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1Institut Royal Ḿet́eorologique de Belgique, Belgium
2Laboratoire des Sciences du Climat et de l’Environnement, IPSL-CNRS, France

Received: 22 June 2007 – Revised: 31 August 2007 – Accepted: 10 September 2007 – Published: 17 September 2007

Abstract. For a wide range of applications in hydrology, the
probability distribution of precipitation maxima represents a
fundamental quantity to build dykes, propose flood planning
policies, or more generally, to mitigate the impact of precipi-
tation extremes. Classical Extreme Value Theory (EVT) has
been applied in this context by usually assuming that precip-
itation maxima can be considered as Independent and Iden-
tically Distributed (IID) events, which approximately fol-
low a Generalized Extreme Value distribution (GEV) at each
recording site. In practice, weather stations records can not
be considered as independent in space.

Assessing the spatial dependences among precipitation
maxima provided by two Belgium measurement networks is
the main goal of this work. The pairwise dependences are es-
timated by a variogram of order one, also called madogram,
that is specially tailored to be in compliance with spatial EVT
and to capture EVT bivariate structures. Our analysis of Bel-
gium precipitation maxima indicates that the degree of de-
pendence varies greatly according to three factors: the dis-
tance between two stations, the season (summer or winter)
and the precipitation accumulation duration (hourly, daily,
monthly, etc.). Increasing the duration (from one hour to
20 days) strengthens the spatial dependence. The full inde-
pendence is reached after about 50 km (100 km) for summer
(winter) for a duration of one hour, while for long durations
only after a few hundred kilometers. In addition this depen-
dence is always larger in winter than in summer whatever is
the duration. An explanation of these properties in terms of
the dynamical processes dominating during the two seasons
is advanced.

Correspondence to:S. Vannitsem
(svn@oma.be)

1 Introduction

Classically, the statistical analysis of a time series of max-
ima is based on the well-developed Extreme Value Theory
(EVT) (Coles, 2001; Foug̀eres, 2004; Embrechts et al., 1997;
Resnick, 1987; Smith, 2004). This theory demonstrates that
the Generalized Extreme Value distributions (GEV) is the ap-
propriate distribution for fitting maxima in an univariate and
independent context.

Although the assumption of temporal independence seems
to be a reasonable approximation in practical applications,
the spatial independence seems on the other hand far from
acceptable. Weather stations can be located nearby, and this
spatial proximity can impact the computation of uncertainty
related to the classical quantities of interest for hydrologists
and flood planners. The typical example is the estimation
of large return levels using maxima of precipitation recorded
over a specific region in which several nearby stations are
available. In this situation, the use of an erroneous hypothesis
of spatial independence will lead to an underestimation of the
return level confidence intervals (Buishand, 1989). Solving
this problem of uncertainty underestimation is not straight-
forward (even the definition of the return levels in a spatial
context is not straightforward). In the present paper, we do
not address this general problem and we limit our investi-
gation to the measure of spatial dependences, as a function
of different parameters such as the maxima block size (one
month, one year, etc.), the period of accumulation of precip-
itation (hours, daily, etc.) and the season.

In the history of statistics and probability, the question of
how to measure the dependence between two random vari-
ables has always been of paramount importance (Ancona-
Navarrete and Tawn, 2002; Hall and Tajvidi, 2000; Hsing
et al., 2004; Schlather and Tawn, 2003; Smith, 2004; Tawn,
1988). For Gaussian random vectors, it is well known that the
covariance matrix fully captures the dependence information.
For non-Gaussian distributions, many different ways exist to
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measure the departure from independence. To illustrate this
point, let us consider two continuous random variables, say
(X, Y ) with their joint bivariate probability distribution func-
tion, sayP(X≤x, Y≤y). There exist several approaches to
express the joint distribution in terms of its marginal distri-
butionsP(X≤x) andP(Y≤y). One is based on the following
equality

P(X ≤ x, Y ≤ y) = [P(X ≤ x) × P(Y ≤ y)]θ(x,y) (1)

whereθ(x, y) is a bivariate positive function. Ifθ=1, then
full independence is reached. Accurate estimators ofθ(x, y)

should provide valuable information about the dependence
betweenX andY (Buishand, 1984). The advantage of Eq. (1)
and the link between Eq. (1) and EVT will be addressed in
Sect.3.

