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Abstract. Numerical studies of small-scale forced, two-
dimensional turbulent flows on the surface of a rotating
sphere have revealed strong large-scale anisotropization that
culminates in the emergence of quasi-steady sets of alternat-
ing zonal jets, or zonation. The kinetic energy spectrum of
such flows also becomes strongly anisotropic. For the zonal
modes, a steep spectral distribution,E(n)=CZ(�/R)2n−5,
is established, whereCZ=O(1) is a non-dimensional coef-
ficient,� is the angular velocity, andR is the radius of the
sphere, respectively. For other, non-zonal modes, the clas-
sical, Kolmogorov-Batchelor-Kraichnan,−

5
3 spectral law is

preserved. This flow regime, referred to as a zonostrophic
regime, appears to have wide applicability to large-scale
planetary and terrestrial circulations as long as those are char-
acterized by strong rotation, vertically stable stratification
and small Burger numbers. The well-known manifestations
of this regime are the banded disks of the outer planets of our
Solar System. Relatively less known examples are systems
of narrow, subsurface, alternating zonal jets throughout all
major oceans discovered in state-of-the-art, eddy-permitting
simulations of the general oceanic circulation. Furthermore,
laboratory experiments recently conducted using the Coriolis
turntable have basically confirmed that the lateral gradient of
“planetary vorticity” (emulated via the topographicβ-effect)
is the primary cause of the zonation and that the latter is en-
twined with the development of the strongly anisotropic ki-
netic energy spectrum that tends to attain the same zonal and
non-zonal distributions,−5 and−

5
3, respectively, in both

the slope and the magnitude, as the corresponding spectra
in other environmental conditions. The non-dimensional co-
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efficientCZ in the −5 spectral law appears to be invariant,
CZ'0.5, in a variety of simulated and natural flows.

This paper provides a brief review of the zonostrophic
regime. The review includes the discussion of the physical
nature, basic mechanisms, scaling laws and universality of
this regime. A parameter range conducive to its establish-
ment is identified, and collation of laboratory and naturally
occurring flows is presented through which the zonostrophic
regime manifests itself in the real world.

1 Introduction

Planetary rotation, topographical constraints and other fac-
tors lead to quasi-two-dimensionalization of the atmospheric,
oceanic and planetary circulations on large scales. On even
larger scales, the circulations are affected by the latitudinal
variation of the Coriolis parameter, the “planetary” vorticity
gradient or so-calledβ-effect. This effect can be captured in
theβ-plane approximation in which a portion of the spheri-
cal surface is replaced by a tangential plane (Pedlosky, 1987).
Alternatively, theβ-effect is fully represented in simulations
in spherical geometry. In the following, we shall not differen-
tiate between theβ-plane and entire sphere representations;
in both cases, we shall refer to the flows as two-dimensional
(2-D) turbulence with aβ-effect.

The β-effect breaks the horizontal isotropy of the flow
field and facilitates its self-organization in the zonal (east-
west) direction giving rise to the emergence of quasi-one-
dimensional structures - zonal jets (Rhines, 1975). The basic
physics of quasi-2-D turbulence with aβ-effect is described
by the 2-D vorticity equation specified either on aβ-plane
or on the entire surface of a rotating sphere. Although both
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84 Anisotropicβ-Plane Turbulence and Zonal Jets

formulations are idealizations of the real-world situations,
they allow one to concentrate attention on various features of
anisotropic turbulence and its interaction with Rossby waves.
In addition, important flow characteristics, such as spatial
and temporal scales and the energy spectra, can be distilled
and quantified. These characteristics can be used as observ-
able and predictable parameters when the results of the ideal-
ized theory are validated against natural flows and utilized for
interpretation of the processes that are taking place in these
flows.

This paper summarizes recent progress achieved in theo-
retical and numerical studies of quasi-2-D turbulence with
a β-effect and provides account of the real-world flows that
can be described and quantified within this theory. The mate-
rial presented here complements an extensive recent review
by Vasavada and Showman(2005). The next section is a
review which surveys results of computer simulations and
elaborates the physical processes that govern the tendency to
one-dimensionalization under the action of theβ-effect. The
three sections that follow up bring together manifestations of
this strongly anisotropic flow regime in the natural environ-
ment that ranges from the large turntable in the laboratory,
Sect.4, to the outer planets of the Solar System, Sect.5, and
to the terrestrial oceans, Sect.6. Finally, Sect.7 provides
some conclusions.

2 Computer simulations onβ-plane and on the surface
of a rotating sphere

2.1 Basics

The equation that describes small-scale forced, anisotropic
2-D turbulence on theβ-plane is

∂ζ

∂t
+
∂

(
∇

−2ζ, ζ
)

∂(x, y)
+ β

∂

∂x

(
∇

−2ζ
)

= νo∇
2ζ + ξ, (1)

whereζ is the fluid vorticity,νo is the molecular viscosity,
andξ is the forcing;x andy are directed eastward and north-
ward, respectively. The constantβ is the background vortic-
ity gradient describing the latitudinal variation of the normal
component of the Coriolis parameter,f=f0+βy, wheref0
is the reference value of the Coriolis parameter. The forc-
ing ξ , concentrated around some high wave numberkξ , sup-
plies energy to the system with the constant rateε, and is
assumed random, with zero-mean, Gaussian and white noise
in time. The relatively high wave-number modes are nearly
isotropic and can be described by the classical Kolmogorov-
Batchelor-Kraichnan (KBK) theory of 2-D turbulence. For
those modes, a conventional eddy turnover time scale can be
introduced,

τt =

[
k3E(k)

]−1/2
, (2)

whereE(k) is the KBK energy spectrum,

E(k) = CKε
2/3k−5/3, (3)

and whereCK is the Kolmogorov-Kraichnan constant,
CK'6. Theβ-effect-induced anisotropy becomes increas-
ingly profound for decreasing wave-number modes which
are dominated by Rossby waves whose period is given by

τRW = −
k2

βkx
. (4)

Equatingτt andτRW , one can find a transitional wave num-
ber separating regions in which either isotropic turbulence or
Rossby waves are the dominant processes,

kt (φ) = kβ cos3/5 φ, kβ = (β3/ε)1/5, (5)

whereφ= arctan(ky/kx). The contourkt (φ) has been coined
“the dumb-bell shape” byVallis and Maltrud(1993) or “lazy
8” by Holloway (1984). While the β-effect and ensuing
flow anisotropy are relatively weak for the modesk>kβ , the
modes inside the dumb-bell are strongly anisotropic. Note
that for stationaryε, the transitional wave numberskt (φ) and
kβ are also stationary even if the flow itself is not in a steady
state.

It is well-known that without kinetic energy removal at the
large-scales, Eq. (1) does not possess a steady-state solution
because, due to the upscale cascade, energy propagates to
ever smaller wave number modes. To attain a steady state, an
energy withdrawal mechanism in a form of the large-scale
drag must be introduced. In that case, important questions
arise about the impact of this drag upon the flow field. Due
to the complexity of these issues, unsteady and steady state
simulations, i.e., simulations without and with the large-scale
drag included, will be discussed separately.

