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Abstract. We study numerically the comparison between
Lagrangian experiments on turbulent particle dispersion in
2-D turbulent flows performed, on the one hand, on the ba-
sis of direct numerical simulations (DNS) and, on the other
hand, using kinematic simulations (KS). Eulerian space-time
structure of both DNS and KS dynamics are not compara-
ble, mostly due to the absence of strong coherent vortices
and advection processes in the KS fields. The comparison
allows to refine past studies about the contribution of non-
homogeneous space-time 2-D Eulerian structure on the tur-
bulent absolute and relative particle dispersion processes. We
particularly focus our discussion on the Richardson’s regime
for relative dispersion.

1 Introduction

Many turbulent flows in geophysics can be studied using 2-
D barotropic models. One important characteristic of the
two-dimensional turbulence is the capacity to self-organize
into strong large-scale coherent vortices which produce a
complex non-homogeneous topology in the physical space
(McWilliams, 1984). Direct Numerical Simulations (DNS)
show that two-dimensional fields may be described in term
of an elementary partitioning of both vorticity and strain
(Okubo et al., 1970; Weiss, 1991; Elhmäıdi et al., 1993).
The relative dominance of one over the other allows us to
distinguish elliptic domains (high vorticity concentrations
inside vortices) and hyperbolic ones (deformation cells on
vortex periphery which are characterized by high strain and
turbulent energy). The residual field composed of mod-
erate elliptic/hyperbolic regions is considered as a quasi-
homogeneous turbulent background. Inhomogeneities in the
physical space and the long-range effect of coherent vor-
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tices have a significant influence on the particle trajectories
and on the Lagrangian statistical analyses (Pasquero et al.,
2001). The whole problem in the physical investigation of
these flows is the recognition of both Eulerian flow’s struc-
ture and diffusion properties from Lagrangian data involving
absolute and relative particle dispersion measurements (Ol-
litraut and Colin de Verdìere, 2002a,b; LaCasce and Bower,
2000; Provenzale, 1999).

An important question in the framework of general theo-
ries of turbulence is to clarify the reason which can support
the consistency between large-scale vortex contributions and
similarity predictions for relative dispersion. Richardson’s
scaling-law for relative dispersion is usually considered as a
robust link between particle separation and homogeneously
developed turbulent cascade of energy (Richardson, 1926;
Obukhov, 1941). However, numerical Lagrangian experi-
ments on two-dimensional turbulence indicated that Richard-
son’s regime can be more than that since it is often suffi-
ciently well observed even when the inverse energy cascade
is not completely achieved (Zouari and Babiano, 1994). This
fact creates an apparent inconsistency in our understanding
of the Richardson’s regime in two-dimensional turbulence.
On the other hand,Elhmäıdi et al. (1993) have observed
a recurrent anomalous behaviour for absolute dispersion in
t5/4 between the ballistic regime at small dispersion times
and the Brownian asymptotical behaviour for long times. At
present, even if we still do not have a conclusive certitude
founded on Lagrangian measurements, the assumption is that
this anomalous behaviour constitutes a complementary ex-
ample of the direct non-homogeneous contribution of coher-
ent vortices.

The objective of the present paper is to illustrate the above
problems and to investigate the contribution of the non-
homogeneous 2-D space-time structure to the dispersion pro-
cesses. We compare absolute and relative dispersion pro-
duced, on the one hand, by the DNS Eulerian space-time
structure and, on the other hand, by the Lagrangian stirring
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140 R. Castilla et al.: Particle dispersion processes

induced by a Kinematic Simulation (KS) (Kraichnan, 1966;
Malik and Vassilicos, 1999). Kinematic Simulation used rep-
resents a pseudo-turbulent field which in our numerical in-
vestigation will be characterized by the same spectral fea-
tures as DNS field. Since KS do not represent a temporal
evolution solution, the main contributions to the Lagrangian
dynamics of typical 2-D space-time structures namely, co-
herent vortices and advection processes are smoothed or dis-
appeared (Pasquero et al., 2001). Even when the two flows
are characterized by equivalent Eulerian energy spectra, the
difference between DNS and KS dynamics lies in different
temporal evolutions from both Eulerian and Lagrangian point
of views. Consequently, our study does not allow to distin-
guish unambiguously and properly the direct contribution of
every important components of the 2-D Eulerian dynamics.
However, the signature of the coherent vortices as organiz-
ing centres of the space-time evolution of the DNS dynam-
ics compared to the KS Lagrangian stirring one is evident
enough in some cases.

We will compare Lagrangian-KS results with previously
performed Lagrangian-DNS investigations (Babiano et al.,
1987; Babiano and Le Roy, 1987; Elhmäıdi et al., 1993;
Babiano et al., 1990; Zouari and Babiano, 1994). A clear
observation is that the intermediatet5/4 anomalous absolute
dispersion law and the Richardson’s 4/3 scale-regime for rel-
ative dispersion seem to be reinforced due to the presence of
the coherent vortices. In all the cases, KS Lagrangian ex-
periments show hyperdiffusion properties compared with the
behavior of DNS simulations of 2-D flows.

The paper is organized as follows. In Sect. 2, general theo-
ries of absolute and relative particle dispersion are presented.
In Sect.3 both DNS and KS numerical approaches are briefly
described and basic dynamical properties of both simulations
are discussed. Results concerning our KS-Lagrangian exper-
iments are presented in Sect. 4. The final discussion and the
conclusions are detailed in Sect. 5.

