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Abstract. The patterns shown on two-dimensional imagesto the multifractal theory. Owing to multiple moment func-
(fields) used in geosciences reflect the end products of gedions involved in defining partition functions, the multifractal
processes that occurred on the surface and in the subsurfaceodels are capable of characterizing the entire variance of
of the Earth. Anisotropy of these types of patterns can pro-the fields, which makes multifractal models unique in com-
vide information useful for interpretation of geo-processesparison with other low-order moment statistics that can only
and identification of features in the mapped area. Quantificacharacterize the variance of majority values of the field but
tion of the anisotropy property is therefore essential for im-usually are not capable of characterizing the variability of
age processing and interpretation. This paper introduces sewingular values because of their rarity. However, singular val-
eral technigues newly developed on the basis of multifractalues in a field are often of special interest in the geosciences.
modeling in space, Fourier frequency, and eigen domainsfor example, most hazardous geological processes yield sin-
respectively. A singularity analysis method implemented ingular value distributions, such as floods, which produce ex-
the space domain can be used to quantify the intensity antteme flow events (Malamud et al., 1996). Earthquakes cause
anisotropy of local singularities. The second method, calledextreme energy release (Turcotte, 1997), and landslides can
S-A, characterizes the generalized scale invariance propertgause loss of mass in land areas (Malamud et al., 2004).
of a field in the Fourier frequency domain. The third method Other types of singular processes include cloud formation
characterizes the field using a power-law model on the basigSchertzer and Lovejoy, 1987), rainfall (Veneziano, 2002),
of eigenvalues and eigenvectors of the field. The applicationgnd hurricanes (Sornette, 2004). These types of non-linear
of these methods are demonstrated with a case study of Enviratural processes often cause hazardous problems to human
ronment Scan Electric Microscope (ESEM) microimages forbeings. Mineralization can cause concentrations of elements
identification of sphalerite (ZnS) ore minerals from the Jind- in rocks that can be mined as ores. It is essential to deal
ing Pb/Zn/Ag mineral deposit in Shangjiang District, Yunnan with these types of singularity that are involved in the singu-
Province, China. lar processes. It has been proved that multifractal modeling
is an effective means for characterizing singular patterns ob-
served in a field.

Since the concepts underlying the multifractals were orig-
inally introduced by Mandelbrot (1972, 1974) in the discus-

Fractal models are often used to characterize self-similar ge31on Of turbulence (Feder, 1988), various multifractal models

ometries, whereas multifractal models have been utilized tJ1ave been developed, and some of these have been widely

quantify patterns (fields) defined on sets which themselveé’SEd in various fields of science for characterizing measures

can be fractals. Extension from geometry to field has sig—With scaling properties (Frisch_ and Parisi, 1985; Gras_s_berger,
nificantly increased the applicability of fractal/multifractal 1983; Hentschel and Procaccia, 1983; Badii and Politi, 1984,

theories and methods. For example, for processing and an]:985; Halsey et al., 1986; Schertzer and Lovejoy, 1991, Ev-
p p g 1995, 2005, 2007;

alyzing complex images for pattern recognition and spatialertsz and Mandelbrot, 1992; Agterberg,

information extraction can be assisted with methods relateé: heng’ 1997, 1,9993)' Several multifractal models have been
used in geoscience to analyze maps or patterns observed
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294 Qiuming Cheng: Multifractal modeling in space, Fourier, and eigen domains

the literature have indicated that study of multifractals andmethod in the frequency domain (Cheng et al., 1999, 2001),
multifractal modeling has been one of the focuses in non-and the Nx method in the eigen domain — can be utilized
linear geoscience. These models include the box-countingfor defining breaks to separate patterns with distinct general-
based moment method (Halsey et al., 1986), the histogramized self-similarities. In using the C-A method the values of
based model (Paladin and Vulpiani, 1987), the double-trace field can be directly separated into components that reflect
moment method (Schertzer and Lovejoy, 1991), the multi-anomalous and background values. With the S-A method
plier method (Chhabra and Sreenivasan, 1991), the waveld¢he power spectrum density field can be separated into com-
method (Beery et al., 1990, cited in Schertzer and Lovejoy,ponents with distinct self-similarities that can be converted
1991), and the gliding-box-based moment method (Chengback to the space domain to correspond to decomposed pat-
1999a). terns with distinct generalized self-similarities. In applying