2.2 Unsteady simulations with small-scale forcing

Simulations of 2-D turbulence in the energy range with no
large-scale drag lead to energy accumulation in the lowest
available modes (Smith and Yakhot, 1993, 1994). How-
ever, such simulations can be useful in studies of transient
flows prior to the energy condensation at the large-scale
modes. Indeed,Smith and Yakhot(1993) showed that non-
rotating, small-scale forced 2-D turbulence is governed by
KBK statistics until the energy reaches the lowest modes.
Similar simulations on aβ-plane and on the surface of a
rotating sphere were conducted byChekhlov et al.(1996);
Smith and Waleffe(1999) and Huang et al.(2001), re-
spectively. In both settings, the energy spectrum becomes
strongly anisotropic. In the spherical geometry, the total ki-
netic energy spectrum is defined as

E(n) =
n(n+ 1)

4R2

n∑
m=−n

〈|ψmn |
2
〉, (6)

whereψmn is the coefficient with the spherical harmonicsYmn
in the stream function decomposition, andn andm are the
total and zonal wave numbers, respectively; the brackets in-
dicate an ensemble or time average (Boer, 1983; Boer and
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Shepherd, 1983). Numerical simulations byHuang et al.
(2001) andSukoriansky et al.(2002) indicate that the spec-
trum (6) can be represented as a sum of the zonal and residual
spectra,E(n)=EZ(n)+ER(n), whereEZ(n) corresponds to
the addend withm=0, and where

EZ(n) = CZ(�/R)
2n−5, CZ ' 0.5, (7)

ER(n) = CKε
2/3n−5/3, CK ' 4 to 6. (8)

Here,� andR are the angular velocity and the radius of the
sphere. On theβ-plane, the spectrum has a similar struc-
ture, with the steep zonal slope,EZ(k)=CZβ2k−5

y , CZ'0.3

to 0.5, and KBK-like residual,ER(k)=CKε2/3k−5/3, CK'

4 to 6. Note that�/R replacesβ in spherical geometry, and
the spherical analogue ofkβ is nβ=[(�/R)3/ε]1/5 (Huang
et al., 2001; Sukoriansky et al., 2002).

Consider now energy evolution (unimpeded by the large-
scale friction) in systems with the zonal spectrum (7), (8).
Since on the large scales, the zonal energy becomes much
larger than its non-zonal counterpart, the computation of the
total energy,Etot(t), can be based upon the zonal energy
spectrum only,

Etot(t) '
U2(t)

2
'

∞∑
nm

EZ(n) ∝

(
�

R

)2

n−4
m (t), (9)

whereU(t) is the rms of the zonal velocity, andnm(t) rep-
resents the location of the “moving energy front” in spectral
domain. In other words,nm is the time-dependent mode that
contains the maximum energy. Using Eq. (9), nm can be ex-
pressed as

nm(t) ∝

[
(�/R)

U(t)

]1/2

= [β/U(t)]1/2, (10)

thus, nm(t) is in the same form as Rhines’s wave number
(Rhines, 1975). Here, for unsteady flows, Eq. (10) identifies
Rhines’s wave number with the “moving energy front.” It
is important to emphasize this result because Rhines’s wave
number is often confused withnβ even in unsteady flows
wherenβ is stationary whilenm is time dependent.

Combining Eq. (9) with the linear trendEtot(t)=εt , one
obtains

Etot(t) = εt ∝ β2n−4
m (t), (11)

nm(t) ∝ (εtβ−2)−1/4
∝ t−1/4. (12)

A similar estimate of the “moving energy front” for classical
KBK turbulence with no rotation yields the Richardson law
(Lesieur, 1997),

n0
m(t) ∝ (εt3)−1/2

∼ t−3/2. (13)

Comparing the evolution laws (12) and (13), one concludes
that aβ-effect slows down the up-scale march of the energy
front which is the direct result of the steepening of the zonal
spectrum since low zonal modes can absorb more energy

whenβ 6=0. In other words, aβ-effect increases the ener-
getic capacity of the zonal modes, and this tendency becomes
more pronounced with decreasingnm (Chekhlov et al., 1996;
Huang et al., 2001). The notion of increased energetic ca-
pacity helps to clarify that the slowing down of the spectral
evolution means not thecomplete arrestof the inverse en-
ergy cascade, as is sometimes promulgated in the literature,
but adecelerationof the energy front propagation because it
takes an increasingly longer time to saturate zonal modes to
their energy levels specified by Eq. (7) at the same rate of the
energy injectionε. As a consequence, numerical simulations
on aβ-plane or on the surface of a rotating sphere require
much longer integration time than similar simulations with
no rotation; this tendency is reflected in the “−

1
4 law” (12).

For convenience, we shall refer to the multiple-jet flow
regime with the spectral scaling (7,8) as “zonostrophic”,
from the Greek wordsζωνη – band, belt andστρoφη –
turn, thus describing the zonation in a rotating environment.
To elucidate the physical nature of the zonostrophic flows,
the following three major issues need to be addressed:

(1) the mechanism of the anisotropic energy flux into the
modeskx→0;
(2) the mechanism that allows the zonal modes to retain this
energy;
(3) the factor that limits the energy absorption by the zonal
modes.

2.3 The anisotropic inverse energy cascade

The first issue, the anisotropization of the energy cascade,
has been widely discussed in the literature.Hasselmann
(1967) demonstrated that the highest frequency wave in a res-
onant triad is unstable with respect to the increasing energy
of the other two waves. This facilitates energy transfer to low
frequency waves. Later,Rhines(1975) extended this result
by making the key argument that due to the dispersion rela-
tion (4), simultaneous energy transfer to small wavenumbers
and low frequencies is only possible when the energy flux is
anisotropic and directed towards the zonal modes. This issue
has received further attention in the papers byLegras(1980);
Basdevant et al.(1981); Chekhlov et al.(1996); Huang and
Robinson(1998); Huang et al.(2001) and others. A new
view of flow zonation has been presented recently byBalk
(2005). Exploring a new invariant for inviscid 2-D flows with
Rossby waves (Balk, 1991), he has shown that the transfer of
energy from small to large scales is such that most of the
energy is directed to the structures withφ→±π/2, i.e., the
zonal jets.

The anisotropization of the inverse energy cascade has
been demonstrated directly using the results of direct numer-
ical simulation (DNS) of theβ-plane turbulence byChekhlov
et al.(1996). They considered the enstrophy transfer function
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86 Anisotropicβ-Plane Turbulence and Zonal Jets

Fig. 1. Normalized spectral energy transfer,
T E(k|kc)/max|TE(k|kc)|, for kc=50.

T�(k, t) in Fourier space as derived from the enstrophy evo-
lution equation,[
∂

∂t
+ 2νok

2
]
�(k, t) = T�(k, t), (14)

where�(k, t) is the vorticity correlation function. The spec-
tral enstrophy transfer is given by

T�(k, t) = 2πk<

{∫
p+q=k

dp dq
(2π)2

×
p × q
p2

〈ζ(p, t)ζ(q, t)ζ(−k, t)〉
}
, (15)

where < denotes the real part. To compute the spectral
energy flux, we introduce a cutoff wavenumberkc and re-
fer to the modesk<kc as explicit and the modesk>kc as
implicit. Note that the energy source resides in the im-
plicit modes. Using the DNS data,Chekhlov et al.(1996)
have calculated thek-dependent spectral energy transfer,
TE(k|kc)=T�(k|kc)/k

2, from all implicit modes to a given
explicit modek. Following the ideas ofKraichnan(1976),
the integral in Eq. (15) is evaluated by extending the inte-
gration only over all such triangles(k, p, q) thatp and/or
q are greater thankc. Figure1 showsTE(k|kc) for the sim-
ulation DNS3 byChekhlov et al.(1996) with an arbitrarily
set value ofkc=50 (<kβ) (the hole in the middle of the
Fig. 1 indicates that the energy front had not yet reached
those wave numbers). There is a striking difference between

energy transfer to zonal modeskx→0 and the rest of the
modes. One can see that most of the energy flux is directed
towards the zonal modes; a trend that dramatically increases
as k decreases. The energy concentration in zonal modes,
or zonation, results in increasing anisotropization of the flow
field which, however, never attains a fully degenerated one-
dimensional state. Weakx-dependency is necessary to main-
tain nontrivial nonlinearity that sustains the anisotropic trans-
fer. In addition, non-zonal modes continue to adhere to the
KBK spectrum.