A second and popular approach to link the joint distribu-
tions and its margins is the notion of copula (Coles, 2001)
defined byP(X≤x, Y≤y)=C [P(X≤x), P(Y≤y)], whereC

is called the copula function. This is equivalent to work with
uniform distributed margins on[0, 1]. Depending on the
problem at hand, one can fit his/her favorite copula family
to represent the dependence structure. In the EVT commu-
nity, there has been a recent debate of the overuse of copulas.
In particular, Mikosch (2006) has cautioned against copulas
for a variety of theoretical and practical reasons. One issue
is that the assumption that the margins are known (by stating
that they are uniform) is not true in real case studies and ad-
ditional errors are introduced by replacing the margin by its
estimate.

Besides these two methods, there exists a variety of other
approaches to estimate the bivariate structure. For example,
we can assume a parametric bivariate family, e.g. bi-Gamma
densities, or transform the data into a Gaussian vector, es-
timate the covariance matrix and then make the inverse op-
eration, see Chapter 33 of Wackernagel (2003). But in the
former approach strong distributional assumption are used,
e.g. bi-Gamma densities, and for the latter, the derivation of
the estimation error after the gaussian and inverse transfor-
mations can be proved very difficult.

In this paper, we will use a direct non-parametric method
(see Sect.3) consistent with EVT and for which no particular
parametric class is assumed as for the copula function. It is
based on theλ−madogram concept introduced by Naveau et
al. (2007)1 and Cooley et al. (2006). It is a special variogram
of order one, one of the pillars of the field of geostatistics
(Cressie, 1993; Wackernagel, 2003; Stein, 1999). One main
advantage of working with this madogram approach is that
it offers a simple and efficient connection between EVT and
geostatistics. To our knowledge, this is the first case study in
which such statistical advances are used to measure the spa-
tial dependences among precipitation maxima over a large

1Naveau, P., Guillou, A., Cooley, D., and Biebolt, J.: Modeling
pairwise dependence of maxima in space, in review, 2007.

region, taking into account the influence of maxima block
size, the accumulation period and the season.

Our paper is organized as follows. Section2 presents the
two different networks covering the Belgian territory used in
the present study, as well as the analysis of the temporal non-
stationarities present in the data set. The theoretical aspects
of bivariate EVT and a description of the pairwise depen-
dence estimators among precipitation maxima are detailed in
Sect.3. In Sect.4, we present and interpret the results ob-
tained for the two Belgium networks. In particular the role
of seasonality, of the duration and of the block size on the
dependence among maxima, is investigated. The main con-
clusions are drawn in Sect.5.

2 The precipitation networks

Two different networks covering the Belgian territory
are currently available, the climatological and hydro-
meteorological networks. The former is based on daily
measurements of climatologically relevant quantities such as
temperature, precipitation, pressure, etc.; while the second
is aimed at evaluating precipitation, temperature and humid-
ity at a much higher rate (every 10 min) in order to com-
pute quantities relevant for hydrological modelling like fast
runoffs. In this section both networks are briefly described.

2.1 The climatological network

The climatological network started to operate in 1833. Based
at that time on a few key stations, it is now composed by more
than 250 stations. During its long existence, this network has
experienced several changes such as displacements and with-
drawals of stations. To work with an homogeneous network,
we focus here on a subset of stations covering a common pe-
riod from 1951 up to 2005 without substantial interruptions.
We end up with 90 stations over the whole Belgian territory
for which at most, 2% of missing data are present. The stars
in Fig. 1 indicate their respective locations. For each station
and for different accumulation periods (from 1 to 20 days),
the maxima for the hydrological summer (April to Septem-
ber) and winter (October to March) are extracted over the
whole period.

