
grows linearly, then its quasi-exponential growth is observed.
Smaller scales affected by the stochastic wind are subject
to strong viscous damping due to increasing drag coefficient
α with growth of the kinetic energy of large-scale perturba-
tions. Therefore, the smaller scales grow slower than the un-
stable large scales. The growing perturbations rapidly adopt
the horizontal scales comparable to those of the reference
state.

Alternatively, stronger stochastic wind (σ̄ 2
≥1.0) excites

more modes at smaller scales than the weak wind, and the
coherent behavior of modes is clearly observed in this case
(for example see Fig. 8b).

For G=G2 and βc=600 km, what corresponds to inho-
mogeneous winds, the spectrum ofRm is continuous and
band limited at the critical wavenumberm=11 (Fig. 9b).
Therefore, the stochastic wind excites several modes around
wavenumbers of 2 and 10. The PE growth ratio depends on
the spectrum of local characteristic exponents. In this case
the coherent behavior of modes exists even for the weak wind
forcing (σ̄ 2

�1.0).
The decorrelation scaleβc determines the width of spec-

trum band forRm. For example, the critical wavenumber
equals to 32 ifβc=100 km (Fig. 9c). Reduced values ofβc
lead to a wider spectrum of local characteristic exponents
and stronger contribution of the cumulative effects to the PE
growth.
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Fig. 10. Coherent behavior of perturbations on different scales for
σ̄2

=1.0 andG=G2. (a) Large, and(b) small scale perturbations.
The largest scale perturbation withm=1 is labeled by dashed curve.

Our computations have also shown that one of the main
specificities of the power growth regime is that all dominat-
ing scales (modes) may exhibit a similar growth rate. For
example, Fig. 10a, b demonstrates two groups of modes with
different coherent behavior from day-7 to day-25. The coher-
ent behavior of modes is a collective response to the external
stochastic forcing when amplitudes of many modes exceed
some threshold at the same time due to spatial inhomogene-
ity of wind forcing (defined by the choice ofG). Clearly that
the coherent behavior is absent if this threshold was exceeded
only by a few modes.

6.3 “Super-exponential” growth of perturbations

After day-25 the PE grows faster than exponentially (“super-
exponentially”) until non-linear interactions between differ-
ent scales destroy this growth (saturation regime) (Fig. 7b).
Strong coherence in behavior of different modes accompa-
nies the “super-exponential” growth of perturbations.

Figure 11a shows coherent behavior of 30 dominated
modes. Explicit “synchronization” in behavior of these
modes is observed. After 35–37 days of integration, the first
mode (shown by solid curve in Fig. 11a) is a “driver” deter-
mining the behavior of all other dominant large-scale modes,
which are called “responses” (hereafter we use the terminol-
ogy from Boccaletti et al., 2002). During a 10–12 day time
period (up to day-47) the driver and responses perform coher-
ently. For small-scale perturbations at least two drivers can
be identified in Fig. 11b. Modem=9 (the first driver) grows
along the exponential law. The non-exponential growth of
the second driver (modem=11) is a consequence of the
fact that different scales grow with different local char-
acteristic exponents varying between 2.3×10−1 day−1 and
9.4×10−1 day−1.

www.nonlin-processes-geophys.net/14/655/2007/ Nonlin. Processes Geophys., 14, 655–670, 2007



664 L. M. Ivanov and P. C. Chu: Stochastic stability of models with uncertain wind forcing

30 35 40 45
10

−4

10
−3

10
−2

10
−1

10
0

(a)

t (days)

<a
m2

>

m=1

30 35 40 45
10

−3

10
−2

10
−1

10
0

(b)

t (days)

m=9

driver 

response 

drivers 

responses 

Fig. 11. Coherent behavior of perturbations on different scales for
σ̄2

=0.1 andG=G2. (a) Modem=1 is “the driver” for large-scale
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bold dashed lines;(b) two drivers (modesm=9, 11) observed for
small-scale perturbations. Modem=9 grows with the exponential
law.

For very strong external noises the modes may not be syn-
chronized because the intensive noise destroys correlations
among them. This effect is clearly observed in our numerical
experiments independently onG if σ̄ 2>2.0.