2 Definitions: absolute and relative dispersion

We consider the evolution of the separation of neutral fluid
particle pairs which, initially separated by a given distance,
are advected by a two-dimensional Eulerian velocity field
u(x, t). For every pair of particles with Lagrangian coordi-
natesa1 anda2, the relative separation vectorD at timet is
related by the initial separation vectorD0 = a1−a2 and the
absolute displacement vectorA by

D(t,D0) = D0 + [A(a1, t)− A(a2, t)]. (1)

The absolute displacement vectorA is defined in term of the
Lagrangian velocityv(a, t)=u(x(a, t), t) as

A(a, t) =

∫ t

0
v(a, τ )dτ. (2)

From Eq. (1) and the definitions of the relative Lagrangian
velocity δv=dD/dt and the Lagrangian relative acceleration
δ0=dδv/dt , one can write:

D(t,D0) = D0 +

∫ t

0
δv(τ,D0)dτ, (3)

where

δv(t,D0) = δv0 +

∫ t

0
δ0(τ,D0)dτ. (4)

Using Eqs. (3) and (4), the time evolution of both absolute
and relative dispersion efficienciesK(t) andY (t) (dispersion
coefficients) are given, respectively, by

K(t) =
1

2

dA2

dt
=< A(a, t).v(a, t) >a (5)

and

Y (t,D0) =
1

2

dD2

dt
=< D(t,D0).δv(t,D0) >, (6)

where<.>a refers to the average at timet over all particlesa
and<.> refers to the average at timet over all particle pairs
initially separated by a given distanceD0= ‖ D0 ‖. From
Eqs. (5) and (2),

K(t) =

∫ t

0
< v(a, t).v(a, τ ) >a dτ. (7)

Similarly, from (6) and (3),

Y (t) = 2K(t)− 2
∫ t

0
< v(a1, t).v(a2, τ ) >a dτ

− < D0.δv(t,D0) >, (8)

where the last term vanishes if the dispersion process is sta-
tistically homogeneous.

2.1 Absolute dispersion

The starting point of the kinematic analysis of the abso-
lute dispersion is based on the rigorous definition (7) which,
in terms of the second-order Lagrangian velocity structure
function SL(τ )=1

2< ‖ v(a, t)−v(a, t+τ) ‖
2 >a can be

rewritten as

K(t) = 2E
∫ t

0

(
1 −

SL(τ )

2E

)
dτ, (9)

whereE=1/4<‖v(t0)‖2
+‖v(t0+t)‖2>a,t refers to the La-

grangian turbulent energy along particle trajectories. The
asymptotic behaviour ofSL(τ ) at small times is given after
a Taylor’s expansion:SL(t)∼Ct2, whereC is a dimensional
constant. In a statistically steady incompressible turbulence
the constantC can be approximated by the gradient of the
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pressure forces:C= ‖ ∇P ‖
2. Under stationarity assump-

tion and provided that the Lagrangian structure function con-
verges at long dispersion times toward twice the Lagrangian
energyE, one classically obtains the following asymptotic
behaviours for the absolute particle dispersion (Taylor, 1921;
Kamṕe de F́eriet, 1939; Babiano and Le Roy, 1987):

A2(t) ∼ 2Et2
(

1 −
C

12E
t2

)
, (10)

K(t) ∼ 2Et

(
1 −

C

6E
t2

)
, (11)

for small dispersion times, and

A2(t) ∼ 2Kt, (12)

K ∼ 2ETL, (13)

for long dispersion times. The validity of Eqs. (10–11) is
commonly accepted fort<TL, whereTL is the Lagrangian
integral timescale defined as the saturation value of the inte-
gral

TL = lim
t→∞

(2E)−1
∫ t

0
< v(a, t).v(a, τ ) >a dτ. (14)

Thus, the kinematic approach of statistically homogeneous
and stationary absolute dispersion is based on the rigorous
relation between the varianceA2(t) and the second-order La-
grangian velocity structure functionSL(τ ). Numerical in-
vestigation performed byElhmäıdi et al.(1993) have shown
that inhomogeneities in the Eulerian velocity field generate
an anomaloust5/4 law of the absolute particle dispersion be-
tween both the ballistic Eq. (10) and the Brownian Eq. (12)
asymptotic behaviours. It seems worthwhile to investigate if
KS and its corresponding Lagrangian dynamics produces the
same anomalies in the absolute dispersion behaviour as DNS
at intermediate times.

2.2 Relative dispersion

The assumption about the stationarity in the absolute disper-
sion processes is correct if the turbulence is really statisti-
cally stationary i.e., the absolute dispersion is invariant under
a change of the initial time. The situation is quite different
for relative dispersion processes: even for a stationary tur-
bulence, the relative dispersion is generically non stationary
since all its functional characteristics depend on the time-lag
τ in addition to the separation scaleD(t)= ‖ D(t,D0) ‖

(Batchelor, 1952).
The Lagrangian phenomenological simplification of the

exact relation (6) is based on the dimensional argument:

Y (D) ∼ S(D)1/2D, (15)

whereD=<D2>1/2 is the root-mean-square pair’s separa-
tion at timet andS(D) refers to the second-order Eulerian
velocity structure function at separationD. SinceS(D) and
the Eulerian energy spectrumE(k) are linked by

S(D) = 4
∫

sin2 kD

2
E(k)dk, (16)

then, from Eqs. (15) and (16) we obtain the following qual-
itative behaviours at intermediate length-scales for a power-
law Eulerian energy spectrumE(k)∼k−m (Larchev̂eque and
Lesieur, 1981; Lesieur, 1985; Bennet, 1987; Babiano et al.,
1990):