One central assumption in this study is that precipitation
maxima are supposed to be stationary in time. Consequently,
we need to check the validity of this assumption for our se-
lected stations. The Mann test (Mann, 1945) which provides
information on the presence of tendencies has been applied to
the ensemble of maxima time series (for a duration of 1 day).
The analysis reveals that the vast majority of the time series
recorded for summer are stationary. For winter, the results
are drastically different: about 2/3 of the stations are non-
stationary at the 5% level. Similar results have been obtained
by Gellens(2000), except that the number of series display-
ing a trend in winter was smaller (about 1/3). This probably
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Fig. 1. Locations of the precipitation stations of the Belgian clima-
tological (*) and hydro-meteorological (+) networks.

reflects the fact that the series are longer (by about 10 years)
and the change present in the middle of the 80th can there-
fore be detected with more confidence. In order to perform
the analysis of the spatial dependences of the extremes, we
will limit ourselves to the stationary time series, namely 90
summer series and 33 winter series.

Daily precipitation maxima times series recorded dur-
ing summer at three representative stations (Uccle, Uccle
(Réservoir) and Spa) are displayed in Fig.2. The two sta-
tions Uccle and Uccle (Ŕeservoir) are very close to each
other (about 2 km), while the third station, Spa, is far from
the two previous ones (about 150 km). As one may ex-
pect, the maxima recorded at the two closest stations repre-
sented by crosses and white circles in Fig.2a are very similar,
while large differences are found with the values recorded at
Spa (Fig. 2b). This illustrates the spatial dependences that
can arise between maxima, which will be quantitatively esti-
mated in Sect.4.

2.2 The hydro-meteorological network

The first Hellmann-Fuess pluviograph was installed in Uccle
in 1898 (Demaŕee, 2003). Up to 2005, this instrument has
provided a continuous time series of precipitation at a very
fine sampling rate (every 10 min). In 1968, 18 additional plu-
viographs were installed, providing a spatial coverage of the
country for hydrological purposes (+ in Fig. 1). These plu-
viographs are nowadays progressively replaced by automatic
stations.

Clearly this network is less dense than the climatological
one and some stations display long periods with missing data.

10

20

30

40

50

60

70

80

1950 1960 1970 1980 1990 2000 2010

Uccle
Uccle (Réservoir)

M
ax

im
u

m
 (

m
m

/d
ay

)

Year

(a)

10

20

30

40

50

60

70

80

90

1950 1960 1970 1980 1990 2000 2010

Uccle Spa

M
ax

im
u

m
 (

m
m

/d
ay

)

Year

(b)

Fig. 2. Time series of summer daily precipitation maxima recorded
at three stations of the climatological Belgian network. Two sta-
tions, Uccle and Uccle (Ŕeservoir) represented by crosses and cir-
cles in panel(a), are close to each other (about 2 km), while the third
one, Spa (circles in panelb), is far from Uccle (about 150 km), see
panel (b).

Despite these drawbacks, the hydro-meteorological network
provides important precipitation information for short dura-
tions that cannot be obtained from the climatological net-
work.

For this network, the stationarity has also been investi-
gated, indicating that for very short durations (typically 1 h),
the data are stationary for both seasons.

2.3 The climatological information gathered from the net-
works

Measurements provided by both networks have been exten-
sively used for climatological analyses (e.g.Sneyers, 1975;
Dupriez and Demarée, 1988, 1989; Sneyers et al., 1989; Gel-
lens, 2000) and modelling (e.g.Schmitt et al., 1998). In
particular, R. Sneyers and his collaborators have made a
lot of efforts to provide homogeneous time series for the
climatological network and to give a detailed description of
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the statistical properties of the data (see for instanceSneyers,
1975).

One important question in this context is to know whether
the maxima of this (limited) data set are indeed sampled from
a GEV distribution, which is in principle only valid for max-
ima selected over a large number of recorded events. In Du-
priez and Demarée (1988, 1989) a detailed analysis of the
appropriateness of the GEV distributions for a set of maxima
time series was performed. It was shown that for most of
the time series, the hypothesis that annual maxima of precip-
itation accumulated over periods from 1 to 30 days follows a
GEV distribution, cannot be rejected. This test is particularly
important for long duration maxima since they are selected
over a relatively small number of recorded events during each
year or season. A more recent study has reached similar con-
clusions (Gellens, 2003). In the following, we will there-
fore adopt the assumption that the distribution of precipita-
tion maxima falls into the asymptotic domain of convergence
of the GEV distribution, even for long duration events.

