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Abstract. We study numerically the comparison between tices have a significant influence on the particle trajectories
Lagrangian experiments on turbulent particle dispersion inand on the Lagrangian statistical analysBagquero et al.
2-D turbulent flows performed, on the one hand, on the ba2001). The whole problem in the physical investigation of
sis of direct numerical simulations (DNS) and, on the otherthese flows is the recognition of both Eulerian flow's struc-
hand, using kinematic simulations (KS). Eulerian space-timeture and diffusion properties from Lagrangian data involving
structure of both DNS and KS dynamics are not compara-absolute and relative particle dispersion measurem@its (
ble, mostly due to the absence of strong coherent vortice$itraut and Colin de Verdirg 2002ab; LaCasce and Bower
and advection processes in the KS fields. The compariso200Q Provenzalg1999.
allows to refine past studies about the contribution of non- An important question in the framework of general theo-
homogeneous space-time 2-D Eulerian structure on the turkies of turbulence is to clarify the reason which can support
bulent absolute and relative particle dispersion processes. We consistency between large-scale vortex contributions and
particularly focus our discussion on the Richardson’s regimesimilarity predictions for relative dispersion. Richardson’s
for relative dispersion. scaling-law for relative dispersion is usually considered as a
robust link between particle separation and homogeneously
developed turbulent cascade of ener@ichardson 1926
Obukhov 1941). However, numerical Lagrangian experi-
ments on two-dimensional turbulence indicated that Richard-
.s0n’s regime can be more than that since it is often suffi-
ciently well observed even when the inverse energy cascade

1 Introduction

Many turbulent flows in geophysics can be studied using

D barotropic models. One important characteristic of the, letely achieved i and Babiand.994. Thi
two-dimensional turbulence is the capacity to self-organizeIS not completely achievedguari and Babian 4. This

into strong large-scale coherent vortices which produce Jact creqtes an apparent inc.onsisten'cy in our understanding
complex non-homogeneous topology in the physical spacé)f the Richardson’s regime in two-dimensional turbulence.

(McWilliams, 1984). Direct Numerical Simulations (DNS) On the other handElhmaidi eF al. (1993 have o_bservgd )
show that two-dimensional fields may be described in term@ recurrent anomalous behaviour for absolute dispersion in

of an elementary partitioning of both vorticity and strain t>/% between the ballistic regime at small dispersion times
(Okubo et al, 197Q Weiss 1991 Elhmddi et al, 1993 and the Brownian asymptotical behaviour for long times. At
The relative dominance of one over the other allows us toPTESENt even if we still do not have a conclusive certitude
distinguish elliptic domains (high vorticity concentrations fﬁ_unded onILagrin?]lan measurements, the asslumptlon is that
inside vortices) and hyperbolic ones (deformation cells on™S @nomalous behaviour constitutes a complementary ex-

vortex periphery which are characterized by high strain anc®PI€ Of the direct non-homogeneous contribution of coher-
turbulent energy). The residual field composed of mod-ENtvortices. o

erate elliptic/hyperbolic regions is considered as a quasi- The objective of Fhe present paper is to |IIl_Jstrate the above
homogeneous turbulent background. Inhomogeneities in th@oblems and to investigate the contribution of the non-

physical space and the long-range effect of coherent vorhomogeneous 2-D space-time structure to the dispersion pro-
cesses. We compare absolute and relative dispersion pro-

Correspondence tdR. Castilla duced, on the one hand, by the DNS Eulerian space-time
(castilla@mf.upc.edu) structure and, on the other hand, by the Lagrangian stirring
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140 R. Castilla et al.: Particle dispersion processes

induced by a Kinematic Simulation (KSKfaichnan 1966 From Eq. ) and the definitions of the relative Lagrangian

Malik and Vassilicos1999. Kinematic Simulation used rep- velocity sv=dD/dt and the Lagrangian relative acceleration

resents a pseudo-turbulent field which in our numerical in-§T=dé§v/dt, one can write:

vestigation will be characterized by the same spectral fea- .

tures as DNS _fleld. Slnc_e KS dQ nqt represent a temp_orab(t’ Do) = Do +/ 5v(z, Do) dr, ©)

evolution solution, the main contributions to the Lagrangian 0

dynamics of typical 2-D space-time structures namely, co-

herent vortices and advection processes are smoothed or di\g/_here

appearedHasquero et 312001). Even when the two flows t

are characterized by equivalent Eulerian energy spectra, thév(t, Do) = évo + / 8T (z, Do) dr. 4)

difference between DNS and KS dynamics lies in different 0

temporal evolutions from both Eulerian and Lagrangian pointUsing Egs. 8) and @), the time evolution of both absolute

of views. Consequently, our study does not allow to distin-and relative dispersion efficienci&gr) andY (r) (dispersion

guish unambiguously and properly the direct contribution of coefficients) are given, respectively, by

every important components of the 2-D Eulerian dynamics.