1< m < 3, S(D) ∼ Dm−1, Y (D) ∼ D(m+1)/2
; (17)

m ≥ 3, S(D) ∼ D2, Y (D) ∼ D2. (18)

Within the limits of the Kolmogorov-Kraichnan theory, the
self-similar prediction in the energy inertial range provides
m≈5/3. Thus, this covers, as a particular case, Richardson’s
1926 dispersion law forS(D)∼D2/3(m≈5/3) which would
apply in dimension two to the inverse energy cascade:

Y (D) ∼ D4/3 (19)

or, integrating over timet

D2
∼ t3. (20)

If we define, as inBabiano et al.(1990), the relative disper-
sion characteristic timeτR as

τR(D) =
D2

Y (D)
, (21)

then, phenomenological relations (19) and (20) reduce to

τR(D) ∼ D2/3. (22)

We may consider an alternative approach to deduce the
Richardson’s time-regime (20). Actually, from Eq. (3) we
can deduce the differential equation which governs the time
evolution of the relative separation variance. This equation
may be expressed as

d

dt

D2
−D2

0

t
= ‖δv(D0, t)‖

2
−

∥∥∥∥1

t

∫ t

0
τδ0(τ )dτ

∥∥∥∥2

, (23)

(seeBabiano et al., 1990, for a detailed discussion). The
Eq. (23) is linear and the solution for the averaged set of par-
ticle pairs initially separated by a given distanceD0 is given
by

<‖ D −D0 ‖
2>= t

∫ t

0
F(τ,D0)dτ, (24)

where

F(t,D0) =<‖ δv(t,D0) ‖
2> −G(t,D0), (25)
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G(t,D0) =<

∥∥∥∥1

t

∫ t

0
τδ0(τ,D0)dτ

∥∥∥∥2

> . (26)

If the correlations of Lagrangian relative accelerations

Rδ0(t, t − σ,D0) =< δ0(t,D0).δ0(t − σ,D0) > (27)

are statistically stationary, i.e. they depend on the time lag
σ=t−τ but not on the dispersion timet , then the analytical
development of the solution (24) in the stationary and homo-
geneous approximation yields (Babiano et al., 1990; Zouari
and Babiano, 1994; Lin and Reid, 1963; Monin and Yaglom,
1975)

D2(t,D0) = D2
0 + (‖ δv0 ‖

2
+G(t) |stationary) t

2, (28)

where

G(t) |stationary=
2

3
I (t) t

(
1 −

3

2

o(t)

t

)
, (29)

I (t) =

∫ t

0
Rδ0(t, t − σ,D0)dσ. (30)

HereG(t) |stationary refers to the functionG(t), defined as
Eq. (26), expressed under the stationarity assumption (for
simplicity we have omitted on the left of Eqs. (29–30) ref-
erence to the dependency onD0). Thus, the already assumed
stationarity ofRδ0(t, t−σ,D0) ensures the saturation of the
integralI (t) in the right-hand side of Eq. (29). This recovers
from Eq. (28) the Richardson’s time-regime (Eq.20).

The physical meaning of the stationarity assumption is that
Rδ0(t, t−σ, D0) no longer depends on the amplitude of sep-
arationD at both timest and t−σ but only depends on the
time-lagσ . The experimental verification of this property is
conceivable only in the framework of numerical experiments
when the Lagrangian acceleration field is determined with
sufficiently enough accuracy.

Using the stationarity assumption we also get from
Eq. (23) the following simplified equation:

d

dt
D2

|stationary=

(
<‖ δv0 ‖

2> + <‖ δv(D0, t) ‖
2>

)
t.

(31)

If we define the ratio

8(t) =

d
dtD

2
|observed

d
dtD

2 |stationary
, (32)

then, the domain of validity of the stationarity assump-
tion will be determined by the time interval in which8(t)
exhibits a plateau. The consistency between Eqs. (28)
and (31) is guaranteed by the linear growth in time of
< ‖ δv(D0, t) ‖

2 > in the stationary relative dispersion

regime (Babiano and Le Roy, 1987; Babiano et al., 1990).
Relation (32) have the advantage over the analysis based on
Eqs. (27) and (28) that all terms are accessible to measure-
ments.

To summarize, there are two parallel arguments, indepen-
dent from each other, that predict the Richardson’s dispersion
regimes (19–20). A phenomenologic approach and a kine-
matic one (Zouari and Babiano, 1994). The quasi-stationary
regime at large separation length-scales is probably always
reached if the initial pair separation is small enough. The
important question is to determine how far the action on the
turbulent Lagrangian advection of the 2-D space-time struc-
ture favours the establishment of such a stationary regime.
For this reason, it seems worthwhile to investigate how ex-
pressions (30) and (32) behave with respect to the KS La-
grangian stirring.

The prediction is that the saturation of the contribution of
non-stationary terms in the Eq. (23) is favoured by the action
of coherent vortices in DNS dynamics.

3 Numerical simulations

3.1 Direct Numerical Simulation (DNS)

We will consider different steady Eulerian-DNS with dif-
ferent resolutions and configurations already analyzed in
the Lagrangian framework byBabiano et al.(1987, 1990),
Elhmäıdi et al. (1993) andZouari and Babiano(1994). All
these simulations obviously show a high prominence of co-
herent structures of different typical sizes which lie in the
forcing wavenumberkI . They are obtained by solving the 2-
D vorticity equation with forcing and dissipative terms using
standard pseudospectral approximation in a double periodic
domain of size 2π×2π :

∂

∂t
ω + J (ψ, ω) = f (ω)+ g(ω). (33)

Here ω is the vorticity, ψ is the stream function,J (·, ·)
refers to the two-dimensional Jacobian,f (ω) andg(ω) de-
note sources and sinks respectively. The forcingf (ω) is
defined by keeping constant the energy density at a given
wavenumberkI . The sinkg(ω) is the sum of a large scale
linear friction and a small scale dissipation. The latter is de-
fined by a 8-order iterated Laplacian or by the “anticipated
potential vorticity method” (Sadourny and Basdevant, 1985).
The Lagrangian motion of the fluid particles was obtained
using a second order time scheme and a third order spline
interpolation.