Among these models, the box-counting-based momenthe N-. method the eigenvalues, and accordingly the eigen-
method has been commonly used to analyze one-dimension¥gctors calculated from a field, can be classified into groups
(1-D) or two-dimensional (2-D) values for measures or ON the basis of self-similarity so that these groups can be con-
fields. The box-counting moment method involves se-Vverted back to the space domain to form unmixed patterns.
guential partitioning of the study area (2-D field or sup- This paper is organized first, to introduce the principle
port) and upscaling processes to form measurgs) of the methods of local singularity analysia-fnethod),
at variable scaless. It uses three functions: mass the spectrum-area (S-A) method, and the large eigenvalues-

exponents 7(¢)=lim,_oLog Y uf(e)/Loge a singular- ba}seq method (N). Then a case study of ana[yzing ESEM
ity index a<q>=¥, and a fractal dimension spectrum Microimages for the |dent|f|c§1t|0n of sphglerlte (ZnS)”ore
f(a):oz(q)q—r(q)? These three functions are related m_me_rals from a Pb/Zn/Ag m!neral deposit in Shangjiang
through Legendre transformation. In a case in wilich(e) District, _Yunnan Province, China, was used to demonstrate
is constant, independent of the partition scaged imply- e applications of these methods.

ing that the total measure at all scales remains unchanged,

then thg measure is called conservative, in whi¢1h)=Q 2 Mapping local singularity in the space domain
Otherwise, if the total measurg u(¢) changes according

to a power law with the scale, implying a sort of gain-  From the multifractal theory we can prove that the extreme
ing or losing measure as the partitioning processes proceedensity values along the two tails may follow power-law fre-
thent(1)#0, which corresponds to a non-conservative situ-quency distributions, which can be expressed as the C-A re-
ation. It characterizes the overall heterogeneity of the fieldiationship, A&C)xC—#, where A is the area with density
by means of singularity analysis. Since the partition usually(concentration) values above a cutoff value C, ghi a
involves regular grids of variable sizes, the moment-basedositive value (Cheng et al., 1994). Area A can be in an
multifractal models can only characterize the isotropic scalérregular shape, depending upon the anisotropic property of
invariance property of the measure. the density values. Given the scaling property of the multi-

A more general anisotropic scale invariance property carfractal measures, if one restricts the area to a small area, or
be characterized in the Fourier domain. For example, a genas a pixel scale the C-A model can be replaced by a local
eralized scale invariance (GSI) paradigm was developed by-value model to be introduced in detail in this section. As-
Schertzer and Lovejoy (1991) using the power spectrum densume that for a given small ar€A), centered at a location
sity function. A spectrum and area model (S-A model) wason the map, where A is the area in a mineralization domain
developed for quantifying the anisotropic scaling invarianceor mineralization-influenced space, denotes the amount of
property in the Fourier domain that yields a new filtering metal contained in the domaf(A) as 1.(2(A)). The metal
technique for decomposition of mixing patterns on the basisconcentration in the same ar€4A) can be expressed as
of a new fractal distribution of the power-spectrum density 0 (22(A))=u(2(A))/A. When the size A changes, the quanti-
(Cheng et al., 1999; Cheng, 2004). tiesu(22(A)) and p (22(A)) change accordingly. For example,

A similar method, called MSVD, for unmixing spatial pat- When size A decreases, the value of the mei@(A)) de-
terns was developed by Li and Cheng (2004) on the basis off€ases. However, the quantity2(A)) will vary, depending
eigenvalues and eigenvectors calculated from a map treate@f! the properties of metal distribution in the small area A.
as an asymmetrical matrix. Cheng (2005) proved that the ab- F"0mM & mulifractal point of view, these quantitie&2(A))
solute values of eigenvalues and eigenvectors calculated frode (2(A)) follow power-law relationships with the area A

a map generated by multiplicative cascade processes follo/#S

non-conservative multifractal distributions, and the number,[(2(4)] = cA%/? (1)
of large eigenvalues follow the power-law frequency distri- /21
bution (the Na method) (Cheng, 2005). pl(Q2(A)] =cA 2