3 Theoretical background

Let us define precipitation maxima as follows

Mi(t) = max{Zi,1(t), . . . Zi,m(t)}, (2)

where m denotes the number of periods of durationt
recorded over a time window,T , andi=1, ..., n with n cor-
responding to the number of stations. The random variable
Zi,j (t) represents the precipitation amount temporally in-
dexed byj , accumulated over the durationt . For instance, if
Mi(t) represents monthly maxima of hourly precipitation,T

is equal to 1 month,t to one hour andm=24×30. Note that
maxima are usually selected over annual or seasonal win-
dows, but can also be defined over longer time windows, i.e.
on a multi-annual basis.

The marginal distributionP(Mi(t)≤x) is denoted byFi(x)

and its pairwise distribution between two stations labeledi

andk by

Fik(x, y) = P(Mi(t) ≤ x, Mk(t) ≤ y).

Conceptually, it is easy to go beyond the bivariate case,
but the estimation of multivariate distributions from a lim-
ited number of observations is difficult without adding very
strong distributional assumptions. As most authors in geo-
statistics have done in the past, we restrict our attention on
estimating the bivariate structure of random vectors. Besides
its computational feasibility, this pairwise framework already
offers novel and practical information about the spatial prop-
erties of precipitation maxima.

Univariate EVT has been very popular amongst hydrolo-
gists for many decades (e.g.Katz et al., 2002), and it has also
become a standard tool in the climate community in recent
years (e.g.Kharin et al., 2007). However some of the latest

advances in EVT obtained in the mathematical field of prob-
ability and statistics are not widely circulating among clima-
tologists and hydrologists. For example, applied and theo-
retical statisticians (e.g.Caṕeràa et al., 1997; de Haan and
Pereira, 2006; Hall and Tajvidi, 2000; Pickands, 1981), have
proposed and explored many directions to infer the charac-
teristics of the bivariate structure between maxima. Several
parametric families have also been studied (e.g.Tawn, 1988,
1990; Joe, 1993; Coles et al., 1999). A very popular model
is the logistic one proposed by Gumbel (1960).

One rather old but still fundamental result (e.g.Gumbel,
1960; Resnick, 1987; Foug̀eres, 2004; Beirlant et al., 2004)
states that, under mild conditions, all pairwise maxima vec-
tors, (Mi(t), Mk(t)), asymptotically converge to a bivariate
non-degenerate distributionGik(., .) called the “bivariate Ex-
treme Value distribution” and defined by

Gik(x, y) = exp

[
−Vik

(
−1

ln Gi(x)
,

−1

ln Gk(y)

)]
,

whereVik(x, y) = 2
∫ 1

0
max

(
w

x
,

1 − w

y

)
dHik(w), (3)

Hik(.) corresponds to any distribution function on[0, 1]

such that
∫ 1

0 w dHik(w)=0.5, andGi(.) andGk(.) are the
marginal GEV distributions. The functionVik(., .) is called
the “pairwise extremal dependence function” and it is the one
that captures the bivariate dependence structure. To clarify
the meaning of Eq. (3), we can look at the special case where
y=x and the margins are equally distributed, i.e.Gi=Gk.
This setup gives

Gik(x, x) = exp[Vik(1, 1) ln Gi(x)] ,

= [Gi(x) × Gk(x)]Vik(1,1)/2,

becauseGi(x)=Gk(x). Here we can recognize the form of
Eq. (1) with θ(x, x)=Vik(1, 1)/2, for more details see the
recent book byBeirlant et al.(2004). The scalarVik(1, 1) is
called the “extremal coefficient”, equal to two for the inde-
pendent case, and to one for the full dependent case. Other-
wise, its value varies between one and two depending on the
degree of dependence.

Two important features of Eq. (3) are that the margins
have no influence on the dependence structure and that
Hik(.) can be any distribution function on[0, 1] such that∫ 1

0 w dHik(w)=0.5. In other words, this implies that there
is an infinite number of ways to define a bivariate structure
for sample pairwise maxima (although the margins have a
known parametric distribution, the univariate GEV). Conse-
quently, fixing a parametric form forVik(x, y) is equivalent
to impose a very strong hypothesis on the bivariate structure.