However, the signature of the coherent vortices as organiz-K(t) _1 ﬁ —<A@ V@) >a )

ing centres of the space-time evolution of the DNS dynam- 2 dt T

ics compared to the KS Lagrangian stirring one is evident

enough in some cases. and
We will compare Lagrangian-KS results with previously 1 dD?

performed Lagrangian-DNS investigatiorBapiano et al. ¥ (Do) = > a - D(z, Do).8v(r, Do) >, (6)

1987 Babiano and Le Raqy1987 Elhmadi et al, 1993

Babiano et a.199Q Zouari and Babianol994. A clear where<.>, refers to the average at timever all particlesa

observation is that the intermediafé* anomalous absolute and<.> refers to the average at timever all particle pairs

dispersion law and the Richardsonjs4scale-regime for rel-  initially separated by a given distané&= || Do [|. From

ative dispersion seem to be reinforced due to the presence &ds. 6) and @),

the coherent vortices. In all the cases, KS Lagrangian ex- ;

periments show hyperdiffusion properties compared with theg (1) = / <v(a,1).v(a 1) >5 dr. (7)

behavior of DNS simulations of 2-D flows. 0

_ The paperis organized_ as follgws. I_n Secfc. 2, general theOSimiIarly, from (6) and @),

ries of absolute and relative particle dispersion are presented.

In Sect.3 both DNS and KS numerical approaches are briefly t

described and basic dynamical properties of both simulationd” (t) = 2K () — 2/ <V(ag,1).V(a, 1) >adr

are discussed. Results concerning our KS-Lagrangian exper- 0

iments are presented in Sect. 4. The final discussion and the — < Do.év(1, Do) >, (8)

conclusions are detailed in Sect. 5. . . . . .
where the last term vanishes if the dispersion process is sta-

tistically homogeneous.

2 Definitions: absolute and relative dispersion 2.1 Absolute dispersion

We consider the evolution of the separation of neutral fluidThe starting point of the kinematic analysis of the abso-

particle pairs which, initially separated by a given distance, |ute dispersion is based on the rigorous definitidywhich,

are advected by a two-dimensional Eulerian velocity fieldin terms of the second-order Lagrangian velocity structure
u(x, r). For every pair of particles with Lagrangian coordi- fynction SL(f)=%< | v(at)—v(a r+7) ||° >, can be
natesa; anday, the relative separation vectdr at timez is rewritten as

related by the initial separation vectby = a;—a» and the

absolute displacement vectarby K@) = 25 /r (1 B SL(t)) dr )
0 2F :

D(#, Do) = Do + [A(au, 1) — A(az, 1)]. 1)
where E=1/4<||V(t0)||>+|V(to+1)||>>a. refers to the La-
The absolute displacement vecois defined in term of the ~ grangian turbulent energy along particle trajectories. The
Lagrangian velocity(a, r)=u(x(a, t), t) as asymptotic behaviour of; (t) at small times is given after
a Taylor's expansionSy (1)~Ct?, whereC is a dimensional
t constant. In a statistically steady incompressible turbulence
A@ ) = /0 v(@ 7)de. (2)  the constanC can be approximated by the gradient of the
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R. Castilla et al.: Particle dispersion processes 141

pressure forcesC= || VP ||2. Under stationarity assump- where D=<D?>1/2 is the root-mean-square pair's separa-
tion and provided that the Lagrangian structure function con-tion at timer and S(D) refers to the second-order Eulerian
verges at long dispersion times toward twice the Lagrangiarvelocity structure function at separati@h SinceS(D) and
energyE, one classically obtains the following asymptotic the Eulerian energy spectruftk) are linked by

behaviours for the absolute particle dispersitayor, 1921,

Kampe de Feriet 1939 Babiano and Le Rqyl1987%): S(D) = 4/ sir? %E(k)dk, (16)

C
A%(t) ~ 2E1% (1— ——1?), (10)  then, from Egs.15) and (L6) we obtain the following qual-
12E o X . ;
itative behaviours at intermediate length-scales for a power-
law Eulerian energy spectrufi(k)~k~" (Larcheeque and

C , Lesieur 1981 Lesieur 1985 Bennef 1987 Babiano et al.
K(I) ~2Et|(1— @t s (11) 1990
for small dispersion times, and l<m<3, SD)~D"1 y(D)~ D" 17)
m>3,  S(D)~ D? Y(D)~ D> 18
A%(t) ~ 2K1t, (12) oo

Within the limits of the Kolmogorov-Kraichnan theory, the
self-similar prediction in the energy inertial range provides
m~5/3. Thus, this covers, as a particular case, Richardson’s
1926 dispersion law fo§(D)~D?3(m~5/3) which would
apply in dimension two to the inverse energy cascade:

K ~2ETy, (13)

for long dispersion times. The validity of EqsL(-11) is

commonly accepted far<T;, whereTy is the Lagrangian 4/3
. : . . . Y(D)~D (19)
integral timescale defined as the saturation value of the inte-
gral or, integrating over time
, ! 2 .3
T, = lim (2E)~t / < V(@ 1).v(@, 1) >, dr. (14) Do~1 (20)
— 00 0

. . . If we define, as irBabiano et al(1990), the relative disper-
Thus, the kinematic approach of statistically homogeneousSiOn characteristic timex as

and stationary absolute dispersion is based on the rigorous
relation between the varianeg (¢) and the second-order La- D?
grangian velocity structure functiosi (). Numerical in- wR(D) = YD)’ (21)
vestigation performed bilhméddi et al. (1993 have shown _ _
that inhomogeneities in the Eulerian velocity field generatethen, phenomenological relatiors and @0) reduce to
an anomalous®* law of the absolute particle dispersion be-