6.4 Physical mechanisms of perturbation growth

The numerical results discussed above explicitly show “a
synchronization” effect due to external noise and replace-
ments of the traditional exponential growth of perturbations
by the power or sub-exponential growth. There is a num-
ber of mechanisms for which noise can lead to more order
in the dynamics. To be mentioned here are the effects of
noise-induced order in chaotic dynamics (Matsumoto and
Tsuda, 1983), synchronization of self-sustained oscillators
(Pikovsky et al., 2000), cumulative effects of many different
scales (Aurell et al., 1996), coherence resonance (Pikovsky
and Kurths, 1997), stochastic resonance (Nicolis and Nico-
lis, 1981; Benzi et al., 1981), and interference between initial
error and stochastic forcing (Seki et al., 1993). These effects
in some respects are close and cannot be easily distinguished
from one another when signals reflect different variables of
the same system (Rosenblum et al., 2004).

In our case circulation dynamics is not driven by a peri-
odical force. That allows excluding the stochastic resonance
as a possible physical mechanism driving mode dynamics.
The stochastic resonance appears if both periodic and noisy
forces drive a nonlinear system, with the periodic response
having a maximum at some noise amplitude.

Perez-Munuzuri et al. (2005) have demonstrated a coher-
ent resonant behavior for an atmospheric global circulation

model induced by a white (in time and space) additive Gaus-
sian noise. In our case, however, no peak appears in the spec-
tral density

〈
a2
m

〉
at a given wavenumberm for an intermediate

level of noise.

Our results show the coherent behavior of a group of
modes when amplitudes of many modes in the group ex-
ceed a threshold. Low- and high-order modes are separately
grouped. For quite large amplitudes our results demonstrate
the driver-response relationship for which phase of modes
are locked.

To examine this mechanism we have linearized govern-
ing Eqs. (6–8), and calculate the growth of perturbations
excited by stochastic forcing Eq. (10) in this case. The re-
sults of these calculations are summarized as follows. The
power growth of perturbations in the transient regime is ob-
served up to day-20 and, therefore, cannot be caused by the
phase locking mechanism. “Super-exponential” growth of
perturbations after day-25 disappears when nonlinear (iner-
tial) terms are removed from the governing equations.

The power growth of perturbations in the transient regime
can be explained using results obtained by Seki et al. (1993).
They pointed out that for a linear dynamical system forced
by a Gaussian white noise the mean deviation of perturbation
amplitudes can grow along a power law up to a time scaleTb
defined by inverse of friction coefficient. For large values
of friction coefficients such a power-law behavior disappears
becauseTb→0.

The effective dissipation in model (6–8) depends on the
structure of the reference flow and shape of the spectrum of
Rm. When forcing becomes stronger or is inhomogeneous,
the center mass of energy spectrum shifts to high wavenum-
ber domain and, in general, the dissipation of perturbations
reduces because the nonlinear bottom friction is most effec-
tive for largest-scale perturbations as it has been checked nu-
merically. That results into appearance of power-law behav-
ior for variance of perturbations. In this case power exponent
depends on the structure of time-dependent reference flow,
and unfortunately, cannot be analytically calculated. Seki
et al. (1993) calculated the power exponents for two simple
stochastic dynamical systems only. However explicit corre-
lation between level of model dissipation and existence of a
power-law behavior of perturbations are clearly observed in
our numerical experiments.

After 25 day integration noiseless model (6–8) reaches a
spin up when a solution oscillated with a period of 120 days
for the dominant low-order modes within any 1000-day time
interval. Oscillating modes weakly interact one with another
due to nonlinear (inertial and frictional) terms in the gov-
erning equations. Effects of external noise on these modes
lead to coherent behavior of modes that seems to be simi-
lar to the phase locking of the modes, which is understood
in a statistical sense, as the existence of a preferred value of
the phase difference between individual stochastically forced
modes with weak interactions among them.
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Non-steady nature of the reference flow is essential for ex-
istence of super-exponential regime of perturbation growth.
This was checked by numerical modeling. The oscillations
are smoothed and the reference flow becomes steady when
the drag coefficient is 2–3 times as much. Neither “super ex-
ponential” growth of perturbations nor coherent behavior of
modes is observed for such levels of model dissipation.

Note that high-order modes of the reference flow have a
dominant oscillation period of about 30 days, not 120 days
as low-order modes. Since the first twenty modes contain up
to 90% of the kinetic energy of circulation, 120–day oscilla-
tions dominate the flow and mask faster motions. However,
existence of the second dominant period leads to coherence
in behavior of high-order modes, which is different than that
low-order modes demonstrate.