As discussed inHuang et al.(2001), in the process of zona-
tion the energy flux is funneled, through the narrow wedge
between the dumbbell shape (5) and the zonal axis, into flow
configurations withkx→0. The nonlinear interactions that
lead to the formation of zonal jets could be spectrally non-
local. The large-scale wave modes enclosed inside the dumb-
bell shape do not play a significant role in maintaining the
zonal jets. The latter two points have also been emphasized
in the analysis byHuang and Robinson(1998).

Note that the spectrumβ2k−5
y is somewhat counter-

intuitive because theβ-term vanishes in Eq. (1) for kx→0,
Rossby waves do not propagate in this direction, and scaling
with β would not be anticipated from considerations of the
linear dynamics. On the other hand, forkx 6=0 andk<kt , the
flow would be expected to be dominated by Rossby waves for
which β is a natural scaling parameter. However, the spec-
trum in the non-zonal directions remains KBK-like and, thus,
scales withε rather thanβ. This peculiar behavior stems
from strong nonlinearity and anisotropy of the vorticity equa-
tion (1).

2.4 The mechanism of the energy retention in zonal jets

The second and the third issues above will be touched upon
briefly; more general discussions can be found inHuang et al.
(2001) and inGalperin and Sukoriansky(2005). Analyzing
the evolution of the zonally-averaged zonal velocityU(y, t)
one finds that initially, the zonal jets are nearly symmetric
with respect to the reflectiony→−y. However, as time pro-
gresses, the jets develop strong asymmetry; eastward jets are
sharp and narrow while westward jets are smooth and wide,
in accordance with other simulations (Vallis and Maltrud,
1993; Manfroi and Young, 1999). In plane parallel invis-
cid flows withβ=0, the linear stability is controlled by the
Rayleigh criterion that requires the profileU(y) to have no
inflection points. Whenβ 6=0, this criterion is generalized
into the Rayleigh–Kuo criterion according to which, in lin-
early stable flows, the profileU(y, t)−β y2/2 should have
no inflection points. Indeed, the examination of the second
derivativeUyy(y, t) in simulations byChekhlov et al.(1996)
demonstrates that the Rayleigh–Kuo criterion does hold, as
it did elsewhere (Vallis and Maltrud, 1993). As long as the
effect of the large scale drag remains small, excitation of pro-
gressively smaller wavenumber modes leads to a diminishing
number of jets, in agreement with other simulations (Panetta,
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1993). The extended Rayleigh–Kuo stability criterion can
be identified as the primary mechanism that enables zonal
modes to retain the energy funneled there by the anisotropic
energy transfer.

2.5 The upper limit of the energetic capacity of zonal
modes

To address the third issue above, one needs to consider triad
interactions in the integral in Eq. (15). Interactions be-
tween the modes enclosed inside the dumb-bell shape (5) are
hampered by the necessity to satisfy the resonance condi-
tion ωp+ωq+ω−k=0 in addition to the triad selection con-
dition p+q−k=0 (Holloway and Hendershott, 1977). Using
a spectral closure theory,Huang et al.(2001) have shown
that when the zonal spectrum reaches thek−5 slope, the res-
onance condition is relaxed and direct interactions between
the wave modes inside the dumb-bell shape and the zonal
modes become possible. This would facilitate direct energy
exchange between Rossby waves and zonal flows. In this
sense, the zonostrophic regime is unique and constitutes an
attractive and stable manifold for 2-D turbulence withβ-
effect. For the same reason, Eq. (7) can be referred to as
an equilibrium, or saturation spectrum. The presence ofβ in
that spectrum can be understood as a result of strongly non-
linear and anisotropic interaction between Rossby waves and
zonal flows.

The three aforementioned mechanisms are basic compo-
nents of the zonostrophic regime; they are characteristic of
both time-dependent and steady-state flows. The latter, how-
ever, include one more non-trivial element, a large-scale
drag, which may have a significant impact upon the flow
field. These flows are also more pertinent for real-world sit-
uations and will be considered next.

2.6 Steady-state simulations

When large-scale drag is present, the balance between the
small-scale energy injection and large-scale energy with-
drawal makes a steady-state solution possible. However, the
physical nature of this solution remains controversial. While
Galperin et al.(2001); Sukoriansky et al.(2002) andGalperin
and Sukoriansky(2005) have found that in a certain range of
parameters, the steady-state solution develops universal fea-
tures,Danilov and Gurarie(2004) andDanilov and Gryanik
(2004) arrived at an opposite conclusion. The issue of the
universality of the zonostrophic regime requires some clarifi-
cation. The governing equation (1) represents a strongly non-
linear, anisotropic system with waves whose complicated be-
havior is affected by the details of the forcing, boundary con-
ditions, large-scale drag parameterization, etc. It is hoped,
however, that, similarly to the classical Kolmogorov regime
in three-dimensional (3-D) turbulence or KBK regime in 2-
D turbulence with no rotation, 2-D turbulence with aβ-effect
also possesses a regime that can be described by a small sub-

set of the most intrinsic parameters, i.e., a universal regime.
This regime can be identified as zonostrophic. It is clear that
a universal regime is an idealization which, nevertheless, is
useful for understanding and quantification of the basic dy-
namics of the system under consideration. A dimensional
analysis of a zonostrophic system was presented inSukori-
ansky et al.(2002). To further elaborate the universality of
the zonostrophic regime, the following basic issues need to
be addressed:
(i) the sensitivity of the steady state to the functional repre-
sentation of the large-scale friction;
(ii) the sensitivity of the steady state to the parameterization
of the small-scale dissipation;
(iii) the sensitivity of the steady state to the representation of
the small-scale forcing.

2.7 The large-scale friction parameterization

With regard to issue (i), recall that the large-scale friction pa-
rameterization has a strong effect on the flow field even in
non-rotating 2-D turbulence.Borue(1994) conducted long-
term simulations of 2-D turbulence in the energy range; he
employed drag representation based upon a high-power in-
verse Laplacian, or hypofriction. During the initial evolution,
a KBK regime was established. However, as time elapsed,
the KBK spectrum became distorted and eventually disap-
peared.Borue(1994) concluded that the KBK regime is ir-
reproducible in long-term simulations due to intrinsic insta-
bilities. The reproducibility of the KBK regime was care-
fully re-evaluated bySukoriansky et al.(1999) who revealed
that the culprit of the problem was the hypofriction that, by
suppressing the energy of low wave-number modes, distorts
the inverse energy cascade and causes gradual energy accu-
mulation in the unsuppressed modes. As a result, the entire
flow field undergoes restructuring and eventually grows away
from the KBK regime (Sukoriansky et al., 1999, 2002; Suko-
riansky and Galperin, 2005). Sukoriansky et al.(1999) have
derived a large-scale drag parameterization that did not dis-
tort the inverse cascade. Employing this parameterization,
they were able to maintain the KBK regime practically in-
definitely, thus positively asserting its reproducibility. The
functional representation of the large-scale friction derived
by Sukoriansky et al.(1999) turned out to be close to the
linear (Rayleigh) drag. Similar calculations have not been
performed for 2-D turbulence with aβ-effect, so it will be
assumed here that, in the first approximation, the large-scale
friction can be represented by the linear drag also in this case.