A~ . tr(D) ~ D%3 (22)
tween both the ballistic Eq10) and the Brownian Eq.1Q) R :

asymptotic behaviours. It seems worthwhile to investigate ifWe may consider an alternative approach to deduce the

KS and its corresponding Lagrangian dynamics produces th?&ichardson's time-regime2(). Actually, from Eq. @) we

same anom_ahes_ in the absolute dispersion behaviour as DNgan deduce the differential equation which governs the time
at intermediate times.

evolution of the relative separation variance. This equation

2.2 Relative dispersion may be expressed as

2
. . . : P (23
sion processes is correct if the turbulence is really statisti-df t
cally stationary i.e., the absolute dispersion is invariant under(seeBabiano et al.199Q for a detailed discussion). The

a chang_e of f[he |n|_t|al time. The IS|tuat|on IS qU|te_d|fferent Eqg. 23) is linear and the solution for the averaged set of par-
for relative dispersion processes: even for a stationary tur-

bulence, the relative dispersion is generically non stationar ficle pairs initially separated by a given distandg s given
since all its functional characteristics depend on the time-lag

2_p2
The assumption about the stationarity in the absolute disperd 2~ = Do _ I8v(Do, 1)||2 — H 1 /t T8I (r)dr
rJo

T in addition to the separation scalg(r)= | D(¢, Do) || ) t

(Batchelor 1952 <l D—Dog|*>=t / F(z, Do) dr, (24)
The Lagrangian phenomenological simplification of the 0

exact relation§) is based on the dimensional argument: where

Y(D) ~ S(D)Y?D, (15)  F(t, Do) =<|| 8V(t, Do) |>> —G(t, Do), (25)
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142 R. Castilla et al.: Particle dispersion processes

regime Babiano and Le Rqyl987 Babiano et al.1990.
2 Relation 82) have the advantage over the analysis based on

- (26) Egs. €7) and @8) that all terms are accessible to measure-
ments.

To summarize, there are two parallel arguments, indepen-
dent from each other, that predict the Richardson’s dispersion
Rsr(t,t — o, Dg) =< 8T(t, Dg).8T (t — o, Do) > (27) regimes {9-20). A phenomenologic approach and a kine-

matic one Zouari and Babiandl994). The quasi-stationary
are statistically stationary, i.e. they depend on the time lagregime at large separation length-scales is probably always
o=t—1 but not on the dispersion time then the analytical reached if the initial pair separation is small enough. The
development of the solutior24) in the stationary and homo- important question is to determine how far the action on the
geneous approximation yieldBgbiano et al.199Q Zouari turbulent Lagrangian advection of the 2-D space-time struc-
and Babianp1994 Lin and Reid 1963 Monin and Yaglom  ture favours the establishment of such a stationary regime.

G(t, Do) =<

1 t
—/ 78I (t, Do) dt
t Jo

If the correlations of Lagrangian relative accelerations

1975 For this reason, it seems worthwhile to investigate how ex-
) 5 ) ) pressions 30) and 32) behave with respect to the KS La-
D(t, Do) = Dg + (Il 8vo I” +G (1) Istationary 1°, (28)  grangian stirring.

The prediction is that the saturation of the contribution of

where non-stationary terms in the EQJ) is favoured by the action
G(1) Istatonary= :_23 1)t <1 3 ;@) , (29) of coherent vortices in DNS dynamics.

t 3 Numerical simulations
I(@) = /(; Rsr(t, 1 — o, Do)do. (30) 3.1 Direct Numerical Simulation (DNS)

Here G (1) |stationaryrefers to the functiorG (), defined as  We will consider different steady Eulerian-DNS with dif-
Eq. (26), expressed under the stationarity assumption (forferent resolutions and configurations already analyzed in
simplicity we have omitted on the left of EQR9-30) ref- the Lagrangian framework bBabiano et al(1987 1990,
erence to the dependency Dg). Thus, the already assumed Elhmddi et al. (1993 andZouari and Babian¢1994. All
stationarity ofRsr (¢, t—o, Do) ensures the saturation of the these simulations obviously show a high prominence of co-
integrall () in the right-hand side of Eq26). This recovers  herent structures of different typical sizes which lie in the
from Eq. £8) the Richardson’s time-regime (E20). forcing wavenumbek;. They are obtained by solving the 2-
The physical meaning of the stationarity assumption is thatD vorticity equation with forcing and dissipative terms using
Rsr (¢, t—o, Do) no longer depends on the amplitude of sep- standard pseudospectral approximation in a double periodic
arationD at both times andz—o but only depends on the domain of size # x27:
time-lago. The experimental verification of this property is
conceivable only in the framework of numerical experiments — ,, 1 7y, ) = f(w) + g(w). (33)
when the Lagrangian acceleration field is determined with9?
sufficiently enough accuracy.
Using the stationarity assumption we also get from
Eq. 23) the following simplified equation:

Here w is the vorticity, v is the stream function/(:, -)

refers to the two-dimensional Jacobigfiw) and g(w) de-

note sources and sinks respectively. The forcjiig) is

defined by keeping constant the energy density at a given
9 D2 | ionane 2 2 bek;. The sink is th fal I
D? |stationar= ( <l 8Vo [°> + <[l 8v(Do, 1) ||*>) t. wavenumberk;. The sinkg(w) is the sum of a large scale

dr 31 linear friction and a small scale dissipation. The latter is de-
(31) fined by a 8-order iterated Laplacian or by the “anticipated

potential vorticity method” $adourny and BasdevaiB85.