The coherence in behavior of modes can be explained
by a number of mechanisms, such as synchronization of
weakly coupled oscillators (Pikovsky et al., 2000), modu-
lation (Landa, 1996) and others. In practice these mech-
anisms cannot be selected using only a driver-response re-
lationship or the cross-spectral technique without a simple
physical model. Unfortunately, this is a great problem to
develop a model, which would adequately describe nonlin-
ear oceanic flow dynamics with many degrees of freedom.
Therefore herein we are not able to select one of the physical
mechanisms discussed in modern literature for explanation
of the coherent behavior of modes observed in our numerical
experiments for finite-amplitude perturbations. However, un-
doubtedly the observed coherent behavior is due to nonlinear
interactions among modes and oscillations of the reference
flow.

7 Finite-amplitude-induced transition in predictability
skill

Our computations have shown that for strong winds model
predictability demonstrates stronger sensitivity to amplitudes
of perturbations induced by the stochastic wind than to the
choice of spatial structure function in Eq. (10). Intuitively,
larger-amplitude perturbations should cause faster decay of
model predictability, what was confirmed by our numerical
experiments for the mean predictability time.τ -mean mono-
tonically reduced as̄σ 2 increases (not shown).

Furthermore, our experiments have also shown that the
collective behavior of finite-amplitude perturbations may
cause sudden changes (bifurcations) in the high-order statis-
tics of predictability time. This effect is clearly observed
when perturbation amplitudes exceeded some threshold, af-
ter which the global correlations among the perturbations
with different scales dominated the PE characteristics.

We have called such bifurcations as the “finite-amplitude
induced phase (non thermodynamic) transitions in model
predictability”. They are detected using statistics of IPT,

10
−4

10
−2

10
0

0

5

10

15

20

25

30

35

40

45

50

ε2

τ−
m

ea
n

 (
d

ay
s)

(a)

10
−4

10
−2

10
0

0

5

10

15

20

25

30

ε2

τ−
va

r 
(d

ay
s2 )

(b)

10
−4

10
−2

10
0

−1

−0.5

0

0.5

1

1.5

2

ε2

τ−
sk

(c)

10
−4

10
−2

10
0

2

3

4

5

6

7

8

ε2

τ−
ku

(d)

Fig. 12. τ -statistics for different values of̄ε2 andσ̄2. (a) τ -mean,
(b) τ -variance,(c) τ -skewness and(d) τ -kurtosis. Triangles, aster-
isks and circles correspond toσ̄2=2.0, 1.0, and 0.5.

such asτ -variance,τ -skewness andτ -kurtosis, but other
measures of model predictability are also applicable.

Finite-amplitude phase transitions should easily be de-
tected for any hydrodynamic model using the dependence of
IPT statistics on̄ε2 because the value of the tolerance level
limits the maximum amplitude of perturbations existing in
the model. As an example, detection of the phase transition
for model (6–8) is described below.

For small tolerance (ε̄2<5.0×10−3) model predictability
is low: τ -mean does not exceed 20 days (Fig. 12a) andτ -
variance is quite large, up to 25–27 days2 (Fig. 12b). Ad-
ditionally, a large negative skewness about−0.5 (Fig. 12c)
indicates that the IPT distribution has a tail stretching into
domain of small prediction times.

The mean IPT monotonically grows as̄ε2 increases
(Fig. 12a). Although here, the IPT grows with various rates
for different tolerance levels, no bifurcations are observed in
this figure. In contrast toτ -mean, the value ofτ -variance
suddenly changes when̄ε2 becomes larger than 5.0×10−3

(this value is taken as a threshold). The variance, which was
quite large (about 25–27 day2) for small tolerances, suddenly
reduces to 5 day2 whenε̄2 crosses the threshold (Fig. 12b).

Both τ -skewness andτ -kurtosis also change considerably
(Figs. 12c, d). They converge asymptotically to 1.0 and 4.7,
respectively, as̄ε2 increases. Positive skewness corresponds
to asymmetricτ -PDF shapes with a tail stretching into large
prediction times. The large kurtosis (much larger than 3) in-
dicate that PDF is highly non-Gaussian.

Typical τ -PDFs computed before and after the phase tran-
sition, are given in Figs. 13a and b, respectively. Comparing
them one to another, we find that the phase transition causes
the PDF tail stretching into domain of large prediction times.
This tail is formed by rare predictions of duration up to 50
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Fig. 13. Histograms of IPT computed for̄σ2
=1.0.