2.8 The small-scale dissipation and the enstrophy range

The importance of the issue (ii) in simulations of 2-D tur-
bulence with an inverse energy cascade is underscored by
the fact that small-scale vortices of the size of the forcing
scale may impinge upon the energy range and cause devia-
tions from the KBK regime (Maltrud and Vallis, 1991). It is
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Fig. 2. Parameter space of different flow regimes inβ-plane tur-
bulence. The vertical axis shows the number of jets,njet, which
is equal to the wave number with the maximum energy. The filled
(red) dots mark simulations in which the zonostrophic regime with
CZ'0.5 had been established; the unfilled triangles and stars show
simulations lacking the universal regime. The large right triangle
formed by the dashed lines delineates the parameter range con-
ducive to the establishment of the zonostrophic regime.

important, therefore, to specify a relatively large dissipation
capable of fully suppressing the enstrophy range (Maltrud
and Vallis, 1991; Sukoriansky et al., 1999, 2002).

2.9 The small-scale forcing in 2-D simulations

In real systems, the energy sources are always related to 3-D
processes. Since these processes are excluded in purely 2-D
simulations, the forcing is introduced artificially, via random
excitation of a number of small scale modes. Given computer
limitations on the number of modes that can be resolved,
such forcing may be acting on scales strongly affected by a
β-effect which would result in loss of universality of the flow
field. The issue (iii) above pertains to precisely such situa-
tion and is concerned about the relative location of the forc-
ing and transitional wave numbers,kξ andkβ , respectively.
We have investigated this issue in a new series of simulations
and found out that for the establishing of the zonostrophic
regime it is necessary thatkξ be sufficiently larger thankβ
as described in the next section, otherwise the emerging flow
regimes are prone to a non-universal behavior. This condi-
tion can be understood as a requirement that the forcing acts
on relatively small scales where aβ-effect is weak.

2.10 A parametric study of the zonostrophic regime

A new series of simulations was dedicated to studies of the
nature of various steady-state regimes in a wide range of pa-
rameters. A comprehensive description of these simulations
will be given elsewhere; here, we provide a brief summary of

the pertinent results. Recall that the steep zonal spectrum re-
sults in a very slow evolution of the flow field; a fact already
noticed in unsteady simulations. Ifτ is the characteristic time
scale of the (linear) large-scale drag, then the establishment
of a steady state has a duration of about 10τ , while to as-
semble sufficient statistics for spectral analysis, one needs to
extend the integration to about 100τ (Galperin and Sukorian-
sky, 2005). All simulations performed in our new study had
a duration between 35τ and 100τ . The friction time scale,τ ,
can be related to a large-scale friction wave number,nf r , if
we notice that a typical zonal spectrum in steady-state sim-
ulations features a steep inertial range and a relatively flat
plateau at the smallest wave numbers affected by the large-
scale friction. The wave number,nf r , can be identified with
the transition from the steep spectral slope to the plateau and
quantified in terms ofτ (Galperin et al., 2001; Sukoriansky
et al., 2002). In some cases,nf r can be associated either with
the wave-number at whichE(n) attains its maximum value
or with njet, the number of the alternating jets.

Our simulations have revealed that the parametric range
admitting a steady-state zonostrophic regime withCZ'0.5
is restricted by the following conditions:
(I) the forcingξ acts on relatively small scales only weakly
affected by theβ-related anisotropy, such thatnξ/nβ&2;
(II) the extent of the inertial range should be large enough,
nβ/nf r&4;
(III) the large-scale drag should be relatively small yet large
enough to prevent the accumulation of energy in the largest
available modes, such thatnf r>3 (in units of a sphere with
R=1);
(IV) the small-scale dissipation should be large enough to
virtually suppress the enstrophy subrange, i.e., the ratio of
characteristic length scales of the dissipation and the forcing,
nξ/nd , should be slightly smaller than 1. The characteristic
dissipation length scale, 1/nd , can be determined by equat-
ing its characteristic time scale to that of a wave-number
somewhat larger thannξ . Then, the dissipation parameters
can be adjusted in such a way as to attain the desirable target
value of the rationξ/nd . In our simulations, this ratio was
kept close to 0.7.

Summarizing the criteria formulated in (I)–(III), one ar-
rives at a chain inequality delineating the parametric range
of the zonostrophic regime:

nξ & 2nβ & 8nf r & 30. (16)

The criterion (IV) is important for purely 2-D simulations but
has less significance in real flows where the energy sources
are almost always associated with scales affected by three-
dimensionality and vortex stretching.

Results of our simulations are summarized in Fig.2. All
runs complying with the criteria (I)–(IV) are marked by filled
dots. The dots are concentrated within a triangle demarcated
on Fig. 2 by dashed lines. This triangle delineates a para-
metric range in which the flow had attained the zonostrophic
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regime withCZ'0.5. On the other hand, the unfilled trian-
gles and stars pertain to flows in which at least one of the
criteria (I)–(IV) was violated. All such flows were found to
lack universal behavior. Most of the simulations byDanilov
and Gryanik(2004) andDanilov and Gurarie(2004) belong
in the latter group. In addition, all of their simulations were
almost certainly of insufficient duration to enable “universal”
flows to develop to full maturity. We have replicated some of
these simulations; those satisfying criteria (I)–(IV) produced
smoother spectra, Eqs. (7), (8), with CZ'0.5 when aver-
aged over longer times. Note that in all simulations with the
zonostrophic regime, the flow field exhibited slow variability
which yielded, upon long-time averaging, smooth zonal and
residual spectra. This result points to the stochastic nature of
the flow field. In the framework of a general theory, the issue
of stochasticity has important implications for the universal-
ity of the flow regime. Clearly, if the large-scale structures
were quasi-deterministic, as asserted inDanilov and Gurarie
(2004) andDanilov and Gryanik(2004), then the quest for
the universal statistical behavior would be meaningless.

It is of interest to find out about the fate of the “moving
energy front,” Eq. (12), and the Rhines scale, Eq. (10), in
steady-state flows. Recall that in such flows, the zonal spec-
trum is comprised of the steep inertial part given by Eq. (7)
for n>nf r and an approximate plateau forn<nf r . Noting
that in flows with a well developed spectrum (7) most of the
energy is contained inEZ(n), their total kinetic energy is es-
timated by integrating this spectrum from 0 to∞ (Galperin
et al., 2001),

Etot = (5CZ/4)(�/R)
2n−4
f r . (17)

Explorations of the planetary energetics based upon Eq. (17)
are given inGalperin et al.(2001) and Sukoriansky et al.
(2002). SubstitutingU=(2Etot)

1/2 in the definition of the
Rhines’s number,nR=(β/U)1/2, and replacingβ by �/R,
we obtain

nR =

(
5

4
CZ

)−1/4

nf r ' nf r . (18)

A comparison of this result with Eq. (10) shows that, while
in unsteady flowsnR designates the moving energy front, in
steady-state flows the advance of this front is terminated by
the large-scale friction at wave numbernf r at which point
the spectrum flattens out. The wave numbersnf r'nR show
the “final destination” of the moving energy front; they both
demarcate the low wave-number terminus of the spectral
range with the−5 slope. Note that since the spectrum (7) is
very steep, most of the energy is concentrated in the lowest
modes with the−5 spectrum, i.e., around the wave-number
nf r . Therefore,nf r determines the signature of the veloc-
ity profile and, thus, the number of the zonal jets (Galperin
et al., 2001). Using unforced inviscid simulations on a rotat-
ing sphere,Menou et al.(2003) have estimated the number

Fig. 3. Schematic representation of energy transfers in a two-layer
system (afterSalmon, 1998, andRead, 2005).

of zonal bands/jets asNband∼1/(2Ro)1/2, where the Rossby
number,Ro, is given by

Ro ≡
U

�R
. (19)

EvaluatingU , as before, from Eq. (17) and substituting it in
Eq. (19), we findNband'Rnf r thus demonstrating the con-
sistency between our definitions of the number of zonal jets
and that ofMenou et al.(2003). However, since the spectra
have not been computed inMenou et al.(2003), it is difficult
to judge whether or not the zonostrophic regime was attained
in those simulations.