The Lagrangian motion of the fluid particles was obtained

%DZ |observed 39 using a second order time scheme and a third order spline

4 D2 |qationary (32) interpolation.

ar stationary . . . .

Numerical simulations usually yield strong slope of the
then, the domain of validity of the stationarity assump- energy spectra in the direct enstrophy cascade compared to
tion will be determined by the time interval in which(r) the self-similar prediction it —3. This is the direct effect of
exhibits a plateau. The consistency between E@8) ( coherent structures and localness in the physical syt
and @1) is guaranteed by the linear growth in time of ano et al. 1985. However, the inverse energy cascade has
< || 8v(Do, 1) |? > in the stationary relative dispersion local properties and is thus characterized by spectra which

If we define the ratio

O(t) =

Nonlin. Processes Geophys., 14, 188% 2007 www.nonlin-processes-geophys.net/14/139/2007/



R. Castilla et al.: Particle dispersion processes 143

satisfy thek—>/3 self-similar prediction. Even if the spec- the Komogorov’'s turbulence and the self-similar prediction
tral signature of the coherent vortices is absent in the reparsu~I1/3, wheresu refers to the characteristic velocity of ed-
tition _of the energy density in the inverse energy g:ascadedies of scald , the turnover frequency behavesu;aSvk,f/3.
both inverse energy transfers and large-scale vortices haveor m>3, the characteristic velocity is linear in(seeBabi-

a fundamental significance for the turbulent advection andano et al, 19859 and, consequently, the turnover frequency
dispersion in the physical space. This fact indicates that selfshould be constant with the scale. In our experiments we
similarity results and phenomenological descriptions of dis-have maintained the expressi@8), but it does not seem to
persion processes at large scales in two-dimensional turbuaffect the Lagrangian statistics.

lence seems to be quite weak and deserve a careful analysis. |, grder to define KS initial conditions, we will consider

energy spectra of already mentioned DNS Lagrangian ex-
periments. Results on particle dispersion processes in these
KS is a gridless model widely describedFiong(1990. This  Steady KS Eulerian regimes, where turbulent energy and en-
model was first proposed §raichnan(1966 1970 and fur- strophy are (_:onstant and well §tabll|zeq in time, will be then
ther developed and used Byng et al(1992; Fung and Vas- compared with the results previously discussed.

silicos(1998, Castilla(200]) and references therein. For our

purpose, its main characteristic is that it allows to choose thé3.3 Comparison of models

turbulent energy spectrum of the field. The Eulerian velocity

3.2 Kinematic Simulation (KS)

field is defined as Energy spectra for DNS fields namely, R128F10 (with
N 128x128 grid resolution and forced at the wavenumber
ux, ) = Z {C, SiNg, + d, COSPy ), (34) kr=10), R512F40 (with 51512 grid resolgnon forced at
s the wavenumbet;=40) and R1024F256 (with 1024204
grid resolution and forced at wavenumlige=256) already
with used inBabiano et al.(1987 1990, Zouari and Babiano
(1999 and ElIhmddi et al. (1993 are displayed in Figl
$n = Kn - X+ vt (35 as a function of the wavenumbér DNS spectrum for

R128F10 shows that the dynamics is dominated by a di-
rect enstrophy cascade from the forcing wavenumber towards
smaller scales. In addition, the inverse cascade of energy to-

¢, andd, are random direction vectors. Their magnitudes
are related to the energy spectrum as

kn+1/28k wards large scales is almost inappreciable. In the simulation
lcall? = 1dal1® = / E(k)dk. (36)  R512F40, both direct enstrophy and inverse energy cascades
kn—1/ 25k are well developed. In both R128F10 and R512F40 simula-

The wavenumber vectoks, have a random direction normal {ions the spectral slope in the enstrophy range is closeto
to bothc, andd, in order to force the continuity. Then, fluid Which is an indicator of the localness of the dynamics in the
acceleration is given by enstrophy cascade range. In the third simulation R1024F256,

forced at higher wavenumbéy =256, the direct enstrophy

N cascade is not well developed and the dynamics is domi-
Ix 1= Z v {Cy COSP, — dyy SiNG, } (37)  nated by an inverse cascade of energy which shows a the-

n=1 oretically consistent-5/3 spectral slope. KS spectra are not
produced and represent in fact a steady input-constraint for
the KS simulation. As illustration of similarities and differ-
ences between DNS and KS field’s structure we focus here
on the lower resolution R128F10 simulation.