(a) ε̄2
=1.0×10−2, (b) ε̄2

=0.1.

days. Smaller variance and larger positive skewness show
that model predictability was considerably enhanced after the
phase transition.

Two physical mechanisms are responsible for the phase
transition. First, it is clearly from Fig. 12a that the phase
transition exists when the meanτ -IPT is not less than 30
days. During this time period the model reaches the spin up
state. Different stability properties in the phase space near
and far away from the point are caused by the inhomogene-
ity of model phase space. That leads to different statistics of
PE before and after the phase transition. Second, even when
perturbation amplitudes are several percents of the reference
solution, a coherent behavior of different scales are clearly
observed. In this caseτ -variance reduces due to strong cor-
relations among the scales (Kravtsov, 1993).

8 Weibullian statistics of IPT

Our computations have shown that stochastic forcing
Eq. (10), in general, induces highly non-Gaussianτ -PDFs for
finite-amplitude PEs. The following question arises: what
kind of statistics can be used to represent suchτ -PDFs? If
appropriate distribution function is found, it would be pos-
sible to identify the ensemble generated PDFs from limited
observation series and small forecast ensembles, and in turn
to estimate the model predictability horizon (i.e. maximum
predictability time reached for the given model and wind un-
certainty (Kravtsov, 1993)).

We apply the three-parameter Weibull statistics with dis-
tributionf (τ) and cumulative distributionP(t)

f (τ ) =
β

η

(
τ − γ

η

)β−1

exp

[
−

(
τ − γ

η

)β]
, (27)

P(t) = exp

[
−

(
t − γ

η

)β]
, (28)

for the analysis ofτ . Here,η, γ , andβ are scale, shape,
and location parameters (von Storch and Zwiers, 1999). The
following original algorithm is developed to estimate the pa-
rameters of distribution (27) from an IPT ensemble sampling.

Closeness of two inverses ofτ -CDFs:X(P )(“real” value)
and X0(P ) (the first guess), may be estimated by the
Kullback-Leibler distance� (White, 1994):

� =

1∫
0

X(P ) ln [X(P )/X0(P )]dP. (29a)

Then,X(P ) is the solution of the following variation prob-
lem (Kapur and Kesavan, 1992)

� → min . (29b)

The Kullback-Leibler distance� should be a subject to ad-
ditional constraints from the following condition: the proba-
bility weighted moments computed from the ensemble sam-
pling (α1, α2, andα3) and theoretically (̂α1, α̂2, andα̂3) from
Eq. (4) must coincide. This condition is accounted for in
Eq. (29) through additional constrain as

� =

1∫
0

X(P ) ln [X(P )/X0(P )]dP + χ1
(
α1−α̂1

)
+χ2

(
α2 − α̂2

)
+ χ3

(
α3 − α̂3

)
→ min . (30)

whereχ1, χ2, andχ3 are Lagrange multipliers.
Functional Eq. (30) is minimized with respect toX(P ).

The solution of minimization problem (Eq. 30) is written as

X(P ) = X0(P )exp
(
−χ1P − χ2P

2
− χ3P

3
)
, (31)

For details see Kapur and Kesavan (1992). Then, the La-
grange multipliersχ1, χ2, and χ3 are determined by the
quasi-Newton iteration method as a solution of nonlinear
least-square problem resulting from Eqs. (30) and (31).

Our computations show that (a) the method discussed
above is robust relative to sampling error if only few mo-
ments are used as constrains, and (b) Lagrange multipliers
are estimated within 10–12 iterations only. In general case,
when sampling error is considerable and more moments are
required in Eq. (30), the non-linear least-squares minimiza-
tion problem is solved through the Levenberg-Marquardt it-
erative method (Engl et al., 1996).

We did not find difference between the distribution func-
tion calculated by a non-parametrical technique based on the
Epanichenikov’s kernel and the bootstrap re-sampling pro-
cedure (Good, 2001) directly from ensemble sampling, and
appropriate Weibull counterpart obtained by the method (29–
31), at least at 95% confidence level.
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This conclusion is illustrated for the ensemble sampling
shown in Fig. 14a. Theτ -CDFs computed by the non-
parametrical technique (solid curve) and our method (black
dots) are compared in Fig. 14b. Differences between them
are negligible. The parametersη, γ , and β are equal to
37.1×10−1 days, 30.0 days and 16.7×10−1, respectively.