These types of power-law models — including the C-A where 1 (2(A)) is the total amount of metal i82(A), and
method in the space domain (Cheng et al., 1994), the S-Ao(2(A)) is the average concentration withfa(A). In the
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first power-law model (1)¢ is the exponent of the power- (i=1, ..., n) will show a linear trend with a linear sizean
law relationship. The power-law function is completely de- log-log paper, or Log[A(r)]=c+(«—2)Log(r). The slope es-
termined by the two parameters ¢ andThe first parameter timated from the linear relationship can be considered as the
(c) determines the magnitude of the function, whereas theestimate oftx—2. A similar treatment with sliding windows
second parametew) determines the shape of the function at all locations on the map can create a singularity distribu-
or the changing behavior of the quantity with the change oftion map. The uncertainty related to the estimation of the
A. The shape of2(A) can be a simple geometric form such singularity index also can be recorded and mapped. Only
as a circle, rectangle, or square, corresponding to isotropisingularities with relatively small uncertainty will be further
scaling. The shape can also be more complex, corresponaonsidered. The scale rangenh, rmax] can be determined
ing to anisotropic scaling (Cheng, 2004). dfis constant by observing scaling properties of the power-law functions
across the entire image, then the spatial patterns follow and consideration of the scales of the local structures of in-
monofractal distribution; otherwise, éf has multiple finite  terest. The left boundny is often limited by the resolution
values, then the spatial patterns may follow a multifractal of the data. Different ranges offin, rmax to be used in
distribution (Cheng, 1999b). The exponewj {s termed the  ensuring distinct power-law functions may yield singulari-
singularity index, which determines the distribution of the ties at different scales; for example, small-scale singularity
degree of singularity of the field. It characterizes how the may reflect local anomalies associated with mineralization,
statistical behavior of metals in ar€HA) varies as A (mea- whereas large-scale singularity may represent regional back-
suring scale) decreases. Although theoretically the powerground variability. In the contour method, the windo@@A)
law relationships (1) and (2) hold true for a large range of A is replaced by closed contour lines, and the valife(A)] by
(for example, a few orders of magnitude of scale), the actuathe average value of the entire area enclosed by the contour.
range of scaling is usually limited to a finite range of A ow- The shapes of the contours are determined by the actual data
ing to the limitation of the data resolution. The values of the around the location.
exponentx can be grouped into two categories: In some lo- The singularity index calculated from 2-D maps usually
cationsp (2(A)) is independent of the size A, implying=2; has values around 2. The areas with non-singular values
in other locationg (2(A)) may, however, depend on the size («¢=2) generally occupy most parts of the map with a di-
of A, implying «#2. The former case is considered as non- mension close to 2 (a box-counting dimension). In these ar-
singular, but the latter as singular. If A becomes very smalleas the element concentration may show normal variability
at a singular location, then(2(A)) either approaches zero so that the average concentration calculated within the win-
or infinity. We differentiate further between positive singu- dows Q(A(r)) is close to a constant and independent of the
larity @ <2 and negative singularity>2. The mean value windows sizer. The other areas with singular valuesA2)
p(R2(A)) calculated at a given location with positive singu- occupy a relatively small part of the map, with dimensions
larity increases with reduced area size A, where@&3(A)) <2. From a statistical point of view, a majority of values
at another location with negative singularity decreases as then the geochemical map witk==2 follow either normal or
area size A decreases. The indegan be estimated from the lognormal distributions, whereas a minority of values (ex-
valuesp (2(A)) calculated at different sizes of A by means of tremely high and low values along both frequency distribu-
least squares .The singularity index has the following prop-tion tails) on the map with a singularity ef£2 may follow
erties (Cheng, 1999by=2, if and only if p(2(A)) equals a  Pareto distributions. Separating the extreme-value distribu-
constant, independent of size &< 2 if and only if p (2(A)) tions from normal and lognormal distributions is essential for
is a decreasing function of A, which implies a “convex” prop- anomaly identification. Most ordinary statistics that require
erty of p(R2(A)) around the given location; ang>2 if and the assumption of normal or lognormal distributions of sam-
only if p(2(A)) is an increasing function of A, which indi- ple values may not be effective in dealing with these types of
cates a “concave” property p{©2(A)) around the given loca-  singularity distribution.
tion. The former case indicates that metal concentration at a It should be pointed out that the above discussion is based
location with positive singularity may be enriched, and at theon an assumption that the window A is a small area but
location with negative singularity it may be depleted. Min- never be as small as a point in reality due to data resolution.
eralization generally corresponds to ore bodies with metalThis is important because for the multifractals generated by
concentration enrichment. Thevalues can be mapped and stochastic process for example random multiplicative cas-
compared with the locations of known mineral deposits. cade they have no pointwise convergence properties of sin-
Two methods can be applied to estimate th@alues:  gularity. They have only the weak convergence property that
the regular windows-based method and contour-based methnategrals over finite sets may converge. In this sense, the mul-
ods (Cheng, 2006). In the windows-based method, for difractal itself cannot be specified at a mathematical point.
given location on the map, a set of sliding windows A(r) Therefore, the localized singularity concept introduced in the
(squares, circles, and rectangles) with variable window sizesgurrent paper is different from conventional pointwise sin-
rmin=ri<rz2<...<r,=rmax are chosen to calculate the aver- gularity defined in mathematical function. From geostatis-
age concentration valug[A(r;)]. These p[A(r;)] values tics point of view, a mapped distribution of measures can
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be considered as realization of the stochastic cascade prahe formalism of GSI. The scale invariance generator (SIG) is
cesses and the singularity becomes regionalized random varéne iterative technique developed for estimating the transfor-
able and the estimated values becomes the realization of thmation operator G and for calculating the generalized scal-
random variable. The average value of many realizations willing exponens of model (3) (Lewis et al., 1999). The unique
be the expectation of the singularity. In reality there are of-significance of the GSI concept and techniques is its capa-
ten only one set of measurement (a map) which should béility for modeling the general scale transformation and the
considered as only one realization. scaling exponent. One challenge of using this iterative SIG
technique is its convergence speed and the sensitivity of the
estimates.