3 Barotropic mode in stratified flows

The flows considered so far were idealized, two-dimensional
and barotropic. Real-world flows are more typically three-
dimensional and baroclinic. Would it not be an over-
simplification to seek for characterization of the latter by
the former? Consideration of the normal-mode representa-
tion allows one to establish an appropriate framework for
such a characterization. In accordance with the Taylor-
Proudman theorem, strong rotation results in a tendency to-
wards two-dimensionalization of planetary flows on large
scales. On even larger scales, theβ-effect leads to horizontal
anisotropization and zonation. As demonstrated bySalmon
(1998) on an example of a two-layer system (see alsoRhines,
1979; Read, 2001, 2005) and schematically represented on
Fig. 3, large-scale thermal forcing, via baroclinic instabil-
ity at the scales of the first baroclinic deformation radius
LRo∝1/nRo, leads to energy transfer to a barotropic mode
which is independent of vertical coordinate and, thus, be-
haves like 2-D turbulence. If the baroclinic-barotropic en-
ergy conversion takes place on sufficiently small scales, and
the radius of the planet is sufficiently large, i.e., the Burger
number is small,Bu≡(LRo/R)2�1, then the barotropic
mode can develop an anisotropic inverse energy cascade for
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Fig. 4. Schematic cross-section of the experimental rig used for the
Grenoble experiment to demonstrate anisotropic zonation.

n<nRo and, thus, acquire features of barotropic 2-D turbu-
lence with aβ-effect. The criteria (I)–(IV) identified in the
previous section as necessary conditions for the development
of a universal flow regime in steady-state simulations can
now be applied to the barotropic mode. Let us assume that
even if the flow has additional forcing mechanisms that dif-
fer from the baroclinic instability, their scale does not exceed
LRo, i.e.,nξ&nRo. Using this assumption, we can extend the
criterion (16) to the barotropic mode of baroclinic flows,

nξ & nRo & 2nβ & 8nf r & 30. (20)

The chain inequality (20) sharpens the criterionBu�1 and
rectifies the conditions that can bring to life the zonostrophic
flow regime.

Let us now turn to validating the criterion (20) versus data
collected in laboratory experimentation and from observa-
tions of the large-scale planetary and terrestrial circulations.
Flows with smallBu and a topographicβ-effect have re-
cently been created in the world’s largest rotating tank, the
Coriolis turntable, in Grenoble, France. The Grenoble ex-
periment will be described in detail in the next section. In
the natural environment, flows with small values ofBu and
nf r/nβ abound in the atmospheres of the outer planets and
in the terrestrial oceans. These flows are analyzed in Sects.5
and6, respectively.

4 The Grenoble experiment

While results from clean and carefully formulated idealized
numerical experiments can provide valuable insights from
the viewpoint of basic theory, various assumptions made
in their formulation need to be tested and evaluated under
more physically realizable conditions. Laboratory experi-
ments provide the best well-controlled environment in which
to investigate dynamical phenomena in a real fluid, provided
appropriate dynamical similarity can be achieved. In the case
of turbulent zonation on aβ-plane, although a basic analog
of the β-plane can be produced in a rotating fluid by use
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s−1) as a function of radius during the development of zonation in
a convectively driven flow on a topographicβ-plane.

of sloping bottom topography, the requirements for dynami-
cal similarity in the laboratory turn out to be very stringent,
particularly with regard to achieving conditions under which
viscous friction is sufficiently weak to allow for a significant
turbulent inertial range to develop. Thus, although some hint
of zonation effects has been evident in several small-scale ex-
periments in the past (Mason, 1975; Bastin and Read, 1998;
Sommeria et al., 1991), none of these were able to produce
fully-developed zonal jets and anisotropic spectra exhibiting
the properties discussed above, mainly because viscous dis-
sipation was too strong and exerted a significant influence
even at the energy injection scales (produced either by forced
source-sink vortices or baroclinic instability).

Recently,Read et al.(2004) have conducted an experi-
ment in a very large (13 m diameter) rotating tank with both
strong rotation and a topographicβ-effect. The small-scale
forcing was delivered via unstably-stratified convection, pro-
duced by carefully spraying a continuous film of dense, salty
water over the water surface. This generated a field of small
convective plumes with a horizontal scale of around 15 cm,
which were transformed into vortices via interaction with the
background rotation. The basic experimental arrangement is
illustrated in Fig.4. A sloping bottom with depth increas-
ing with radius (see Fig.4) was produced with a stretched
fabric sheet mounted on a conical tubular frame in the base
of the tank. Both downward sloping and flat bottom config-
urations were investigated (though a slight upward slope in
the free upper surface was unavoidable due to the centrifu-
gal distortion produced by the background rotation; but this
never exceeded 0.6◦ at mid-radius).

The flow field was measured over a 3.5×2.5 m region at
regular intervals by particle image velocimetry (PIV), and
some measurements were made of the vertical density profile
at mid-radius using a conductivity probe. The tank could be
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rotated at up to�=π/20 rad s−1, corresponding to a Burger
numberBu∼5×10−4, and the forcing maintained for up to
4–6 h continuous operation.

When a flat bottom was used, the convective eddies were
found to grow in size during the initial development of the
flow until the annular channel was occupied by a small num-
ber of weak domain-filling vortices, superimposed upon a
broad, weakly retrograde zonal flow produced by residual
wind-stress effects at the free upper surface. When a 5◦

sloping bottom was used, however, the vortex field which
developed from the initial convection grew to a maximum
size of around 1 m, in association with a persistent pattern
of alternating prograde and retrograde zonal jets, also with
a radial spacing of around 1 m. An example of this zonally-
organized flow is shown in Fig.5, in which the azimuthal
flow is contoured and velocity vectors superposed at around
the mid-depth of the tank. The coherent pattern of parallel,
zonally-oriented jets is clear, with an amplitude of around
0.5 cm s−1.

Despite the baroclinic nature of the convective forcing, the
rotationally-modified response, at least on large scales, was
strongly barotropic. Figure6 shows horizontal maps of the
kinetic energy of the vertically averaged flow and that of the
vertically-varying fluctuations for an example of a fully de-
veloped flow (in fact with a flat bottom, though similar results
were also obtained with a sloping bottom), measured by PIV
at 5 levels in the vertical spanning the depth of the tank. The
horizontal (vector) velocity field was first averaged in the ver-
tical at each horizontal grid point and the mean and standard
deviation of each velocity component was then used in turn to
compute maps of vertical mean kinetic energy and that of the
vertically-varying fluctuations. The fluctuation field is much
less energetic than the mean field and is dominated by small
scale features (with a typical diameter of 10–15 cm), repre-
senting the scales of the individual convective plumes. In
contrast, the mean field is at least 5–10 times more energetic
than the fluctuations and evidently dominated by large scales,
representing the rotationally-modified field of barotropic jets
and vortices.