Numerical simulations usually yield strong slope of the
energy spectra in the direct enstrophy cascade compared to
the self-similar prediction ink−3. This is the direct effect of
coherent structures and localness in the physical space (Babi-
ano et al., 1985). However, the inverse energy cascade has
local properties and is thus characterized by spectra which
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satisfy thek−5/3 self-similar prediction. Even if the spec-
tral signature of the coherent vortices is absent in the repar-
tition of the energy density in the inverse energy cascade,
both inverse energy transfers and large-scale vortices have
a fundamental significance for the turbulent advection and
dispersion in the physical space. This fact indicates that self-
similarity results and phenomenological descriptions of dis-
persion processes at large scales in two-dimensional turbu-
lence seems to be quite weak and deserve a careful analysis.

3.2 Kinematic Simulation (KS)

KS is a gridless model widely described inFung(1990). This
model was first proposed byKraichnan(1966, 1970) and fur-
ther developed and used byFung et al.(1992); Fung and Vas-
silicos(1998), Castilla(2001) and references therein. For our
purpose, its main characteristic is that it allows to choose the
turbulent energy spectrum of the field. The Eulerian velocity
field is defined as

u (x, t) =

N∑
n=1

{cn sinφn + dn cosφn} , (34)

with

φn = kn · x + νnt; (35)

cn anddn are random direction vectors. Their magnitudes
are related to the energy spectrum as

‖cn‖2
= ‖dn‖2

=

∫ kn+1/2δk

kn−1/2δk
E(k)dk. (36)

The wavenumber vectorskn have a random direction normal
to bothcn anddn in order to force the continuity. Then, fluid
acceleration is given by

0 (x, t) =

N∑
n=1

νn {cn cosφn − dn sinφn} . (37)

The time evolution of the field is governed byνn, where
n = 1, . . . , N refer to eddies’ turnover frequencies. Follow-
ing Fung et al.(1992) andFung and Vassilicos(1998), these
frequencies are calculated as

νn = λk
3/2
n E(kn)

1/2, (38)

where λ is a positive parameter which characterizes the
steadiness of the moden. Forλ=0, we have a turbulent flow
with “frozen” eddies. Ifλ tends to infinity, the flow is com-
pletely unsteady. The value ofλ is determined here to be
such that gives a similar Lagrangian time integral scale than
for the DNS numerical experiments.

If we consider a power energy spectrumE(k)∼k−m, the
Eq. (38) gives an increasing value of the turnover frequency
νn with n for m<3. Form=5/3, which corresponds to both

the Komogorov’s turbulence and the self-similar prediction
δu∼l1/3, whereδu refers to the characteristic velocity of ed-
dies of scalel , the turnover frequency behaves asνn∼k

2/3
n .

Form≥3, the characteristic velocity is linear inl (seeBabi-
ano et al., 1985) and, consequently, the turnover frequency
should be constant with the scale. In our experiments we
have maintained the expression (38), but it does not seem to
affect the Lagrangian statistics.

In order to define KS initial conditions, we will consider
energy spectra of already mentioned DNS Lagrangian ex-
periments. Results on particle dispersion processes in these
steady KS Eulerian regimes, where turbulent energy and en-
strophy are constant and well stabilized in time, will be then
compared with the results previously discussed.

3.3 Comparison of models

Energy spectra for DNS fields namely, R128F10 (with
128×128 grid resolution and forced at the wavenumber
kI=10), R512F40 (with 512×512 grid resolution forced at
the wavenumberkI=40) and R1024F256 (with 1024×1204
grid resolution and forced at wavenumberkI=256) already
used inBabiano et al.(1987, 1990), Zouari and Babiano
(1994) and Elhmäıdi et al. (1993) are displayed in Fig.1
as a function of the wavenumberk. DNS spectrum for
R128F10 shows that the dynamics is dominated by a di-
rect enstrophy cascade from the forcing wavenumber towards
smaller scales. In addition, the inverse cascade of energy to-
wards large scales is almost inappreciable. In the simulation
R512F40, both direct enstrophy and inverse energy cascades
are well developed. In both R128F10 and R512F40 simula-
tions the spectral slope in the enstrophy range is close to−4
which is an indicator of the localness of the dynamics in the
enstrophy cascade range. In the third simulation R1024F256,
forced at higher wavenumberkI=256, the direct enstrophy
cascade is not well developed and the dynamics is domi-
nated by an inverse cascade of energy which shows a the-
oretically consistent−5/3 spectral slope. KS spectra are not
produced and represent in fact a steady input-constraint for
the KS simulation. As illustration of similarities and differ-
ences between DNS and KS field’s structure we focus here
on the lower resolution R128F10 simulation.