Cheng et al. (1999) proposed a new S-A model to rep-
resent the power-law frequency distribution of the power-
" . , spectrum density. A new function relating the multifractal
Fourier/inverse Fourier transformation has been commonly ; : .
used for time series analysis and signal processing. Spe model and the spectral-energy-density func_tlon was derived

; . : Cheng, 2004) to show the power-law relationship between
tral energy density functions characterize the power spectru . N N
distribution in the frequency domain. The advantage ofdeal-t M spectral-g nergy-density valug) (aqd the "area’ of the
ing with fields in the frequency domain is that some ComplexSet 2(=S) with _spectral-energy-densny values abdven

. . g ) : . the power-density plane,

convolution operations in the spatial domain for correlation
analysis, filtering, and transformation can be simplified sig- A[Q (> §)] oc §724/5 (4)
nificantly in the frequency domain. Moreover, anisotropic
spatial distribution of a spectral energy density retains thewhere 2/ is related to the so-called elliptical dimension with
spatial structure of a field. Therefore, spatial analysis cand=1, corresponding to isotropic dimension, an€D, the ex-
be applied to anisotropic spectral energy density in the frejponent of the power law. Model (4) can be implemented us-
guency domain to construct filtering functions to process theing contours determined by the data on the plane of power
field (Cheng, 2001a, b; Cheng et al., 1999, 2001). Schertzedensity, and the contours can be in any self-similar geome-
and Lovejoy (1991) developed the concept of general scaldry that characterizes the general scale transformation. The
invariance (GSI). In the formulism of GSI, taking the 2-D estimate ofs is the general scaling exponent. The disad-
problem as an example, the scaling in the x and y directiong/antage of model (4) in comparison with model (3) is that
will not be at the same scale-changing rate. Similarly, follow- it does not give the explicit scale transformation, but the ad-
ing the linear GSI formulism, it associates the measure andantage might be its quick estimation of the general scaling
the measuring scale with a scale transformatige=1-¢, exponent. An integration of these two methods was explored
whereG is a 2x2 matrix (for the 2-D problem) and is a by Chao and Cheng (2005) to use the estimation of s from
scale ratio. 1{G=I as the unity matrix, then the transforma- model (4) as the “best” initial value for conducting the it-
tion becomes the isotropic transformation. Otherwis&, i erative SIG. It has been shown that the result estimated for
not unity, then the transformation characterizes anisotropics from model (4) is often the final estimation of the iterative
scale invariance (Schertzer and Lovejoy, 1991). In the scaleSIG method. In a later section of this paper, it will be demon-
changing operator, it involves four parametedsis a mea-  Strated that model (4) can be used for image filtering and map
sure of overall contractiong is a measure of the relative decomposition. The assistance of SIG can also provide fur-
scaling of the two coordinate axeg, represents reflection ther information about the details of anisotropy properties of
across a line diagonal to the axes, and a measure of ro- the decomposed field components.
tation. Schertzer and Lovejoy (1991) demonstrated that the
spectral-energy density of a field with the generalized scal- ) ) ) o . ,
ing invariance property under the formalism of GSI can be4 Anisotropic scaling modeling in the eigen domain
expressed as