The clear change in the zonal structure of the horizontal
flow by imposing the sloping bottom topography was also re-
flected in the kinetic energy spectra. Figure7 shows the time-
mean spectrum obtained with a sloping bottom, in which the
total kinetic energy density (integrated over all directions)
decreases with increasing wavenumberk, but saturates to a
near constant value fork less than a limiting value (corre-
sponding roughly to a frictional wavenumberkf r ). The eddy
contribution to the kinetic energy density shows an initial
spectral slope (betweenk=15 and 30 m−1, cf. an energy in-
jection scale of aroundkξ=40 m−1) corresponding roughly
to the classical−5/3 KBK spectrum. In contrast, the zonal
mean spectrum (along thekθ=0 axis, whereθ is azimuth)
initially shows a much steeper fall-off beyond akf r of around
10 m−1, with a gradient of around−3 to−5, approaching the
−5 suggested by the predictions of the theory above. More-

Fig. 6. Instantaneous (horizontal) kinetic energy field and fluctua-
tions at mid-depth as a function of radius and azimuth during the
development of a convectively driven flow with a flat bottom in the
Grenoble experiment (Read et al., 2004).

over, the magnitude of the zonal mean kinetic energy spec-
trum is also roughly consistent withCZ'0.5 as suggested
above, as indicated by the solid line with slope−5 in Fig.7.

These trends were not evident in the flat bottom case
(cf. Read et al., 2004), for which the spectrum was generally
shallower than the KBK−5/3 slope and the zonal spectrum
was dominated by wind-stress effects, greatly exceeding the
strength suggested from the theory outlined above.

Although the spectra and other features of the sloping
bottom experiment exhibit various characteristics of the
anisotropic flow regime introduced above, they also exhibit
various other features which depart from this ideal behav-
ior. This is not unduly surprising, given the difficulties in
satisfying the criteria represented by Eq. (20) under labo-
ratory conditions, even on the largest available experimen-
tal facility. By use of the convective forcing mechanism,
kξ∼kRo∼40 m−1. The frictional wavenumber seems to sat-
isfy the last inequality of Eq. (20) comfortably, and frictional
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effects are dominated by scale-invariant laminar Ekman bot-
tom friction. The conditions concerningkβ , however, are
more problematic. Based on an estimate ofε∼5×10−10 m2

s−3 (∼ one quarter of the ratio of the measured total kinetic
energy and the Ekman spin-down timescaleτE), kβ is esti-
mated at around 15 m−1. Given thatkf r∼10 m−1, this leaves
little room to obtain a fully developed, anisotropic, inverse
energy inertial range. Moreover, the maximum duration of
the experiments of 4–6 h was probably insufficient to allow
the turbulent flow field to evolve to full maturity. Neverthe-
less, it seems clear that this experiment has come the closest
so far in the laboratory to achieving the conditions required
for the zonostrophic flow regime dominated by a topographic
β-effect. It will be difficult to improve significantly upon this
experiment in the future unless the rotation rate can be sub-
stantially increased, which is a significant engineering chal-
lenge.

5 Anisotropic turbulence and large-scale circulation on
giant planets

Large-scale circulations in the cloud layers of the outer
planets are good candidates for the development of the
zonostrophic flow regime for the following reasons:

(1) large-scale planetary flows are two-dimensionalized due
to the actions of strong rotation and weak density stratifica-
tion;

(2) the outer planets are gaseous and do not have solid
boundaries, their large-scale friction is therefore relatively
low;
(3) convective cells, solar and/or internal heating may pro-
vide the necessary small-scale forcing that would give rise
to an anisotropic inverse energy cascade towards planetary
scales;
(4) the Burger number is small for all outer planets. This
issue requires some clarification. According toMenou
et al. (2003), for example, a Burger number, based upon an
externaldeformation radius,LE , is smaller than 5.6×10−2

for all giant planets. Note, however, thatLE (given by
LE=(gD)1/2/f , where g is the gravity acceleration and
D is the pressure scale height of an atmospheric layer)
represents the length scale of geostrophic adjustment in the
shallow water approximation (Gill , 1982). The analysis in
Sect.3 employsBu calculated for the firstinternal (baro-
clinic) deformation radius,LD, characterizing the scale of
baroclinic instability and defined asLD=NH/f , whereN
is the Brunt-V̈ais̈alä frequency andH is the depth of a stably
stratified layer. Using an estimateN∼[(g/ρ0)(|1ρ|/H)]1/2,
whereρ0 is the reference density and|1ρ| is a measure of
the density deviation from the adiabatic lapse rate across the
stable layer, find thatLD/LE∼[(H/D)(|1ρ|/ρ0)]

1/2. Since
for most situations,H/D<1 and|1ρ|/ρ0�1, one concludes
that LD/LE<1. In the absence of any knowledge of the
deep vertical stratification on the giant planets, one cannot
determine accurate values of that ratio; however, a rough
estimate,LD/LE∼1/10, is sufficient and plausible enough
for the present purposes. For comparison, for Jupiter, for
example, the Galileo Probe found evidence for weakly stable
stratification (≤0.1 K km−1) averaged over the 1–20 bar
range in pressure (Magalhaes et al., 2002). This would
suggest a first baroclinic deformation radius of no more than
a few thousand km, implying a Burger number of∼3×10−3

or less (an estimate of the same order of magnitude has been
given byLi et al. (2006) based upon a number of studies over
the last 25 years). Similar conditions are likely to prevail on
the other outer planets. The small values ofBu leave open
the possibility for flow barotropization and development of
the anisotropic inverse cascade in the barotropic mode;
(5) the inertial range is large sincenβ/nf r&10;
(6) smallnf r allows for considerable energy accumulation in
the barotropic mode. The barotropic mode is thus expected
to dominate the cloud movement and determine the shape of
the cloud tracks.

Spectral analysis of zonal flows on the outer planets holds
a key to answering the question whether or not their large-
scale atmospheric circulations are consistent with the zono-
strophic regime. Such analysis was performed using obser-
vational data from Voyager 1 and 2 and Hubble Space Tele-
scope; its results are summarized on Fig.8 (afterSukoriansky
et al., 2002). As one can see, theoretical and observed spectra
agree in both slope and the amplitude. A detailed discussion
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of the spectra and the planetary energetics can be found in
Galperin et al.(2001); Sukoriansky et al.(2002); Galperin
and Sukoriansky(2005).