KS and DNS vorticity fields are shown in Fig.2. We ob-
serve the predominance of well structured vortices in the
DNS field whereas the vorticity distribution is rather ran-
dom in the KS one. Prominent vortex-structures in DNS
fields have characteristic sizes of the order of forcing scale
DI=π/kI . We will characterize the relative importance
of the vortex size on the large-scale dynamics by the ra-
tio between the typical vortex sizeDI and the box sizeL
as<v=DI /L=

1
2kI

. In the present case<v=0.05 for DNS.
Even if the typical value of the ratio<v is conspicuously less
clear defined in KS field, it seems to be lower. For an equiva-
lent distribution of the spectral energy density, the dynamics
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144 R. Castilla et al.: Particle dispersion processes

Fig. 1. Energy spectra as a function of the wavenumberk for numerical experiments:(a) R128F10,(b) R512F40 and(c) 1024F256; DNS
(continuous lines) and KS (dashed lines).

at large-scale seems to be less structured in KS rather than in
DNS .

Figure3 shows the distribution of the normalized Okubo-
Weiss parameterQ(x)=(s2

−ω2)/(s2
+ω2) whereω and s

are the vorticity and the strain respectively (i.e. the antisym-
metric and the symmetric parts of the velocity gradient tensor
respectively (Okubo et al., 1970; Weiss, 1991)) andx refers
to the position in the physical space. Hyperbolic domains
(Q>0) characterize the high deformation cells which sur-
round vortices. Elliptic domains (Q<0), especially identify
vorticity concentrations in the cores of cyclonic or anticy-
clonic vortices. Unlike the DNS field, the KS one shows a
mixed topology whereQ is uniformly distributed and there
are not clear structures.

In order to compare DNS and KS Lagrangian experiments
we calibrated the two numerical simulations through the La-
grangian time-scaleTL defined in Eq. (14). This time-scale
typically lies in the Lagrangian stirring. We noticed that in

the KS it depends on the steadiness factorλ as Eq. (38). The
ratio between the value ofTL measured in DNS and differ-
ent estimated values in KS are shown in Fig.4 as a func-
tion of the steadiness factorλ. We can see that a sufficiently
good consistency is reached forλ≈0.5. Forλ>1, this ratio
decreases. This means that for such a values ofλ the KS
Lagrangian stirring exceeds the DNS one. According to this
preliminary study, one may takeλ=0.5. It is important to
notice that, even forλ=0.5, the Eulerian time-scales in DNS
and KS fields are very different since KS do not capture the
Eulerian time evolution of the turbulent system (results not
shown). Nevertheless, autocorrelation functions of the La-
grangian velocities present in the definition (14) are compa-
rable to that observed between DNS and a stochastic model
characterized by a bi-Gaussian Lagrangian velocity probabil-
ity distribution function (seePasquero et al., 2001).
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Fig. 2. Vorticity fields for R128F10:(a) KS, (b) DNS.

Fig. 3. Distribution of Q for experiment R128F10:(a) KS, (b) DNS.

4 Numerical results

4.1 Absolute particle dispersion

In this section we compare DNS and KS Lagrangian exper-
iments using the field R128F10 that we have previously de-
scribed. Our choice is motivated by the need to keep consis-
tency with previous work (Elhmäıdi et al., 1993). Coherent
structures in this field have quite an important size compared
to the entire flow domain size (<v=0.05).

Figure 5 shows the absolute particle dispersionA2 as a
function of the normalized dispersion timet/TL for DNS
(continuous line) and KS (dashed line). The two dispersion
processes exhibit quite similar ballistic behaviour at small
times. At intermediate times (t≈TL), some difference is ob-
served. After the ballistic regime (10), KS absolute disper-
sion shows an unscaled transient behaviour until the Brown-
ian linear in time growth (12). This asymptotic behaviour
is attained for dispersion times of the order oft≈10TL.
DNS absolute dispersion, however, it clearly exhibits a well
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defined scaling behaviour for a long time aftert≈TL. To
distinguish the local growth we compensated absolute dis-
persion byt (fine lines) andt5/4 (bold lines) in Fig.6. Ob-
viously, when the KS absolute dispersion shows a Brownian
regime (fine dashed line) the DNS absolute dispersion be-
haves ast5/4 (bold continuous line).

Elhmäıdi et al. (1993) argued that thet5/4 anomalous
regime is highly connected to energetic hyperbolic domains
surrounding coherent vortices. The argument is that dif-
ferent domains of the Eulerian DNS field are not equally
sampled by the Lagrangian dynamics. Neutral particles ad-
vected inside the vortices tend to leave internal-elliptic re-
gions through a vorticity filamentation process. At the same
time, particles advected on the external hyperbolic regions
(Q>0) surrounding vortices cannot penetrate into the exist-
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Fig. 6. Absolute dispersion compensated byt (fine lines) and by
t5/4 (bold lines): DNS (continuous lines) and KS (dashed lines).

ing coherent vortices. As a result, hyperbolic periphery of
vortices is a region where a number of particles may reside
for a long time in spite of the natural Lagrangian stirring
which favours the particle transition from one topological do-
main to an other. The same scenario may be conceived for
KS Lagrangian dynamics. However, the difference is that the
hyperbolic regions whereQ>0 clearly extend over a more
reduced area around elliptic concentrations in the KS field
than in the DNS one (Fig.3). Consequently, trapping effi-
ciency of hyperbolic regions is more important in the DNS
dynamics. It is quite reasonable to assume that trapping
events make slack times in the absolute dispersion.

The anomalous behaviour int5/4 appears as a Lagrangian
signature of hyperbolic domains and has a fundamentally im-
portant significance for the recognition of the Eulerian fea-
tures from dispersion experiments. The robustness of the
subdiffusion regime int5/4 disappears as soon as the action
of the 2-D space-time structure is not present in the KS La-
grangian stirring.