KS and DNS vorticity fields are shown in Fig. We ob-
vy = /\k,?/zE(k,,)l/z, (38) serve the predominance of well structured vortices in the
DNS field whereas the vorticity distribution is rather ran-
where A is a positive parameter which characterizes thedom in the KS one. Prominent vortex-structures in DNS
steadiness of the mode For1=0, we have a turbulent flow fields have characteristic sizes of the order of forcing scale
with “frozen” eddies. IfA tends to infinity, the flow is com- D;==m/k;. We will characterize the relative importance
pletely unsteady. The value afis determined here to be of the vortex size on the large-scale dynamics by the ra-
such that gives a similar Lagrangian time integral scale thartio between the typical vortex sizB; and the box sizd.
for the DNS numerical experiments. asiYi,,:D;/L:Zk%. In the present cas#,=0.05 for DNS.
If we consider a power energy spectrunk)~k~", the Even if the typical value of the ratii, is conspicuously less
Eq. 38) gives an increasing value of the turnover frequencyclear defined in KS field, it seems to be lower. For an equiva-
v, With n for m<3. Form=5/3, which corresponds to both lent distribution of the spectral energy density, the dynamics

The time evolution of the field is governed by, where
n=1,..., N refer to eddies’ turnover frequencies. Follow-
ing Fung et al(1992 andFung and Vassilicogl999, these
frequencies are calculated as
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Fig. 1. Energy spectra as a function of the wavenunibér numerical experimentga) R128F10,(b) R512F40 andc) 1024F256; DNS
(continuous lines) and KS (dashed lines).

at large-scale seems to be less structured in KS rather than ithe KS it depends on the steadiness fagtas Eq. 88). The
DNS. ratio between the value df;, measured in DNS and differ-

Figure3 shows the distribution of the normalized Okubo- gnt estimated vr_:tlues in KS are shown in Fgas a .fu.nc-
Weiss parameted (x)=(s2—w?)/(s+w?) wherew and s tion of the §tead|n§ss factar We can see that a su_ff|C|e.ntIy
are the vorticity and the strain respectively (i.e. the antisym—gOOd conS|st1e_ﬂpy IS reachre]d ﬁfm’o's' hForA>|l, thklbsierallélo
metric and the symmetric parts of the velocity gradient tenso'decreas_es. NS means that for such a values . S .
respectively Okubo et al, 197Q Weiss 1993) and.x refers Lag_ranglan stirring exceeds the DNS one. Accordlng to this
to the position in the physical space. Hyperbolic domaingPreliminary study, one may take=0.5. It is important to

(Q>0) characterize the high deformation cells which sur- notice th‘f"t' even fox=0.5_, the Eulgrian time-scales in DNS
round vortices. Elliptic domainsg(<0), especially identify and KS fields are very different since KS do not capture the

vorticity concentrations in the cores of cyclonic or anticy- Eulerian time evolution of the turbulent system (results not
clonic vortices. Unlike the DNS field. the KS one shows a Shown). Nevertheless, autocorrelation functions of the La-

mixed topology where0 is uniformly distributed and there grangian velocities present in the definitid) are compa-
are not clear structures rable to that observed between DNS and a stochastic model

_ . characterized by a bi-Gaussian Lagrangian velocity probabil-
In order to compare DNS and KS Lagrangian experimentsiy distribution function (se®asquero et /2009
we calibrated the two numerical simulations through the La-

grangian time-scal&; defined in Eq. 14). This time-scale
typically lies in the Lagrangian stirring. We noticed that in

Nonlin. Processes Geophys., 14, 188% 2007 www.nonlin-processes-geophys.net/14/139/2007/



R. Castilla et al.: Particle dispersion processes 145

Fig. 2. Vorticity fields for R128F101a) KS, (b) DNS.

g :\),
u”j!ﬁ "A |

e & M

Jis}
349 4pa o7 a0 2o 27a 348 449 ama

Fig. 3. Distribution of Q for experiment R128F1(a) KS, (b) DNS.

4 Numerical results Figure 5 shows the absolute particle dispersiaA as a
function of the normalized dispersion tim¢7; for DNS
4.1 Absolute particle dispersion (continuous line) and KS (dashed line). The two dispersion

processes exhibit quite similar ballistic behaviour at small
times. At intermediate times+£T;), some difference is ob-

In this section we compare DNS and KS Lagrangian eXperserved After the ballistic regimel(), KS absolute disper-
iments using the field R128F10 that we have previously de-
sion shows an unscaled transient behaviour until the Brown-

scribed. Our choice is motivated by the need to keep consis:
tency with previous workElhmaidi et al, 1993. Coherent ian linear in time growth X2). This asymptotic behaviour
is attained for dispersion times of the order 16¢107} .

structures in this field have quite an important size compare . : . o
to the entire flow domain sizei(,—0.05). NS absolute dispersion, however, it clearly exhibits a well

www.nonlin-processes-geophys.net/14/139/2007/ Nonlin. Processes Geophys., 15113067
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Fig. 6. Absolute dispersion compensated byfine lines) and by

Fig. 4. KS Lagrangian time-scale as a functionmof +>/% (bold lines): DNS (continuous lines) and KS (dashed lines).