3 Anisotropic scaling modeling in the Fourier fre-
guency domain

To consider a map as a large matrix, one can use linear al-
< S(Thow) >=1"° < S(w) > (3) gebra to process the map. Eigenvalues and Eigenvectors can
be used to decompose the matrix. Here we introduce the
where S represents spectral-energy density,is a wave  result obtained for large matrices generated by multiplica-
number];, =1 is the scale-changing operator in Fourier tive cascade processes and that can be modeled as multifrac-
space,G is the generator in Fourier spacejs scale ratio, tals. It has been proved (Cheng, 2005) that the eigenvalues
ands=>0 is the exponent. In the case of linear GGEGT, of anisotropic deterministic multiplicative cascade multifrac-
the transposition of the real space generator. Schertzer andl measures describe a multifractal distribution that char-
Lovejoy’s work can characterize the general scaling propertyacterizes the orientational heterogeneity, whereas the ordi-
of multifractal measure in Fourier domain by estimating the nary multifractal model of the measure itself characterizes
scale transformation. Various techniques have been devethe overall heterogeneity. Therefore, calculating the multi-
oped for quantifying the anisotropic scale invariance underfractal distribution of eigenvalues of a 2-D field in addition
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to the multifractal distribution of the field itself may pro- ®
vide supplementary information about the heterogeneity of i
the field. Although the discussions were for multifractal dis-
tributions of eigenvalues and eigenvectors of a 2-D field gen- ©=
erated from deterministic multiplicative cascade processes,
the results may have a general implication for other types |
of 2-D multifractal fields. It is therefore possible to form a
new model to characterize a 2-D field by its eigenvalues and
eigenvectors from a multifractal point of view. This study has
provided a framework for implementing multifractal model- y
ing in the eigen domain, which has a number of advantagesgses
as previously mentioned. :
This result is also useful for exploring the distribution
of large eigenvalues from a 2-D matrix. Large eigenval-
ues are often of interest in most principal component anal-
yses because they carry a substantial part of the data vari s
ance. According to the C-A model derived by Cheng, Agter- PgEs
berg, and Ballantyne (1994), the distribution of the extremely
large eigenvalues under the current discussion may follow the

power-law distribution Fig. 1. Microscope image of a sphalerite ore sample collected from
Jinding lead and zinc mineral deposit, Yunnna, China.

N1 o« a™? (5)

where 1 stands for eigenvalue angl is the exponent of 5.1 Local singularity analysis for high-pass filtering

the power-law relationship. The significance of model (5)

is not only because it establishes a power-law frequencyfrom model (1) we can express the local singularity index
distribution model of large eigenvalues but also gives an exw-value as the following expression:

ample of characterizing a compete distribution of extreme

values from a multifractal distribution. The study of extreme log u[Q(AD)]—log [ (A2)] dul (A)] 2
value distribution has been a subject of interest not only in*= log A1 — log Az T dA p2(A)]
statistics but also in many applied fields. The common dif-

ficulty for approximating extreme value distribution is due The apove expression (6) involves the first derivative of the
to lack of enough data (samples) to show the complete bemeasure over the area of the measuring scale, which im-
havior of extreme values or events. Consequently, there haﬁlies that thex-values can be considered a type of high-pass
rarely been seen a complete distribution of extreme valuesjjitered results having unique characteristics in comparison
from a multifractal distribution with high level of confidence ith other types of high-pass filters — for example, the
(Cheng, 2006). Although the result of model (5) was provedyg|ye is independent of scale A, although the expression in-
true for multifractal fields generated by deterministic multi- ¢y des the term A. In practice, this is very important, because
plicative cascade processes the model has been tested Withe filtering results are independent of the window sizes up to
a large number of images including aeromagnetic field fromne threshold within which the scaling properties (1) and (2)
various places, cloud photos, DEM, geochemical concentrano|q true. Choosing specific forms of the shape of area A can
tion in Watgr, stream and lake sediments. These results argield different anisotropic high-pass-filtering methods. The
not shown in the paper. method with square windows of A is demonstrated by the
case study in this paper.