5.1 Equatorial jets

Numerous simulations with the 2-D vorticity equation on
the surface of a rotating sphere have consistently produced
westward equatorial jets (Cho and Polvani, 1996; Huang
et al., 2001) although some of the simulations byHuang and
Robinson(1998) did yield eastward jets. The westward jets
are consistent with the circulation patterns on Uranus and
Neptune, but they are opposite to the equatorial jets observed
on Jupiter and Saturn. The seeming inability of the 2-D mod-
els to produce eastward equatorial jets could indeed be a se-
rious limitation of these models (Vasavada and Showman,
2005; Li et al., 2006). One of the issues investigated in our
series of new long-term simulations described in the section
2.6 and shown in Fig.2 was the direction of the equatorial
jets which developed; the results are summarized in Fig.9.
The simulations revealed that the flow pattern was slowly
meandering as a whole in the north-south direction such that
the equatorial jets could be either eastward or westward;
there were even situations when the equatorial velocity was
zero. Slow fluctuations of the flow field are manifestation of
the stochastic nature of turbulence with aβ-effect. To fully
explore the question of stochasticity of the large-scale cir-
culation on giant planets, long observational records, of the
order of the time scale of the large-scale friction, would be
required. However, such data is a matter of the remote future.
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An interesting insight into this problem from the viewpoint
of the large-scale turbulence dynamics could be gained in the
near future from the spectral analysis of the high-resolution
circulation data collected by the Cassini mission for Jupiter
and Saturn. A mission similar to Cassini could provide the
same kind of data for Uranus and Neptune (Beebe, 2005).

Summarizing, let us emphasize that the existing opinion
that the equatorial jets produced in barotropic simulations
are always directed westward is fallacious although a certain
preference to the formation of westward jets has been no-
ticeable. Note also that the simulated equatorial jets are not
necessarily symmetric with respect to the equator; this fact
has been addressed in some discussions of the circulation on
Uranus (Karkoschka, 1998; Hammel et al., 2001, 2005; Sro-
movsky and Fry, 2005).

In fact, equatorial jets on the outer planets may be more
complicated phenomena than can be captured in a purely
barotropic model although there has been a recent attempt
to represent the general atmospheric circulation on Jupiter
as a superposition of the barotropic flow at relatively high
latitudes and a deep rotating convection in the equatorial re-
gion (Heimpel et al., 2005). Generally, however, the cloud-
level jets on both Jupiter and Saturn, for example, do not
exhibit simple maxima in zonal or angular velocity at the
equator itself, but produce a relatively flat profile close to
the equator with some evidence for secondary maxima inŪ

displaced either side of the equator and a localminimumon
the equator itself. Moreover, the velocity structure is found
to change substantially in the vertical (e.g.Flasar et al., 2004)
into the stratosphere, indicating some baroclinic character. In
the case of Saturn, the flow may also vary significantly with
time (e.g.Sánchez-Lavega et al., 2003), though the observed
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Fig. 10.Meridional cross-section through a baroclinic equatorial jet
in an idealized 3-D numerical simulation of Jupiter’s upper tropo-
sphere and stratosphere byYamazaki et al.(2005).

variations may be due in part to fluctuations in cloud height
as well as actual variations in the strength of the equatorial
jet.

In an attempt to take this detailed structure into account,
Yamazaki et al.(2005), for example, have recently pro-
duced a baroclinic equatorial jet in numerical simulations
involving angular momentum transport by both zonally-
symmetric latitude-dependent heating (a Hadley circulation)
and equatorially-trapped Kelvin waves. Figure10 shows the
result of such a combination of Hadley and Kelvin wave pro-
cesses in producing a complex zonal velocity profile at cloud
levels with a local minimum on the equator, much as ob-
served. It does, however, imply a strongly baroclinic struc-
ture below the clouds, for which there is as yet little observa-
tional evidence either way.

6 The ocean-Jupiter connection

Eddy-permitting simulations of general oceanic circulation
have consistently revealed systems of subsurface narrow
zonal jets filling the entire ocean domain; see, e.g.,Treguier
et al. (2003) for the Atlantic, Nakano and Hasumi(2005)
for the North Pacific, andMaximenko et al.(2005) for the
global ocean. The signature of narrow zonal jets has also
been detected in the maps of the surface geostrophic currents
obtained from satellite altimetry (Maximenko et al., 2005).
Comparing the visual appearance of the alternating zonal jets
on the outer planets and in the ocean, Fig.11, Galperin et al.
(2004) have questioned whether or not their resemblance
could be more than just coincidental. To answer this ques-
tion, a spectral analysis of a 5-year long model-generated
dataset of the North Pacific circulation (Nakano and Hasumi,

Fig. 11. (a)Composite view of the banded structure of the disk of
Jupiter taken by NASA’s Cassini spacecraft on 7 December 2000
(image credit: NASA/JPL/University of Arizona);(b) zonal jets at
1000 m depth in the North Pacific Ocean averaged over the last five
years of a 58-year long computer simulation (Nakano and Hasumi,
2005). The initial flow field was reconstructed from the Levitus cli-
matology; the flow evolution was driven by the ECMWF climato-
logical forcing. Shaded and white areas are westward and eastward
currents, respectively; the contour interval is 2 cm s−1.

2005) was performed. In order to facilitate this calculation,
a 60◦ longitude sector of the Pacific was extracted from the
original simulation. This sector was repeated 6-fold in the
northern hemisphere, mirror-reflected relative to the equa-
tor and repeated 6 more times in the southern hemisphere
so as to assemble a continuous quasi-global dataset on the
sphere. A spectral analysis of this dataset was performed us-
ing the spherical harmonics decomposition; it yielded both
zonal and residual spectra (Galperin et al., 2004). The cal-
culated spectrum was averaged over the last 5 years of a 58-
year long integration which was initialized using the Levi-
tus climatology. As the simulated jets exhibit an equivalent
barotropic structure, the analysis is based on the vertical av-
erage from the surface to 500 m depth (as noted inPicaut and
Sombardier(1993) andWunsch(1997), the density field in
the top 600 m of the water column is most important in com-
putation of the normal modes). The results of the spectral
analysis are shown in Fig.12. The averaged zonal and non-
zonal oceanic spectra are presented in Fig.12a. A −5 slope
is immediately evident for the zonal flows. Similarly to the
case of giant planets (Figs.12b and c), this slope extends up-
ward to the dominant scale of the zonal jets yet for smallern

the spectrum becomes flat. The universality ofEZ(n) is sup-
ported not only by the−5 slope, but also by the constancy of
CZ'0.5 for all cases. The energy spectrum for the nonzonal
components,ER(n), exhibits a slope close to−5/3 over the
rangen=60−120. The departure ofER(n) from the−5/3
slope forn>120 could be attributed to various factors, such
as the interaction between barotropic and baroclinic modes,
the effect of direct forcing, damping by the bottom topogra-
phy, etc. Based upon extensive observational data,Zang and
Wunsch(2001) have calculated zonal wave-number spectra
of zonal and meridional velocity components (their Fig. 17).
Although the definition of those spectra differs from the def-
inition used in this study, one can still discern a much steeper
slope in the spectrum of the zonal velocity with the dispar-
ity between the spectra at small wave numbers and the zonal
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Fig. 12. Averaged and instantaneous zonal (thick solid lines) and
non-zonal (thin solid lines) energy spectra on rotating planets with
smallBu (top row) and in barotropic 2-D simulations on a rotating
sphereSukoriansky et al.(2002) (bottom row); the high wave num-
ber spikes on the latter correspond to the small-scale forcing. All
spectra are non-dimensionalized such thatEZ(1)=CZ . Idealized
−5 (thick dashed lines) and−5/3 (thin dashed lines) slopes are su-
perimposed, based upon Eqs. (7) and (8), withCZ'0.5,CK'5 and
ε'10−10m2 s−3.

spectrum being about an order of magnitude larger. This re-
sult is consistent with our Fig.12a. We would also emphasize
that both zonal and residual spectra of the horizontal currents
have been obtained here from fully 3-D, realistic simulations
of the circulation in the north Pacific rather than from ide-
alized barotropic 2-D simulations used so far in theoretical
studies. Note in addition that the barotropization on the lat-
itudinal scale of the zonal jets’ width expected in flows with
small Bu has been detected in simulations (Panetta, 1993;
Williams, 2003; Nakano and Hasumi, 2005) as well as in
ocean observations (Hall et al., 2004).