Parameterβ affects the length of the PDF tail formed by
rare forecasts, which are longer than the mean ensemble fore-
cast〈τ 〉. Small β indicates enhanced probability for real-
ization of abnormal long (in our case up to 50 days) model
forecasts.

9 Model predictability horizon

Asymptotic behavior ofτ -CDF as t→∞ determines the
predictability horizon of the model, i.e. the maximum pre-
dictability time of an individual forecasting for the given
model and statistics of wind perturbations (Kravtsov, 1993).

Accordingly to Eq. (28) the model predictability horizon
is calculated by

τhor = γ + η
[
− ln P̄ ∗

]1/β
, (32)

whereP̄ ∗ is the probability thatτhor will be achieved in an
individual forecasting. For fixed̄P ∗ Eq. (32) shows a slow
power-law growth of the predictability horizon with the de-
crease of the shape parameter.

Let us estimate the predictability horizon for the example
discussed above. Substitution of the distribution parameters
obtained above into Eq. (32) leads to

τhor ≈ 40.2 days, 45.4 days and 50.5 days (33)

for P̄ ∗
=1.0×10−2,1.0×10−3 and 1.0×10−4, respectively.

These estimations demonstrate that for the chosen values of
ε̄2 and σ̄ 2, the model predictability horizon is limited to 50
days, and any individual forecasting, which is longer than 50
days, is unlikely.

10 Conclusions

A simple shallow-water model was used to understand sen-
sitivity and predictability of ocean models with inaccurate
wind forcing. This model used a highly idealized represen-
tation of ocean dynamics and did not simulate the redistri-
bution of PE between barotropic and baroclinic dynamics as
high-resolution ocean models. However, due to the small
number of degrees of freedom of the model (only 462 vari-
ables), distribution functions for predictability scale and its
high-order moments were computed for a large number of
ensemble realizations (up to 50 000). This guaranteed re-
duced sampling error and robustness in estimating the PE
statistics.
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Fig. 14. Identification ofτ -CDF. (a) IPT histogram for a 103 term
ensemble;(b) CDF computed directly from the ensemble (solid
curve) and using the developed method (black dots),γ=30 days.

Similar analysis is difficult to undertake in full-scale nu-
merical forecast ocean models due to limited computer re-
sources. Generally, the full-scale models produce small en-
semble samples and therefore, cannot resolve the full com-
plexity of the PE. The idealized model revealed trends in PE
behavior and the model reconstructed PE statistics with min-
imum distortion. These statistics can be used for the analysis
of the smaller ensemble samples from the full-scale models.

Baroclinic high-resolution ocean models should be used to
examine the following trends obtained in the present study.

The predictability time for small perturbations may be
much larger than the inverse of the leading local character-
istic exponent. The shallow water model showed that it is
possible to have non-trivial time evolutions of small (but fi-
nite) perturbations and that their growth could be fitted by
power laws although the perturbations were actually ampli-
fied by the background flow. The power growth for all or a
portion of scales was determined by the cumulative effects of
multiple characteristic times .

The expected growth of error and decay of skill occurs
most rapidly for smaller scales and, with time, expands to
larger scales. One of the main features of the ocean is the ex-
istence of strongly interacting spatial scales, which raises the
possibility of different behavior of the PE at different scales
of motion. It is traditionally assumed that small scales are
less predictable than larger scales. This picture was drawn
by Lorenz (1969) for perfect model scenario, and then trans-
ferred to the analysis of forecast error as a function of spatial
scale in operational atmospheric (see, for example Dalcher
and Kalnay, 1987) and oceanographic models (Brasseur et
al., 1996, among others).

Our simplified model predicts existence of two additional
predictability regimes for imperfect models. For large scale
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stochastic winds, the perturbations rapidly grew to horizontal
scales comparable to those of the reference state. In contrast,
smaller scale perturbations excited by the wind were subject
to strong viscous damping. Therefore, the predictability of
wind-driven circulation was less affected by model uncer-
tainties acting at small scales than at larger scales. Mahade-
van et al. (2001), using a quasi-geostrophic ocean circula-
tion model for perfect-model twin experiments, found that
such a scenario was favourable for weakly aperiodic, peri-
odic, and stationary circulation regimes when the mesoscale
energy content was relatively low.