(6)

5 Decomposition of multifractal measures 5.2 S-A method for pattern decomposition in the frequency
domain

Scaling characterization in the geosciences is a growing field

in the nonlinear geosciences. Utilization of fractal and mul- As discussed previously, filtering in the frequency domain

tifractal modeling for the conventional tasks of classification with Fourier/inverse Fourier transformations has been com-
in the geosciences has also become a potential field for inmon in many fields of the geosciences. The main advan-
novative scaling analysis. This section introduces several extage of conducting filtering in the frequency domain is be-

amples of using power-law models for image filtering and cause the properties of complex convolution operations in the
pattern decomposition. space domain used for filtering can be simplified as normal
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@)

Fig. 2. Results obtained using principal component analysis (PCA) applied to ESEM images of elements Zn, Sbh, S, Pb, O, Fe, Cu, Ca, C and
As scanned using ESEM facility provides by the State Key Laboratory of Geological Processes and Mineral Resources, China University of
Geosciences. The ESEM images have 20240 pixels.(a) Plot showing loadings of elements on the first principal component calculated
using GeoDAS GIS software. Inputs are ESEM images and correlation coefficient model was used for PCA. The result shows first com-
ponent is positively correlated with sphalerite (ZnS) and negatively associated with CaCO3 gbpeShistogram showing the frequency
distribution of scores of ESEM images on the first component;(enan image showing the distribution of scores of ESEM images on the

first component. Blue patterns represent calcites (CaCO3) and orange patterns show splarelite (ZnS). The same classification using standai
deviation scheme was used for both the image (c) and the histogram (b).

products of Fourier transformed functions in the frequencywise F[gg(w»)]=0; and the second filter as E{¢v)] = 1 if
domain, as expressed below: S(w) <S80, and otherwiseF[g4(w)]=0. From the definition

of F[ga(w)] and F[gg(w)], we can see that the shapes of
Flu®gl=Flu Flg] (7) the filters could be irregular, depending on the complexity
where F[] stands for Fourier transformation, agdfor the of the spectral-energy-density distribution. However, in gen-
convolution operation applied to functiopsandg. It has  eral, the wave numbers in filter F[ga(w)] are relatively
been found that the power-law relationship (3) can often bearger than those iF[gg(w)], implying that the frequency
fitted with several straight-line segments on a log-log-scalein F[ga(w)] is relatively higher than that iF[gg(w)]. In
plot. Each range of spectral energy density within which re-this sense, g corresponds to a relatively high-pass filter,
lation (3) holds true can be used to define a filter. For ex-and g to a relatively low-pass filter. However, one must
ample, if two straight-line segments are fitted to the datakeep in mind that the two filters are not sharply bounded ei-
and these straight lines yield the threshéig then two fil- ther by frequency or by wave numbers. They are defined in
ters can be defined aB[gp(w)]=1 if S(w)>So, and other-  such a way that the spectral-energy-density distributions of
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the two filters satisfy distinct power laws or have different
anisotropic scaling properties. Applying the inverse Fourier
transformation, with these two filters applied to the Fourier
transformed functions, we get decomposed components ir
the space domain:

pa=p®ga=F YF[u] Flgal)
e =pn®gp=F YF[u] Flgsl) 8)

where F~1 stands for inverse Fourier transformations. The
two components.p and 4 have different frequency prop-
erties quantified by two distinct power laws in the frequency
domain.

5.3 N-» method for pattern decompaosition in the eigen do-
main
Fig. 3. An image showing distribution of local singularity calcu-
If a map is treated as a matiM (u), it can be decomposed lated using GeoDAS from the scores of ESEM images on the first

into products of eigenvalues and eigenvectors component (Fig. 2c). To avoid negative value of the image, a con-
stant value 10 was added to the image Fig. 1c prior to the calcula-
n p tion of singularity index. Square windows with sizes1, 3, ..., 61
M= Z AiPi Q; ) pixel units were used for the multiscale calculation. The light areas
i=1

correspond te <2, dark areas witly>2 and grey areas with~2.

where A; stands for the non-zero eigenvalues
(JA1]=]r2]=...=|A,|>0) and P; and Q; for the left

and right eigenvectors, respectively. Because the Ml (g restrial rocks controlled by a complex dome structure, the
usually not symmetrlcal, 'the elggnvalugs could be |mag|narygenesis of the deposit has been debated, mainly between a
values. In his Ph.D dissertation, Li (2004) proposed agyngenetic formation and an epigenetic formation (Xue et
p_ower-law model for associating the acc_umulanon of sortedaL’ 2006). Evidence in support of model generalization has
eigenvalues and the cutoff value of the eigenvalues as been sought by geologists from studies of mineralogy, iso-

k topes, geochemistry, structure, and tectonics. The objective
Z)‘i ~x )f, (10) of the case study in this paper is to process the mineral mi-
i=1 croimages taken under ESEM using the new techniques in-