4.2 Relative dispersion

Firstly, we will illustrate as inZouari and Babiano(1994)
how Richardson’s scale-regime (19) may be observed in
DNS for different developments of the inverse energy cas-
cade. Later, we will compare DNS and KS relative disper-
sion in different numerical configurations.

The apparent insensitivity to the spectral energy distribu-
tion is analyzed on the basis of DNS fields R128F10 and
R1024F256. The inverse energy cascade is absent in the first
simulation even when a weak growth of the spectral energy
density is observed at large scale. R1024F256 field exhibits a
well developed inverse energy cascade where the theoretical
predictionk−5/3 is satisfied through one decade (see Fig.1).

Nonlin. Processes Geophys., 14, 139–151, 2007 www.nonlin-processes-geophys.net/14/139/2007/



R. Castilla et al.: Particle dispersion processes 147

10
-2

10
-1

10
0

10
1

10
2

D/D
I

0

0,02

0,04

R
el

at
iv

e 
di

sp
er

si
on

 c
ha

ra
ct

er
is

tic
 ti

m
e 

 x
  D

-2
/3

(a) (b)

10
-2

10
-1

10
0

10
1

10
2

D/D
I

0

0,001

0,002

Fig. 7. Relative dispersion characteristic timeτR compensated by
D2/3 as a function of the root-mean-square separation normalized
byDI . DNS experiments:(a) R128F10,(b) R1024F256.

The relative prominence of large-scale coherent vortices
yields to<v=0.05 and 0.002, respectively. Larger<v means
a more structured turbulence at large length-scale. On the
other hand, the relative importance of the initial pair’s separa-
tionD0 with respect to the characteristic vortex-size,DI , will
be measured by the ratioq=D0/DI . Separation ratiosq in
Lagrangian experiments are small enough:q=0.0025, 0.025
respectively for R128F10 and R1024F256. Thus, the promi-
nence of the coherent structures is more important in DNS
R128F10 field rather than in DNS R1024F256 one and the
ratioq is smaller in a factor 10.

The testing of the Richardson’s scale-regime is performed
through the relative dispersion characteristic timeτR defined
as Eq. (21). It is displayed in Fig.7, where it is com-
pensated byD2/3

=<D2>1/3. From Eq. (22), the Richard-
son’s regime should thus correspond to a flat plateau. Ac-
cording to the self-similarity prediction (19), Richardson’s
scale-regimeY (D)∼Dβ with β=4/3 and the corresponding
growth inD2/3 for τR are only consistent with the spectral
slopem=5/3. The results presented in Fig.7 show thatτR
behaviors are in excellent agreement with the phenomeno-
logical prediction (22) even if only the field R1024F256 ex-
hibitsm=5/3 (see Fig.1). This originates a complicated sit-
uation in order to interpret the Richardson’s law in the exclu-
sive framework of usual self-similarity arguments.

4.2.1 Sensitivity of DNS and KS relative dispersion to the
ratioq.

We are particularly interested in how DNS and KS differ-
ences can modify the achievement of Richardson’s law. We
will explore this problem comparing KS Lagrangian exper-
iments to DNS numerical analyses performed inBabiano
et al.(1990) andZouari and Babiano(1994). Among all DNS

Fig. 8. Relative dispersion for DNS experiments, as a function of
dispersion time, for different values ofq=D0/DI . R256F40 and
R1024F40 DNS experiments fromBabiano et al.(1990).

fields analyzed in mentioned works, we will choose R256F40
and R512F40 where the dynamics is forced at wavenumber
kI=40 and the ratio<v is equal to 0.0125. In terms of vortex
prominence these fields represent an intermediate case com-
pared to R128F10 and R1024F256 fields already analyzed in
Fig. 7. They are characterized by dynamics which develops
direct enstrophy and inverse energy cascades over a reason-
able range of scales. The energy spectra for the R512F40
field have been presented in Fig.1.

We have reproduced in Fig.8 the study on relative disper-
sionD2 for various values ofq previously published (Babi-
ano et al., 1990). The energy inertial rangeD2

I≤D
2
≤D2

E ,
whereDE refers to the most energetic scale, is indicated. We
observe that the growth ofD2 is significantly slower than the
t3 law (subdiffusion regime) when the initial separation is not
small (q≥0.3). Nevertheless, forq≤0.3 i.e., whenD0 lies at
the bottom scales of the enstrophy range, the Richardson’s
times-regime int3 appears as a bound in the dispersion be-
haviour which seems to be quite robust and independent on
q in DNS Lagrangian experiments.

Figure 9 shows the relative dispersionD2 in KS La-
grangian experiments performed on de basis of R512F40 and
R256F40 fields. We observe in panel (a) that the Richard-
son’s time-regime int3 is well verified for R512F40 DNS
experiment (q=0.15, circles) (Zouari and Babiano, 1994).
This is consistent with the results presented in Fig.8 for
q<0.3. In contrast, the relative dispersion in KS experi-
ment shows a slightly lower efficiency for an equivalent ini-
tial separation. However, for decreasing values of the initial
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Fig. 9. Relative dispersion versus time in KS Lagrangian experi-
ments for different values ofq=D0/DI . Dispersion and time are
normalized byD2

I
and the Eulerian characteristic timeZ−1/2, re-

spectively, whereZ is the enstrophy.(a) experiments R512F40:
q=0.15 (continuous line),q=0.025 (dashed line),q=0.01 (dashed-
point line). (b) experiments R256F40:q=0.3 (continuous line),
q=0.025 (dashed line). DNS experiment are also indicated for
R512F40,q=0.15 in panel (a) and for R256F40,q=0.3 in panel (b)
(circles).

separation (q=0.025, 0.01), hyperdiffusion regimes closed
toD2

∼t4 are observed in KS relative dispersion behaviors in
both R512F40 and R256F40 experiments. This is in contra-
diction with DNS behaviors in Fig.8 which suggest a strong
robustness of thet3 regime forq<0.3. Results shown in
Fig.9 indicate that thet3 law is replaced by an hyperdiffusion
regime inD2

∼t4 in KS Lagrangian experiments for small
enough values ofq. Observed features in the relative dis-
persion are consistent with above analyzed properties of ab-
solute dispersion processes: trapping events in vortices and
well structured vortex-hyperbolic periphery produce a loss of
time in the process of separation of particles pairs compared
with an unstructured random separation motion.