To estimate the extremal coefficientVik(1, 1), we follow
the non-parametric method proposed by Cooley et al. (2006)
who showed that the extremal coefficient can be directly es-
timated from themadogramdefined by

νik =
1

2
E(|Fi(Mi(t)) − Fk(Mk(t))|), (4)
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whereE(.) denotes the expectation. Note thatνik andFi(x)

like the random variableMi(t) also depends ont . But, to
keep the notations as transparent as possible, we drop this
temporal information. For independent maxima,νik is equal
to 1/6, and smaller for dependent events, i.e.νik<1/6 if there
is positive association. Compared to past non-parametric es-
timators ofVik(1, 1), the performances of the estimators pro-
posed by Caṕeràa et al. (1997) and Hall and Tajvidi (2000)
are similar to the ones obtained with the madogram. But
while the relationship between the madogram (that repre-
sents a first-order variogram) and geostatistics is obvious, the
link of these past estimators with the field of geostatistics is
not clear. Hence, the simplicity of defining and computing
the madogram within a spatial setup represents one of our
main reasons for preferring the madogram.

Because bivariate EVT allows us to assume that the bi-
variate vector(Mi(t), Mk(t)) satisfies Eq. (3), it is possible
to show (Cooley et al., 2006) that

Vik(1, 1) =
0.5 + νik

0.5 − νik

. (5)

This equality implies that if one can estimateνik, then a di-
rect estimate ofVik(1, 1) can be derived. Fortunately, it is
simple to find a naive estimator ofνik that does not depend
on the form of the margins

ν̂ik =
1

2L

L∑
l=1

|Fi(Mi,l(t)) − Fk(Mk,l(t))|.

whereL corresponds to the number of pairs of maxima un-
der study,(Mi,l(t), Mk,l(t))l=1,...,L, andFi(.) represents the
empirical distribution of the random variableMi(t), i.e.

Fi(x) =
1

L

L∑
l=1

1l{Mi,l(t)≤x},

with 1lA corresponding to the indicator function (equals to
one if A is true and to zero otherwise). A limitation of this
approach is that Eq. (5) only provides an estimate of the ex-
tremal coefficientVik(1, 1), but not of the full pairwise ex-
tremal dependence functionVik(x, y) with x not necessar-
ily equal to y. To solve this issue, one can build on the
madogram concept by adding an extra dimension to Eq. (4).
Such an extension has been recently developed by Naveau et
al. (2007)1 who defined the “λ-madogram” by

νik(λ) =
1

2
E(|F λ

i (Mi(t)) − F 1−λ
k (Mk(t))|), ∀λ ∈ [0, 1].

(6)

From this definition, it is possible to show the following rela-
tionship betweenνik(λ) and the complete pairwise extremal
dependence functionVik(λ, 1 − λ)

νik(λ) =
Vik(λ, 1 − λ)

1 + Vik(λ, 1 − λ)
− c(λ), (7)

where c(λ)= 3
2(1+λ)(2−λ)

and λ∈(0, 1). Concerning
Eq. (7) three comments are in order. First, because
Vik(x, y)= 1

x+y
Vik(λ, 1−λ) with λ=

x
x+y

, the λ-madogram
fully characterizes the dependence functionVik(x, y) for any
x, y∈R2. Second, the extremal coefficientVik(1, 1) equals
Vik(1/2, 1/2)/2. This means that theλ-madogram like the
madogram can provide the extremal coefficientVik(1, 1).
Third, theλ−madogram satisfiesνik(0)=νik(1)=0.25. This
latter remark allows us to propose the following estimator for
νik(λ)

ν̂ik(λ) =
1

2L

L∑
l=1

|Fλ
i (Mi,l(t)) − F1−λ

k (Mk,l(t))|

−
λ

2L

L∑
l=1

(
1 − Fλ

i (Mi,l(t))
)

−
1 − λ

2L

L∑
l=1

(
1 − F1−λ

k (Mk,l(t))
)

+
1

2

1 − λ + λ2

(2 − λ)(1 + λ)
. (8)

Although more complex, this definition has the advan-
tage to force ν̂ik(λ) to satisfy the limiting conditions
E(ν̂ik(0))=E(ν̂ik(1))=0.25.