The spectraEZ(n) andER(n), obtained from a model of
2-D flow on a rotating sphere (Sukoriansky et al., 2002), are
shown in Fig. 12e for comparison; they are averaged over
about 300 years. As could be expected, longer averaging pro-
duces smoother spectra. Since, as can be shown by simple
energy balance arguments (Galperin et al., 2001), the char-
acteristic time of the large-scale variability on Jupiter and
Saturn is larger than the time of observations, the observed
zonal spectra on these planets, presented on Figs.12b and c,
are, in fact,instantaneousspectra. Finally, Fig.12d (Sukori-
ansky et al., 2002) shows a typical instantaneous zonal spec-
trum from a 2-D simulation. Large-amplitude fluctuations
are characteristic of all instantaneous spectra including those
in the ocean (not shown here).

Table 1. Parameters of large-scale circulation in various natural
flows∗.

Source nξ n∗∗
β nf r Bu

Coriolis turntable 40 15 10 5× 10−4

Oceans 400 110 60 6× 10−5

Jupiter 1000 310 16 3× 10−5

Saturn 500 270 8 4× 10−5

Uranus 400 150 3 5× 10−5

Neptune 500 140 3 6× 10−5

∗ All wave numbers are given in units of a sphere withR=1.
∗∗ In calculation ofnβ it was assumed thatε'10−8 m2 s−3 for all
giant planets

7 Conclusions

We have demonstrated that there exists a parametric range
in which 2-D turbulence with aβ-effect develops a universal
flow regime coined here a zonostrophic regime. This para-
metric range is outlined by the chain inequality (16) and is
distinguished by the anisotropic composite energy spectrum,
Eqs. (7), (8), with the coefficientsCZ'0.5 andCK'5 which
thus appear to be universal constants. This regime is main-
tained by the anisotropic inverse energy cascade that leads
to the emergence of a flow pattern of alternating zonal jets.
The lateral extent and preferred scale of these jets are de-
termined by the large-scale energy withdrawal mechanism
which is not completely understood at the present time, see
e.g.Müller et al.(2005).

A similar regime may develop in the barotropic mode of
stably stratified, 3-D, real-world flows with small values of
a Burger number which is based upon the first baroclinic de-
formation radius. The criteria (16) or (20) should also be
fulfilled for the 3-D flows. One needs to keep in mind, how-
ever, that these conditions have been derived from purely 2-
D flows which have their own specific peculiarities absent
in real 3-D flows. Therefore, these criteria are expected to
be somewhat less restrictive when applied to the real world
flows. Table1 provides a summary of the parameters typical
of various natural flows; the data used in this table is from
Read et al.(2004); Galperin et al.(2004) andGalperin et al.
(2001). The values of the Burger number for the giant planets
are calculated according to the data inMenou et al.(2003)
using the estimateLR=LE/10, established in Sect.5. The
rate of the small-scale energy input for all outer planets was
assumedε=10−8 m2 s−3. This value is smaller than 10−7 m2

s−3 as suggested inGalperin et al.(2001) and 10−5 m2 s−3

used inVasavada and Showman(2005). Both latter estimates
pertain to the total energy injection. However, a large part of
this energy becomes involved in the direct cascade and sub-
sequent viscous dissipation and only a small fraction of the
energy will be available for the inverse cascade.
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Analyzing Table1, we take note that the inertial range for
the Grenoble experiment is fairly narrow. Despite this, the
experiment serves to link together data from the outer plan-
ets, the subsurface oceanic circulation and computer simula-
tions and seems generally to confirm that all these flows are
governed by strongly non-linear dynamics with anisotropic
inverse energy cascade. In view of the limitations discussed
in Sect.4, it would be a real challenge to expand this, re-
quiring e.g. to significantly change the radius of the turntable
and/or its rate of rotation.

For the terrestrial oceans, the criterion (20) generally holds
although the inertial range is quite narrow. Note that the
large-scale friction for these flows is fairly large, leading to
nf r∼60, so that it would be generally wrong to say that the
zonostrophic regime can only develop in low-friction sys-
tems. In the terrestrial oceans, the prevalence of the zonal
energy over its meridional counterpart is not as prominent as
on the giant planets, and this explains a highly fluctuating
pattern of oceanic circulation on mesoscales.

Table1 shows that the criterion (20) is best satisfied for
the outer planets. In fact, they appear to present nearly ideal
gigantic natural laboratories where the zonostrophic regime
can materialize and be studied in all its complexity. Due to
the low large-scale friction, most of the kinetic energy of
the planetary atmospheric circulation is concentrated in the
lowest zonal modes forming a pattern of relatively few, very
stable, alternating zonal jets, particularly on the ice giants
Uranus and Neptune. Through cloud advection, these jets
manifest themselves as bands of different colors observable
from a great distance.

The last decade has been distinguished not only by signif-
icant progress in understanding of the atmospheric circula-
tion on giant planets of the Solar System but also by the dis-
covery of many planets beyond it, the so-called extra-solar
system planets, or, briefly, exoplanets. Thus, Jupiter, Sat-
urn, Uranus and Neptune are no longer the only giant planets
whose atmospheric circulation can be understood and quan-
tified within a general theory. At the present time, there
are 170 gaseous giant planets known to move around their
Sun-like stars (Burrows, 2005; the web page where the ex-
trasolar planets’ catalogue is maintained is at J. Schneider,
http://www.obspm.fr/encycl/encycl.html).

The present state-of-the-art in this area of planetary sci-
ence has been vividly presented byGuillot (2005), “We lie
on the verge of a true revolution: With ground-based and
future space-based transit search programs, we should soon
be able to detect and characterize many tens, probably hun-
dreds, of planets orbiting their stars, with hope of inferring
their composition and hence the mechanisms responsible for
the formation of planets.” This information may also enable
us to characterize the large-scale planetary circulations, at
least under some circumstances. In particular, if the circu-
lation regimes of at least some of these planets are similar
to the ones found on the giant planets of the Solar System,
then, as follows from Eq. (17), only a few parameters will

be needed for their quantification. Those parameters are the
planetary radius, the rate of rotation, and the frictional wave
numbernf r . The mass and the radius of some of the plan-
ets can presently be measured with a fair degree of accuracy
(Guillot, 2005). As explained earlier,nf r is roughly equal to
the number of bands on the planetary disc. This data, as well
as the planetary rotation rates may become available from
future space-based observations.

Finally, we note that a rigorous confirmation of the pres-
ence of the inverse energy cascade in real flows requires com-
putation of the data-based spectral energy transfer with rela-
tively high resolution of the velocity field. Such an analysis
has not been performed yet for either of the systems con-
sidered here. However, for the oceanic flows, the first steps
in this direction have been undertaken byScott and Wang
(2005). In addition to the zonal spectrum (7) it is important
to have a good estimate of the residual spectrum (8) which
is an important characteristic of the large-scale circulation in
systems with a strongβ-effect. This spectrum can be com-
puted for the Grenoble experiment and for the ocean. The
current resolution and the surface coverage are insufficient
to determineER(n) for the flows on the outer planets. One
may hope that this situation will dramatically improve when
the data from the Cassini encounters of Jupiter and Saturn
will become available, opening up numerous venues for in-
terdisciplinary, laboratory-terrestrial-planetary studies.
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