Hyperdiffusion may be characterized by the relative dis-
persion characteristic timeτR, defined as Eq. (21). The be-
haviour ofτR is presented in Fig.10. In panel (a) it is shown
as a function of the root-mean-square separation normal-
ized asD/DI . We compensatedτR by its phenomenolog-
ical scaling (Eq.22) and we added a complementary DNS
set withq=0.025 (triangles) in addition to previously com-
mented DNS experiment withq=0.15 (circles). After hav-
ing reachedDI and, in spite of the difference in the initial
pair’s separations, both DNS relative dispersion character-
istic times converge to an indistinguishable plateau which
means that Richardson’s scale-regime is reached in both
cases. Asq decreases up to values which lie at the bot-
tom of the enstrophy cascade (dashed lines), the identity in
the behaviours of DNS and KS characteristic times ceases
long beforeD/DI≈1. At length-scales where the Richard-
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Fig. 10. (a) relative dispersion characteristic time, compensated
by D2/3, versus scale, normalized with forcing scale.(b) rela-
tive dispersion characteristic time versus scale, normalized with ini-
tial separation scale. DNS experiment R512F40:q=0.15 (circles),
q=0.025 (triangles). KS experimentsq=0.15 (continuous line),
q=0.025 (dashed line),q=0.01 (dashed-point line).

son prediction is satisfied for DNS experiment, KS charac-
teristic times are far from an horizontal plateau. Here the
higher values ofτR in KS experiments are not indicative of
a less dispersion efficiency. In order to compare dispersion
efficiencies, we plotted in panel (b) the characteristic disper-
sion times as a function of the relative dispersion normalized
asD/D0. For smaller values ofq, KS characteristic disper-
sion times are smaller than DNS ones. This is consistent with
the hyperdiffusion observed in the Fig.9.

4.2.2 Stationarity properties

Stationarity properties of the above analyzed dispersion pro-
cesses are investigated using the ratio8(t) and the inte-
gral I (t), defined as Eqs. (32) and (30), respectively. We
plot in Fig. 11a the ratio8 as a function of the normal-
ized dispersion time. We observe a decreasing function
which, according to Eqs. (8), (13) and (31), must vanish as
d
dt
D2

|observedbecomes constant for long dispersion times.
When the Richardson’s time-regime is observed in DNS rel-
ative dispersion (Fig.9), 8 exhibits a plateau which means
that there is a strong correlation between thet3 growth and
the saturation of the contributions of non-stationary terms in
the exact Eq. (23). In KS experiments,8 do not exhibit a per-
fect ceiling and show a monotonously decreasing behaviour
which gives evidence to the fact that non-stationary contri-
butions act for long dispersion times. Figure11b shows the
dependence of the integralI (t) as a function of time for var-
ious values ofq in KS experiments. The quasi-saturation
of I (t) is only attained for dispersion times of the order of
t>100Z−1/2 when the KS relative dispersion already reaches
its asymptotic regime (see Fig.9).
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We cannot compare DNS and KSI (t)-features for
R512F40 field, sinceI (t) behaviours have not been analyzed
by Zouari and Babiano(1994). Nevertheless, we can per-
form the comparison for the R256F40 field andq=0.025.
The correlations of relative accelerationsRδ0(t, σ ), defined
as Eq. (27), andI (t) for this field are displayed in Fig.12.
CorrelationsRδ0(t, σ ) are plotted as a function ofσZ1/2 at
time t when the stationarity is already attained. IntegralsI (t)

are performed overσ and plotted as a function of the disper-
sion timetZ1/2. The integralI (t) saturates at shorter times in
DNS dispersion rather than in KS one. Approximately, there
is a factor 4 between the two times for which we may roughly
estimate that both integrals give a saturate behaviour. The
saturation ofI (t) occurs for dispersion timestZ1/2 larger
than 15 in DNS Lagrangian experiment. In terms of non-
normalized dispersion time, this corresponds tot=0.06. The
results shown in Fig.8 for an equivalent value ofq indi-
cate that the Richardson’s regime is already robust enough
at such dispersion times in DNS experiments. In the frame-
work of the theoretical expressions (28–30), this regime cor-
responds to a constant in time behaviour ofI (t) as it is ob-
served in Fig.12b. In contrast, the integralI (t) obviously
shows a time-dependent behaviour all the range from 15 to
80 in KS Lagrangian experiment. The hyperdiffusion ob-
served in Fig.9b at q=0.025 seems to be sustained by the
quasi-linear in time growth ofI (t) before saturation occurs
in the KS experiments.