Before closing this theoretical section, we would like
to emphasize the inherent assumptions made in this pa-
per. We assume implicitely that each year (or each sea-
son), the field of maxima is isotropic and homogeneous in
space, and stationary in time. In addition, the bivariate vec-
tor (Mi(t), Mk(t)) drawn for such processes belongs to the
class of bivariate Extreme Value distributions whose bivari-
ate structure is defined byVik(x, y). The assumptions of ho-
mogeneity and isotropy may not be entirely valid, but a com-
plete full description taking into account inhomogeneity and
anisotropy would necessitate a very large amount of data. A
large number of synthetic data can be simulated by numerical
models (see for instanceVannitsem, 2007), but they are very
rarely available when dealing with real measurements. In ad-
dition, the assumptions needed to apply bivariate EVT may
not always hold. For instance, Ancona-Navarrete and Tawn
(2002) found that the dependence structure of 1-day extreme
rainfall in south-east England resembles that of a bivariate
Gaussian random variable rather than that of a bivariate EV
distribution. While interpreting the results and making con-
clusions about precipitation maxima in Belgium, one has to
keep in mind these assumptions.

4 Estimating and interpreting pairwise dependences
among Belgium precipitation maxima

Many empirical statistical studies of the spatial properties
among maxima have been limited to the regionalization or
interpolation of the parameters of the GEV univariate distri-
butions (e.g.Cooley et al., 2007; Coles and Casson, 1999,
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Fig. 3. Variations of the madogram as a function of the distance
h given in kilometers, Eq. (4), for summer precipitation maxima.
Panel(a) is obtained from the hydro-meteorological network data
(see Sect.2.2) with a duration of one hour. Panels(b) and(c) are
obtained using the climatological network data (see Sect.2.1) with
a duration of one day (panel b) and for a series of different durations
(panel c). The dashed lines in panels (a) and (b) refer to the 95%
confidence interval of the madogram estimation and the horizontal
continuous line to the independent case.

and references therein). Conditionally on the GEV parame-
ters the observations are assumed to be IID and consequently
the spatial structure is only captured by the GEV parameters.
Hence this latent/Bayesian approach does not take full ad-
vantage of multivariate EVT which brings a more profound
and detailed understanding of the properties of multivariate
extremes. In particular the spatial dependences among max-
ima constitute a central problem, as already revealed in Buis-
hand (1984, 1989) and Coles and Tawn (1990).

For Belgium, Gellens (2000) showed that spatial correla-
tions are present among maxima for durations from 1 day to
30 days. Defining a (somewhat arbitrary) mean decorrela-
tion length, he found for winter a decorrelation length vary-
ing between 150 km and 400 km for durations from 1 to 30
days; while for summer, a mean decorrelation length vary-
ing between 40 to 200 km. These results already suggest a
strong difference between summer and winter and for short
and long precipitation durations. This question is now re-
assessed based on the techniques described in Sect.3.

Before presenting the result, we must indicate how the
madogram is effectively computed. As presented in Sect.2,
the length of the time series is relatively short. This implies
that the statistics for one pair (i,k) of stations is quite small.
In order to get a relatively good estimate of the madogram,
one must aggregate the results obtained at several pairs of
sites. We have therefore defined a certain number of distance
bins for which the madogram is evaluated based on the en-
semble of pairs of stations whose distance falls into these
bins.

Figures 3a and 4a display the variation of the mado-
gram (full dots) as a function of the distance for summer
and winter precipitation maxima recorded with the hydro-
meteorological network. The duration is fixed here to 1 h.
The dashed lines represent the 95% confidence interval
which has been computed based on the asymptotic probabil-
ity distribution of the madogram estimator (seeCooley et al.,
2006). The horizontal line refers to the value corresponding
to independent events. Obviously, the spatial dependences
for this duration is quite small as indicated by the closeness
of the curve to the independent event case (continuous hor-
izontal line). In addition the horizontal line falls within the
confidence interval for distances larger than 50 km in sum-
mer and 100 km in winter, suggesting that the distance for
which the complete independence is reached is larger in win-
ter than in summer.

This last result is consistent with the properties of the max-
ima arising in winter and summer, respectively. In summer
precipitation maxima are usually associated with the convec-
tive thunderstorm activity whose lifetime and spatial scales
are relatively small. While in winter they are usually asso-
ciated with atmospheric situations arising from the intense
baroclinic activity prevailing during this season, giving rise
to large-scale stratiform precipitation structures.