10°

L

ing coherent vortices. As a result, hyperbolic periphery of
vortices is a region where a number of particles may reside
for a long time in spite of the natural Lagrangian stirring
which favours the particle transition from one topological do-
main to an other. The same scenario may be conceived for
KS Lagrangian dynamics. However, the difference is that the
hyperbolic regions wher@=>0 clearly extend over a more
reduced area around elliptic concentrations in the KS field
than in the DNS one (Fig3). Consequently, trapping effi-
ciency of hyperbolic regions is more important in the DNS
dynamics. It is quite reasonable to assume that trapping
. L L L events make slack times in the absolute dispersion.
’ w0’ oo w’ w0’ The anomalous behaviour i/ appears as a Lagrangian

) signature of hyperbolic domains and has a fundamentally im-

portant significance for the recognition of the Eulerian fea-

Fig. 5. Absolute dispersiom? as a function of time for R128F10 tures from dispersion experiments. The robustness of the
experiment: DNS (continuous line) and KS (dashed line). subdiffusion regime in®* disappears as soon as the action
of the 2-D space-time structure is not present in the KS La-
grangian stirring.

10

N

10

A%D?

10

(N

10

=
o

defined scaling behaviour for a long time afte¢7;. To

distinguish the local growth we compensated absolute dis4.2 Relative dispersion

persion byt (fine lines) and®* (bold lines) in Fig.6. Ob-

viously, when the KS absolute dispersion shows a BrownianFirstly, we will illustrate as inZouari and Babiang1994)

regime (fine dashed line) the DNS absolute dispersion behow Richardson’s scale-regimd9) may be observed in

haves as®* (bold continuous line). DNS for different developments of the inverse energy cas-
Elhmédi et al. (1993 argued that the®4 anomalous cade. Later, we will compare DNS and KS relative disper-

regime is highly connected to energetic hyperbolic domainssion in different numerical configurations.

surrounding coherent vortices. The argument is that dif- The apparent insensitivity to the spectral energy distribu-

ferent domains of the Eulerian DNS field are not equally tion is analyzed on the basis of DNS fields R128F10 and

sampled by the Lagrangian dynamics. Neutral particles adR1024F256. The inverse energy cascade is absent in the first

vected inside the vortices tend to leave internal-elliptic re-simulation even when a weak growth of the spectral energy

gions through a vorticity filamentation process. At the samedensity is observed at large scale. R1024F256 field exhibits a

time, particles advected on the external hyperbolic regionsvell developed inverse energy cascade where the theoretical

(0>0) surrounding vortices cannot penetrate into the exist-predictionk —%/3 is satisfied through one decade (see E)g.
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The relative prominence of large-scale coherent vortices_. . : ) .
P 9 Fig. 8. Relative dispersion for DNS experiments, as a function of

yields o, =0.05 and 0002, respectively. Largex, means dispersion time, for different values @&=Dqg/D;. R256F40 and

a more structured turbulence at large length-scale. On th§21024,:40 DNS experiments froBabiano et al(1990).
other hand, the relative importance of the initial pair's separa-

tion Dg with respect to the characteristic vortex-sizg, will
be measured by the ratip=Do/D;. Separation ratiog in fields analyzed in mentioned works, we will choose R256F40
Lagrangian experiments are small enoughk0.0025 0.025  and R512F40 where the dynamics is forced at wavenumber
respectively for R128F10 and R1024F256. Thus, the promi, =40 and the ratiot, is equal to 00125. In terms of vortex
nence of the coherent structures is more important in DNSyrominence these fields represent an intermediate case com-
R128F10 field rather than in DNS R1024F256 one and thepared to R128F10 and R1024F256 fields already analyzed in
ratioq is smaller in a factor 10. Fig. 7. They are characterized by dynamics which develops
The testing of the Richardson’s scale-regime is performeddirect enstrophy and inverse energy cascades over a reason-
through the relative dispersion characteristic tirpedlefined  able range of scales. The energy spectra for the R512F40
as Eq. R1). It is displayed in Fig.7, where it is com- field have been presented in Fig.
pensated byD?3=<D?>/3, From Eq. 22), the Richard- We have reproduced in Fig.the study on relative disper-
son’s regime should thus correspond to a flat plateau. Acsjon D? for various values of previously publishedRabi-
cording to the self-similarity predictionl), Richardson’s ano et al. 1990. The energy inertial rang@?gngD%,
scale-regime’ (D)~ D* with B=4/3 and the corresponding whereD refers to the most energetic scale, is indicated. We
growth in D?/3 for 7 are only consistent with the spectral observe that the growth d? is significantly slower than the
slopem=>5/3. The results presented in Figshow thatrz 3 law (subdiffusion regime) when the initial separation is not
behaviors are in excellent agreement with the phenomenosmall (7>0.3). Nevertheless, fay<0.3 i.e., whenDy lies at
logical prediction 22) even if only the field R1024F256 ex- the bottom scales of the enstrophy range, the Richardson’s
hibits m=5/3 (see Figl). This originates a complicated sit- times-regime in3 appears as a bound in the dispersion be-
uation in order to interpret the Richardson’s law in the exclu- haviour which seems to be quite robust and independent on
sive framework of usual self-similarity arguments. g in DNS Lagrangian experiments.
Figure 9 shows the relative dispersioP? in KS La-
4.2.1 Sensitivity of DNS and KS relative dispersion to the grangian experiments performed on de basis of R512F40 and
ratioq. R256F40 fields. We observe in panel (a) that the Richard-
son’s time-regime in3 is well verified for R512F40 DNS
We are particularly interested in how DNS and KS differ- experiment §=0.15, circles) Zouari and Babiano1994.
ences can modify the achievement of Richardson’s law. WeThis is consistent with the results presented in Fdgor
will explore this problem comparing KS Lagrangian exper- ¢<0.3. In contrast, the relative dispersion in KS experi-
iments to DNS numerical analyses performedBabiano  ment shows a slightly lower efficiency for an equivalent ini-
etal.(1990 andZouari and Babian(il994. Among allDNS tial separation. However, for decreasing values of the initial
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Fig. 9. Relative dispersion versus time in KS Lagrangian experi- Fig. 10. (a)relative dispersion characteristic time, compensated
by D?/3, versus scale, normalized with forcing scalé) rela-