For stochastic wind that is limited to scales smaller than
those occupied by large-scale flow, perturbations on differ-
ent scales may grow coherently due to interactions among
them. The coherent growth of perturbations has been iden-
tified on different scales at various stages of PE evolution.
Coherent behavior of PE can be found in full-scale oper-
ational atmospheric models (Boer, 2003, as an example),
and quasi-geostrophic models (Vannitsem and Nicolis, 1997;
McWilliams and Chow, 1981, among others). McWilliams
and Chow (1981) demonstrated that for a simple three-level
quasi-geostrophic model, all scales of motion exhibited a
similar growth rate after a short transient phase. The coherent
growth of PE on different scales can be found in imperfect
quasi-geostrophic models too (for example, see Vannitsem,
2006). These and other results (not discussed here) indicate
that the coherent growth of PE may be caused by model in-
dependent (universal) mechanisms, which require further in-
vestigation.

The present study introduced a new statistics (Weibull)
for finite-amplitude PE and suggested a practical way for its
identification through the probability weighted moments and
a variation principle. This extremum statistics is often ob-
served to arise in finite sized, multi-body systems, exhibiting
correlation over a broad range of scales, leading to emergent
phenomenology, such as self-similarity and in some cases
fractional dimensions (Boffetta et al., 2002). A universal ap-
proach to extract extremum statistics from short- and inter-
mediate marine forecasts was suggested. Possible general-
ization of the approach for small forecast ensembles will be
discussed in a separate paper.

Appendix A

Wind error source term

Using the quasi-geostrophic approximation, governing
Eqs. (6–8) can be re-written in the spectral form

dam

dt
= Zm(ak)+Qm(al, ak)+ rm(t), (A1)

whereZm andQm are linear and nonlinear (inertial and fric-
tional) terms, respectively (for details see Pedlosky, 1987),

and

rm = γmz (bm sinθ − cm cosθ) , (A2)

γm =
ρair

ρw
CdH

−1λ−1
m σ 2, bm =

∫∫
∂G

∂x1
ψmdx1dx2,

and

cm =

∫∫
∂G

∂x2
ψmdx1dx2. (A3)

The stochastic processesz(t) andθ(t) are defined in Sect. 4.
The variance of PE<a2

m> satisfies the obvious equation

d<a2
m>

dt
=2(<Zmam>+<Qmam>+<rmam>), (A4)

with the wind error source term

Rm = γm [bm 〈z sinθam〉 + cm 〈z cosθam〉] . (A5)

Sincef (z, θ)=f (z)f (θ), average of Eq. (A5) can be divided
into two steps. (1)rmam is averaged overz. (2) The obtained
function<rmam>z is averaged overθ .

The correlation function<zam>z is analytically calcu-
lated using the cumulant decomposition (Klyatskin, 2005):

〈z(t)am(t)〉wr =

∞∑
s=1

(
1

s!

) t∫
to

...

t∫
to

dt1...dtsκs+1(t, t1, ..., ts)

〈
δsam(t)

δz(t1)...δz(ts)

〉
z

. (A6)

Here,κs(t1, ..., ts) is the s-th order cumulant of the noisez.
The notationδF

δz
denoted the functional derivative.

For a stationaryδ−correlated noisez one obtains

κs(t1, ..., ts) = ks(t1)δ(t1 − t2)...δ(ts − ts−1), (A7)

where ks(t1) are the intensity coefficients (Stratonovich,
1963).

Substituting Eq. (A7) into Eq. (A6) yields

〈z(t)δam(t)〉z =

∞∑
s=1

(
1

s!

)
ks+1(t)

〈
δsam(t)

δz(t)s

〉
z

, (A8)

From Eq. (A1) we obtain fors=1〈
δam(t)

δz(t)

〉
z

= γm (bm cosθ + cm sinθ) , (A9)

and fors≥2〈
δsam(t)

δz(t)s

〉
z

= 0. (A10)

Taking into consideration that for exponential distribution
function the s-order cumulant is calculated asκs=2·(s − 1)!
(Zelen and Severo, 1972), and averaging Eq. (A9) over the
stochastic processθ(t) we find

Rm = γ 2
m(b

2
m + c2

m), (A11)
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The coefficientsbm and cm depend only on the spatial in-
homogeneity of stochastic wind forcing. Spectrum of wind
error termRm for different structure functionsG is shown in
Figs. 9a, b, c.
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