Figures3b and4b display the madogram as well as the
95% confidence interval for the stations of the climatological
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network and for a duration of 1 day. Note that for winter, we
have only kept stations which do not display a tendency, im-
plying that the confidence interval for the madogram is larger
in winter. For both seasons, the result suggests that the inde-
pendence is reached only after about 200 km for maxima of
daily precipitation. For shorter distances, the dependence is
stronger in winter than in summer, as expected from the very
nature of the dynamics prevailing in winter or summer as al-
ready discussed above. The present results differ from clas-
sical correlation analyses which indicates a highly different
decorrelation distance in winter and summer for this duration
(Gellens, 2000). This emphasizes the necessity to use ap-
propriate techniques for evaluating dependences for extreme
values that are on one hand originating from a nonlinear pro-
cess and on the other, obtained through a highly nonlinear
operation, Eq. (2).

For longer durations, the madogram monotonically de-
creases as illustrated in Figs.3c and4c, but substantial dif-
ferences are found in winter and summer. In winter, the
madogram progressively decreases for durations from 1 to
5 days. For 5 to 15 days, it does not change substantially
and starts again to decrease beyond durations of 15 days.
To understand this variation of the madogram as a function
of the duration, one must recall that the dominant structures
which govern the dynamics at midlatitude during winter are
the baroclinic waves whose typical time scale is 5 days. One
can therefore suspect that the plateau for intermediate dura-
tions (from 5 to 15 days) reflects the fact that once this dura-
tion is reached, the spatio-temporal structure of the maxima
is associated with the prevalence of the baroclinic waves dur-
ing this season. The subsequent decrease beyond 15 days re-
flects the convergence toward the coherent large space scale
organisation of the seasonal variations.

For summer, the picture is substantially different. The de-
crease is quite progressive from 1 to 20 days, reflecting that
the baroclinic waves are much less dominant during this sea-
son. It is also very interesting to note that for space scales
larger than 200 km, the madogram does not vary much and is
very close to the curve corresponding to independent events.
This further suggests that the space scales of the processes
are quite limited, as expected by the predominantly convec-
tive nature of the dynamics during this season. The compar-
ison of Figs.3c and4c further reveals that the spatial coher-
ence of the multi-day extremes in winter is very large (much
beyond 250 km), while in summer, this coherence is much
more limited.

Other techniques like the one proposed inColes(2001)
provide a similar picture for the spatial dependence of the
maxima (not shown).

Up to now, the analysis has revealed a large dependence of
the madogram as a function of the duration. In the problem of
the spatial dependences of the extremes, another parameter is
of interest, the time window T. One can wonder whether by
changing T one can modify the properties of the spatial de-
pendences. In Fig.5 the time window T has been increased
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Fig. 4. As in Fig.3 but for winter precipitation.

from 1 summer to 2 and 3 summers. Although the uncer-
tainty on the madogram is larger for longer time windows
(less pairs are available), the results do not seem to reveal
any systematic increase or decrease of the dependence, sug-
gesting that the spatial dependences found for one-summer
time window is similar for longer windows. In other words,
this dependence measure does not seem to converge toward
the independent case for larger windows.
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Fig. 5. Variation of the madogram as a function of the distance
(given in kilometers) for summer precipitation maxima selected
over different periods, T, from one to three consecutive summers.
The climatological network is used.

Let us now turn to theλ-madogram. Figure6a displays
theλ-madogram as a function ofλ for different distance in-
tervals, 0–10 km, 50–70 km, 130–150 km and 210–230 km
for Summer. The continuous line corresponds to the case for
which the extremes are independent, while the dashed line to
the full dependence. Theλ-madogram estimates fall between
these two asymptotic solutions and, as expected, they pro-
gressively converge to the independent solution for increas-
ing distances. This phenomenon takes place independently
of the value ofλ suggesting a similar convergence toward
independence.

For winter (Fig. 6b), the results are similar, except for the
very slow convergence toward independence whatever is the
value ofλ. This result is consistent with what was found for
the madogram during this season (Fig. 4c).