ments for different values af=Dg/D;. Dispersion and time are

normalized byD? and the Eulerian characteristic tinge /2, re-

spectively, whereZ is the enstrophy.(a) experiments R512F40:

¢=0.15 (continuous line);=0.025 (dashed line};=0.01 (dashed-
point line). (b) experiments R256F404=0.3 (continuous line),

q=0.025 (dashed line).

DNS experiment are also indicated for

R512F404=0.15in panel (a) and for R256F4§+=0.3 in panel (b)
(circles).

tive dispersion characteristic time versus scale, normalized with ini-
tial separation scale. DNS experiment R512F4£0.15 (circles),
¢=0.025 (triangles). KS experimentg=0.15 (continuous line),
¢=0.025 (dashed liney;=0.01 (dashed-point line).

son prediction is satisfied for DNS experiment, KS charac-
teristic times are far from an horizontal plateau. Here the
higher values ofg in KS experiments are not indicative of

Sepazratfn ¢=0.025, 0,91), hyperd|ﬁu§|0n regimes C|Qsed_ a less dispersion efficiency. In order to compare dispersion
to D*~1" are observed in KS relative dispersion behaviors ingficiencies, we plotted in panel (b) the characteristic disper-
both R512F40 and R256F40 experiments. This is in contragjon, times as a function of the relative dispersion normalized
diction with DNS behaviors in Fig8 which suggest a strong asD/Do. For smaller values of, KS characteristic disper-

3 . .
robustness of the® regime forg<0.3. Results shown in o times are smaller than DNS ones. This is consistent with
Fig.9indicate that the® law is replaced by an hyperdiffusion the hyperdiffusion observed in the Fig.

regime in D?~¢* in KS Lagrangian experiments for small
enough values of. Observed features in the relative dis- 4.2.2 Stationarity properties
persion are consistent with above analyzed properties of ab-
solute dispersion processes: trapping events in vortices an8tationarity properties of the above analyzed dispersion pro-
well structured vortex-hyperbolic periphery produce aloss ofcesses are investigated using the rati¢) and the inte-
time in the process of separation of particles pairs comparegral I (r), defined as Eqs.3Q) and @0), respectively. We
with an unstructured random separation motion. plot in Fig. 11a the ratio® as a function of the normal-
Hyperdiffusion may be characterized by the relative dis-ized dispersion time. We observe a decreasing function
persion characteristic timeg, defined as Eq.21). The be-  which, according to Eqs8], (13) and @1), must vanish as
haviour ofzy is presented in FidlO. In panel (a) it is shown {;’—IDZ lobservedbecomes constant for long dispersion times.
as a function of the root-mean-square separation normalWhen the Richardson’s time-regime is observed in DNS rel-
ized asD/D;. We compensatedy by its phenomenolog- ative dispersion (Fig9), ® exhibits a plateau which means
ical scaling (Eq22) and we added a complementary DNS that there is a strong correlation between thgrowth and
set withg=0.025 (triangles) in addition to previously com- the saturation of the contributions of non-stationary terms in
mented DNS experiment with=0.15 (circles). After hav- the exact Eq.Z3). In KS experimentsp do not exhibit a per-
ing reachedD; and, in spite of the difference in the initial fect ceiling and show a monotonously decreasing behaviour
pair's separations, both DNS relative dispersion characterwhich gives evidence to the fact that non-stationary contri-
istic times converge to an indistinguishable plateau whichbutions act for long dispersion times. Figur#h shows the
means that Richardson’s scale-regime is reached in botkdependence of the integri{r) as a function of time for var-
cases. Agy decreases up to values which lie at the bot-ious values ofy in KS experiments. The quasi-saturation
tom of the enstrophy cascade (dashed lines), the identity irof 7(z) is only attained for dispersion times of the order of
the behaviours of DNS and KS characteristic times ceases>100Z~1/2 when the KS relative dispersion already reaches
long beforeD/D;~1. At length-scales where the Richard- its asymptotic regime (see Fig).
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Fig. 11. (a)Stationarity criteriond defined as Eq.32); (b) Integral
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cles),q=0.025 (triangles). KS R512F40 experiments0.15 (con-
tinuous line) g=0.025 (dashed line);=0.01 (dashed-point line).