On the basis of the above model. an MSVD method wa troduced in the paper. In the summer of 2004 a large num-
' Sper of ore samples were collected from the Jinding deposit

proposed and applied for decomposing map patterms (Léy the author’s research group for systematic study of min-
and Cheng, 2005). A computer program was also prepare ; ! ;
eral textures from a non-linear process point of view. Sev-

by Li (2004) to calculate the eigenvalues and eigenvectors, . :
o ; eral analyses have been made from these samples, including
From multiplicative cascade processes and multifractal the-

ory, Cheng (2005) proved that model (4 holds wue for mul- LIRS (BRLE R L UL B SR S
tiplicative cascade multifractal distributions. Thus model (4) y y pred-p P

should be used for defining breaks to separate eigenvaluetgOSCOpy (ICP-MS), and mineral identifications by electron

into groups, and then each of the groups can be combined t§robe. This study used ESEM images as an example to
groups, group emonstrate the application of the image-processing tech-
form decomposed components of the map.

niques. Figure 1 shows a microscopic image of an ore sample
taken under electron microscopy at 40@nagnification by
6 Filtering ESEM images of sphalerite ore samples the State Key Laboratory of Geological Processes and Min-
from the Jinding deposit, Yunnan, China eral Resources, China. On the image, dark color patterns
represent calcite (CaGQ and light gray patterns with pos-
The data set chosen for method validations and applicationgive relief represent sphalerite (ZnS), with the outer part be-
is the analysis of ESEM microimages from ore samples col-ing unknown. The sphalerite patterns show a hexagon form,
lected from the Jinding Pb/Zn/Ag mineral deposit, in the which may indicate that the sphalerite formed by altering and
northern part of the Lanping-Simao Basin, Yunnan Province replacing calcite along the edge of the calcite grain, and that
China. This deposit is the largest Pb/Zn/Ag deposit in China,the thin section is cut perpendicular to the c-optical axis of
with reserves of about 200 Mt of ore, grading 6.08% Zn andthe calcite. To map the distribution of minerals in the sample,
1.29% Pb. Because it is hosted in Cretaceous and Tertiargeveral images were scanned using ESEM for the elements
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Fig. 4. Results obtained using S-A filtering method (see text for detd@3)Plot showing the relationship between power spectrum density
labeled as log (value) and the area with power spectrum density above a threshold labeled as log area. Log-transformation is natural log.
Three straight-line segments were fitted to the data by means of least squares. These three straight-line segments show different slopes ar
yield two breaks of power spectrum density values. The first break from the right was used as cutoff value for filtering the original image
Fig. 2c with a low-pass filter. The results are showiidnand the frequency distribution of the filtered image is showtib)n Blue patterns

represent calcites (CaCO3) and orange patterns show sphalerite (ZnS). The same classification using standard deviation scheme was us
for both the image (c) and the histogram (b). The histogram (b) clearly shows two populations one for calcites (CaCO3) and the other for
sphalerite (ZnS).

As, Bi, C, Ca, Cd, Cr, Cu, Fe, O, Pb, S, Sb, Se, Sr, Ti, and Zntions in Fig. 2c. From the histogram (Fig. 2b) we can see
Each image has 102400 pixels and is about 3 MB in size. that the values of scores follow a skewed distribution with-
Some images - for example, Bi, Cd, Cr, Pb, Se, Sr, and Tout a clear separation of sphalerite and calcite, although on
— do not show significant variation. Other images of the ele-the map in Fig. 2¢ these two types of minerals generally show
ments As, C, Ca, Cu, Fe, O, S, Sb, and Zn, with good qualitydistinct patterns — for example, the former in orange and the
were processed using a principal component analysis (PCAlatter in blue.