5 Conclusions

In this work, the spatial dependences among maxima have
been explored using the (λ−)madogram, in the context of
two Belgium precipitation networks. This technique is a non-
parametric approach recently developed in order to provide a
direct evaluation of the pairwise extremal dependence func-
tion.

Using this approach, valuable information about the spa-
tial properties of precipitation maxima during the summer
and winter seasons in Belgium, were extracted. First, for
very short durations (typicall one hour), the madogram of
precipitation maxima for both seasons indicates a weak spa-
tial dependence, but larger in winter than in summer. This
feature already reflects the nature of the dynamical processes
prevailing during summer or during winter: In summer pre-
cipitation maxima are mainly associated with the thunder-
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Fig. 6. Theλ-madogram defined by Eq. (6) is plotted for several
distance intervals for summer(a) and winter(b) daily precipitation
maxima coming from the climatological network. The continuous
line refers to the independent case and the dashed line to the full
dependence case.

storm activity whose space and time scales are small; for
winter, the precipitation field usually displays very large
space and time scales, related to the baroclinic activity of
the flow.

For daily precipitation maxima the dependence is much
larger for both seasons, with a similar space scale for com-
plete independence (about 200 km). Still the dependence at
shorter distances is larger in winter than in summer.

For longer durations (up to 20 days), the dependence pro-
gressively increases. It is interesting to note that in winter,
a plateau is reached for the madogram for all distances (be-
tween 5 to 15 days) corresponding to the typical time scales
of the baroclinc waves. This saturation phase is supposed to
be associated with the prevalence of these structures in win-
ter. In summer, this plateau is not apparent but the decrease
at very large distance is much less significant than in winter.
This probably reflects the convective nature of the dynamics
from which the maxima are extracted, inducing a very weak
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dependence for distances larger than 200 km even for long
durations.

Finally, theλ-madogram that captures the full dependence
structure between pairwise maxima first confirms the results
obtained above. But more importantly it suggests that the
convergence toward independence is similar whatever are the
values ofλ.

This analysis can be extended is several ways. First the
analysis of a much larger (homogeneous) region than Bel-
gium can improve the quality of the madogram estimation,
in particular for short durations from 1 to 12 h relevant for
rapid and intense precipitation events such as flash floods.
Another potential extension is to use the dependence infor-
mation derived in this paper to build networks of recording
stations for which maxima are independent, in order to apply
for instance the station-year method allowing for an evaluta-
tion of maxima of long return periods (Buishand, 1984).

Appendix A

Sketch of the proof of Eq. (7)

First, classical probability theory tells us that the random
variableFi(Mi) follows an uniform distribution on[0, 1].
Hence, it is easy to show that we have for the uniform distri-
bution,

E(F α
i (Mi)) =

1

1 + α
, for anyα > 0. (A1)

Because|a−b|/2= max(a, b)−(a+b)/2, we can write

νik(λ) = E(max
[
F λ

i (Mi) , F 1−λ
k (Mk)

]
)

−
1

2
E(F λ

i (Mi)) −
1

2
E(F 1−λ

k (Mk)),

= A −
1

2
B −

1

2
C,

with obvious notations forA, B andC. Applying Eq. (A1)
allows us to derive thatB=1/(1+λ) and C=1/(2−λ).
Hence, B+C

2 =
3

2(1+λ)(2−λ)
. ConcerningA, we introduce

the random variableM= max
[
F λ (Mi) , F 1−λ (Mk)

]
. We

also assume without loss of generality thatFi=Fk are unit-
Fréchet, i.e.Fi(x)= exp(−1/x). With this notation, we can
write

P (M ≤ u) = P
(
Mi ≤ λF−1

i (u), Mk ≤ (1 − λ)F−1
k (u)

)
,

= exp

(
−

1

F−1
i (u)

Vik(λ, 1 − λ)

)
,

by definition ofVik,

=

[
P
(
Mi ≤ F−1

i (u)
)]Vik(λ,1−λ)

, sinceF unit-Fŕechet,

= uVik(λ,1−λ).

It follows that

A =
Vik(λ, 1 − λ)

1 + Vik(λ, 1 − λ)
.

Hence, the equality

νik(λ) =
1

2
E|F λ

i (Mi(t)) − F 1−λ
k (Mk(t))|

follows.
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