The second important difference between DNS and KS
Lagrangian acceleration fields lies iRsr (¢, o) features
(Fig. 12a). In KS, Rsr(¢, o) is a positive defined function
which monotonously decreases @sincreases whereas in
DNS Rsr(t, o) goes through zero at times of the order of
the turnover time,Z~1/2, and a significant anti-correlation
is found. This is consistent with the fact that a lower
1(t)-plateau is rapidly attained in DNS rather than in KS
(Fig. 12b). The oscillation ofRsr (¢, o) in DNS Lagrangian
field can be interpreted as the mean signature of the relative
movements of particle pairs around closed and long-lived co-
herent structures. Curves in Fif2a clearly show that the

We cannot compare DNS and K$(z)-features for
R512F40 field, sincé(¢) behaviours have not been analyzed
by Zouari and Babian@1994. Nevertheless, we can per-
form the comparison for the R256F40 field ape-0.025.
The correlations of relative acceleratioRsr (¢, o), defined
as Eq. 27), and(¢) for this field are displayed in Fidl2.
CorrelationsRsr- (¢, o) are plotted as a function ofZ/2 at
timer when the stationarity is already attained. Integral3
are performed over and plotted as a function of the disper-
sion timer Z1/2. The integrall (r) saturates at shorter times in

DNS dispersion rather than in KS one. Approximately, theremean variance of relative acceleratien=0) is rather higher

Is afactor 4 between the two times for which we may roughlyin DNS fields than in KS one. This is presumably the conse-

estimate that both integrals give a saturate behaviour. The - . ' ;
saturation off (1) occurs for dispersion timesz%/2 larger guence of quite different structure in the pressure fields. Itis

than 15 in DNS Lagrangian experiment. In terms of non—WeII known a_ar.che\éque 1993 thgtinizncor?prezssible.flow

normalized dispersion time, this corresponds=0.06. The the Okubo-Weiss paramet@=(s"—w*)/(s"+w"), which
g . — defines the 2-D topology, is related to the Laplacian of pres-

results shown in Fig8 for an equivalent value of indi- _ 2 > 5

cate that the Richardson’s regime is already robust enougﬁureP' Q=—4VEP/(s*+0%.

at such dispersion times in DNS experiments. In the frame-

work of the theoretical expressior8-30), this regime cor- 5  Conclusions and discussion

responds to a constant in time behaviour ¢f) as it is ob-

served in Fig.12b. In contrast, the integral(r) obviously  In this work we have considered the comparison between

shows a time-dependent behaviour all the range from 15 t®NS and KS Lagrangian experiments on turbulent particle

80 in KS Lagrangian experiment. The hyperdiffusion ob- dispersion in two-dimensional flows. We have noted that Eu-

served in Fig9b at¢g=0.025 seems to be sustained by the lerian structures of DNS and KS fields are not comparable,

quasi-linear in time growth of (r) before saturation occurs  mostly due to the non-homogeneous space-time structure in

in the KS experiments. DNS fields.

All observed features are consistent with the theoretical We have shown that the anomalous behaviourif for
expressions28-30). Thus, the Richardsonis dependency absolute dispersion at middle times discussedlinmaidi
seems to be a saturate growth which is in fact the conseet al. (1993 is unquestionably a consequence of the action
guence of the saturation in the integfdt). When! () does  of the 2-D structured topology. When the topology is closed
not saturate at intermediate dispersion time, then the dispeto a random distribution in KS model then the behaviour in
sion process shows hyperdiffusion properties. 1%/ for the absolute dispersion is absent.
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The Richardson’s law appears as quite robust behaviouthe relative particle dispersion. Firstly, the value of the finite
for the relative dispersion in DNS Lagrangian experimentsLagrangian characteristic timescdlgr. Secondly, the dis-
provided that the initial separation is small enough. Our in-persion time at which such a value is attained. If a quite
terpretation is that the® dependency for relative dispersion short finite Lagrangian characteristic timescdlg- really
is a saturate growth which lies in the properties of the rela-exists, then the relative dispersion at intermediate times will
tive Lagrangian accelerations. It appears rather as the corbe bounded by the Richardson%law. However, a wrong
sequence of the ability of coherent structures to consolidatestimation of relative dispersion using Eq28), (29) and
the stationarity regime in the relative acceleration field rather(40) is conspicuous whefi, - is sufficiently large compared
than the consequence of the inverse cascade of energy in twte intermediate dispersion times. Nevertheless, within the
dimensional turbulence. Such an ability is significantly re- limits of a reasonable tolerance, EB9 may be useful to ex-
duced in KS dynamics. In this case, the correlation of thepress sub-diffusion or hyper-diffusion regimes at intermedi-
relative particle accelerations reaches a stationarity regimeate dispersion times. The difference between the two regimes
only for times that are quite long compared to the time-spanlies in the behaviour of () before saturation. According to
where the Richardson’s law is already observed in DNS rel-our numerical observations, hyperdiffusionsthcan be ap-
ative dispersion. Thus, KS Lagrangian dynamics generateproximated with a quasi-linear in time growth bfr).
an hyperdiffusion regime which lies in the fact that the inte-
gral I (), defined as Eq.30), behaves as a time-dependent AcknowledgementdMlany thanks to the referees for their helpful
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