All observed features are consistent with the theoretical
expressions (28–30). Thus, the Richardson’st3 dependency
seems to be a saturate growth which is in fact the conse-
quence of the saturation in the integralI (t). WhenI (t) does
not saturate at intermediate dispersion time, then the disper-
sion process shows hyperdiffusion properties.
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Fig. 12. (a) Correlation of relative accelerations,Rδ0 . (b) Inte-
gral I (t), defined as Eq. (30). DNS (circles), KS (continuous line).
R256F40 experiments andq=0.025

The second important difference between DNS and KS
Lagrangian acceleration fields lies inRδ0(t, σ ) features
(Fig. 12a). In KS,Rδ0(t, σ ) is a positive defined function
which monotonously decreases asσ increases whereas in
DNS Rδ0(t, σ ) goes through zero at times of the order of
the turnover time,Z−1/2, and a significant anti-correlation
is found. This is consistent with the fact that a lower
I (t)-plateau is rapidly attained in DNS rather than in KS
(Fig. 12b). The oscillation ofRδ0(t, σ ) in DNS Lagrangian
field can be interpreted as the mean signature of the relative
movements of particle pairs around closed and long-lived co-
herent structures. Curves in Fig.12a clearly show that the
mean variance of relative acceleration (σ=0) is rather higher
in DNS fields than in KS one. This is presumably the conse-
quence of quite different structure in the pressure fields. It is
well known (Larchev̂eque, 1993) that in incompressible flow
the Okubo-Weiss parameterQ=(s2

−ω2)/(s2
+ω2), which

defines the 2-D topology, is related to the Laplacian of pres-
sureP : Q=−4∇

2P/(s2
+ω2).

5 Conclusions and discussion

In this work we have considered the comparison between
DNS and KS Lagrangian experiments on turbulent particle
dispersion in two-dimensional flows. We have noted that Eu-
lerian structures of DNS and KS fields are not comparable,
mostly due to the non-homogeneous space-time structure in
DNS fields.

We have shown that the anomalous behaviour int5/4 for
absolute dispersion at middle times discussed inElhmäıdi
et al. (1993) is unquestionably a consequence of the action
of the 2-D structured topology. When the topology is closed
to a random distribution in KS model then the behaviour in
t5/4 for the absolute dispersion is absent.
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The Richardson’s law appears as quite robust behaviour
for the relative dispersion in DNS Lagrangian experiments
provided that the initial separation is small enough. Our in-
terpretation is that thet3 dependency for relative dispersion
is a saturate growth which lies in the properties of the rela-
tive Lagrangian accelerations. It appears rather as the con-
sequence of the ability of coherent structures to consolidate
the stationarity regime in the relative acceleration field rather
than the consequence of the inverse cascade of energy in two-
dimensional turbulence. Such an ability is significantly re-
duced in KS dynamics. In this case, the correlation of the
relative particle accelerations reaches a stationarity regime
only for times that are quite long compared to the time-span
where the Richardson’s law is already observed in DNS rel-
ative dispersion. Thus, KS Lagrangian dynamics generates
an hyperdiffusion regime which lies in the fact that the inte-
gral I (t), defined as Eq. (30), behaves as a time-dependent
quantity for long times.

It is quite reasonable to assume that coherent vortices re-
ally contribute to the decorrelation of relative accelerations
since, in large measure, they are responsible for the stirring
and the curvature-change in Lagrangian trajectories. Our
numerical results confirm this fact and suggest that such a
decorrelation strongly reinforces the Richardson’s regime. In
the framework of the theory based on relations (23–30), this
regime appears as a statistical bound in the growth of particle
separations as soon as the integralI (t) reaches a plateau.

From the physical standpoint,I (t)-plateau defines a char-
acteristic Lagrangian time-scale for the Lagrangian relative
acceleration field. By analogy with the usual Lagrangian def-
inition (14), which characterize the absolute particle disper-
sion, we may define the characteristic Lagrangian timescale
TL0 which measures the decorrelation of the relative La-
grangian accelerations:

TL0 = lim
t→∞

0−2
0

∫ t

0
< δ0(t).δ0(t − σ) > dσ, (39)

where02
0 refers to the mean relative-acceleration variance

along pair’s-particle trajectories. We see that relative dis-
persion reduces in this case to two basic relations (28–30)
which are exact under the assumption that a finite Lagrangian
characteristic timescaleTL0 exists. Thus, the Richardson’s
regime follows from Eq. (29):

G(t) =
2

3
02

0TL0t. (40)

It is possible to observe the parallelism between Eq. (40)
and relations (12–13) which characterize absolute dispersion
in the framework of Taylor-Kamṕe de Ferrier’s theory. In
both cases the working assumption of stationarity is neces-
sary, however, Eq. (40) for relative dispersion is a transient
behaviour at intermediate times whereas Eqs. (12–13) are re-
ally asymptotic.

We see that in the framework of the formulation (39–40)
two questions are particularly important in order to estimate

the relative particle dispersion. Firstly, the value of the finite
Lagrangian characteristic timescaleTL0. Secondly, the dis-
persion time at which such a value is attained. If a quite
short finite Lagrangian characteristic timescaleTL0 really
exists, then the relative dispersion at intermediate times will
be bounded by the Richardson’st3 law. However, a wrong
estimation of relative dispersion using Eqs. (28), (29) and
(40) is conspicuous whenTL0 is sufficiently large compared
to intermediate dispersion times. Nevertheless, within the
limits of a reasonable tolerance, Eq. (29) may be useful to ex-
press sub-diffusion or hyper-diffusion regimes at intermedi-
ate dispersion times. The difference between the two regimes
lies in the behaviour ofI (t) before saturation. According to
our numerical observations, hyperdiffusion int4 can be ap-
proximated with a quasi-linear in time growth ofI (t).
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