method for characterizing element associations. It was im- In order to filter the image to enhance the patterns of spha-
plemented using GeoDAS GIS software (Cheng, 2000) withlerite and calcite, the three methods discussed in the previous
a correlation coefficient model. The loadings of the first prin- sections were applied to the image in Fig. 2c. First, the local
cipal component shown in Fig. 2a indicate that the first prin-singularity analysis method was applied to the image for a
cipal component is dominated by the elements Zn and S poshigh-pass filtering of the image. Because the image has neg-
itively and by Sb, Ca, C, and O negatively. Therefore, theative values, a small constant value of 10 was added to the
first component mainly represents the sphalerite (ZnS; posimage to raise all values to be positive. Thus a constant value
itive correlation) and calcite (CaGOnegative correlation). added to the entire map should not change the local variabil-
The scores of elements of the first component are shown aigy of the map. It may affect the actual estimation of the sin-
both frequency distributions in Fig. 2b and spatial distribu- gularity of the map. For example, the relationships in Egs. (1)
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(b)

Fig. 5. Results obtained using N-model (see text for details)(a) Plot showing the power-law relationship between the number of
eigenvalues (Nf|1|]) and absolute valugX]) of eigenvalue. Log-transformation is natural log. A straight-line segment was fitted to the

first 26 large eigenvalues by means of least squares. This straight-line segment determines a break of eigenvalue separating the eigenvalu
into two groups: one group with absolute eigenvalue smaller than the 26th eigenvalue and the other group with eigenvalues larger than or
equal to the 26th eigenvalue. The latter was further combined with their corresponding eigenvectors to form é&indfhafrequency
distribution of the image is shown {ib). Similarly, blue patterns represent calcites (CaCO3) and orange patterns show sphalerite (ZnS). The
same classification using standard deviation scheme was used for both the image (c) and the histogram (b). The histogram (b) clearly show:
two populations one for calcites (CaCO3) and the other for sphalerite (ZnS).

and (2) will approximately be power-laws when the box is implemented in GeoDAS, and then the values of the power-
very small. In this case the effect on the estimation of sin-spectrum density were fitted with straight-line segments by
gularity index will be minimized. Otherwise one can apply means of least squares according to model (4). The results
the singularity analysis to individual ESEM images which are shown in Fig. 4a. The data were fitted with three straight-
have positive values only. For this example, the singularityline segments by means of least squares. Two breaks of
highlights the edges of the minerals and the small variancgpower-spectrum-density values, 1029.94 and 2343.29, were
related to the actual values of singularity won't significantly identified, separating the power-spectrum-density values into
change the result. Squares of multiple sizes — for example, #ghree ranges<1029.94, 1029.94-2343.29, and®343.29,

half size ranging from 1 to 30 pixels-were utilized to calcu- respectively. The slopes of the three straight lines from the
late the singularity index values; the results are shown in right are—1.788,—3.836, and-1.385, respectively. The first
Fig. 3. The filtered map (Fig. 3) clearly enhances the outlinesbreak from the right, 2343.29, was used as the cutoff value
of sphalerite with white and black patterns, corresponding toto form a binary filter, eliminating the high-frequency com-
lower and higher values af, respectively. The S-A method ponent of the image that corresponds to the wave numbers,
was also applied to the image (Fig. 2c). First, the image wagielding a power-spectrum density2343.29.

converted into the Fourier domain by Fourier transformation,
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The filtered results are shown both as a histogram inThe research was jointly supported by NSERC Discovery Research
Fig. 4b and a map in Fig. 4c, respectively. The former clearlyGrant (ERC-OGP0183993), a Distinguished Young Researcher
shows two populations, one for sphalerite and the other forGrant (40525009), a Strategic Research Grant (40638041) awarded
calcite, and the latter shows sphalerite and calcite reflecte@y the Natural Foundation of Science of China and a 863 High
as orange and blue patterns, respectively. Similarly, Was Tech program (2906AA062115) by the Ministry of Science and
applied to the image (Fig. 2c), and the frequency distribu- 1ecnology of China.
tipn of eigenvalues_is shoyvn in Fig. 5a._ The first 26 IargestEolited by: A. Tarquis
e|g.enva.lues were fitted with a stralght line by least squaresggyiewed by: A. Tarquis and another referee
which yields a slope of-2.9 and an intercept of 4.1. These
26 largest eigenvalues and their corresponding eigenvectors
were used to construct a map according to model (8), and the
results are shown in Figs. 5b and c¢. The histogram shows twdreferences
separate populations of sphalerite and calcite, and the filtered
map shows these two types of minerals in different colors. Agtgrberg, F.P.: Myltifraotal modeling of the sizes and grades of
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