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Abstract. Oceanic and atmospheric prediction is based on
cyclic analysis-forecast systems that assimilate new obser-
vations as they become available. In such observationally
forced systems, errors amplify depending on their compo-
nents along the unstable directions; these can be estimated
by Breeding on the Data Assimilation System (BDAS). As-
similation in the Unstable Subspace (AUS) uses the avail-
able observations to estimate the amplitude of the unstable
structures (computed by BDAS), present in the forecast er-
ror field, in order to eliminate them and to control the error
growth. For this purpose, it is crucial that the observational
network can detect the unstable structures that are active in
the system. These concepts are demonstrated here by twin
experiments with a large state dimension, primitive equation
ocean model and an observational network having a fixed
and an adaptive component. The latter consists of observa-
tions taken each time at different locations, chosen to target
the estimated instabilities, whose positions and features de-
pend on the dynamical characteristics of the flow. The adap-
tive placement and the dynamically consistent assimilation
of observations (both relying upon the estimate of the un-
stable directions of the data-forced system), allow to obtain a
remarkable reduction of errors with respect to a non-adaptive
setting. The space distribution of the positions chosen for the
observations allows to characterize the evolution of instabil-
ities, from deep layers in western boundary current regions,
to near-surface layers in the eastward jet area.

1 Introduction

The growth of errors in nonlinear dynamical systems such as
the ocean and the atmosphere is governed by the trajectory
instability that characterizes chaos. Errors of various origin,
if they are not too large, eventually grow or decrease follow-
ing the unstable directions, that characterize the local geom-
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etry of the attractor. As a consequence, in cyclic observation-
analysis-forecast systems, the forecast error has an important
component on the unstable subspace, while other “unstruc-
tured” components are due to errors that have been intro-
duced recently. When correcting a model state by assimilat-
ing observations, if a suitable estimate of the unstable direc-
tions is available, this information can, and should, be used
to constrain the analysis increment. A direct way to do this
is to introduce the information on the unstable directions in
the estimate of the forecast error covariance matrix, that con-
stitutes the prior information in the analysis.

The present work focuses on the unstable components of
the forecast error, estimated by a modified form of breed-
ing (Sect.2.1) that accounts for “observational forcing” in-
troduced at the analysis step. It is shown that the growth
of errors can be controlled by using this information: 1) to
choose the locations of adaptively taken observations and 2)
in the assimilation (Sect.2.2) of all the available (standard
and adaptive) data. These principles are demonstrated here
in the context of a primitive equation ocean system with a
large state dimension.

Data assimilation in the ocean accounts for the dynamics
in variational schemes (Talagrand and Courtier, 1987; Ben-
nett, 1992, 2002; Wunsch, 1996) and in sequential schemes
that, starting from statistical principles, allow for dynami-
cal evolution of error statistics (Ghil, 1989, 1997; Evensen,
1994, 2003, 2004; Burgers et al., 1998; Brasseur et al., 1999;
Pham, 2001). Recent joint efforts have been devoted to
obtain four-dimensional analysis of the ocean flow, by ap-
plying sophisticated assimilation techniques (ECCO Consor-
tium, 1999). On the other hand, many operational forecasting
centers still use assimilation schemes that are based on sta-
tionary prior statistics, for simplicity of implementation and
computer time constraints, even if much work is put into re-
fining the agreement with statistics based on models and real
data (De Mey and Benkiran, 2002), and work is generally
under way to implement dynamically evolving covariances.

Recently,Zang and Malanotte-Rizzoli(2003) have shown
how dynamically evolving covariances, as estimated by an
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Ensemble Kalman Filter (EnKF), are able to account for
chaotic regime transitions, thus outperforming stationary
schemes such as Reduced Rank Extended Kalman Filter
and Optimal Interpolation (OI). In their work, the two lat-
ter schemes behave similarly, only marginally improving the
saturated freely evolving errors in a low-predictability sys-
tem configuration, while only in a configuration that is highly
predictable the stationary schemes are able to reduce the er-
rors in a satisfactory way.

The concept of adaptive observations is particularly inter-
esting for the ocean, where an important part of the obser-
vations (vertical profiles and Lagrangian buoys) have always
been taken by mobile systems (oceanographic ships), in con-
trast with the fixed network of radiosondes existing for the
atmosphere, which is mainly based on land. It is then appro-
priate to study how the locations of oceanographic observa-
tions can be chosen depending on the dynamical situation.

For the atmosphere, much of the work on “adaptive” or
“targeted” observations has been based on the concept that
targeting aims at reducing the forecast error inside a “verifi-
cation” area, at a certain “verification” time. Area and time
are selected on the basis, on the one hand, of the meteoro-
logical phenomena, and, on the other hand, of their predicted
impact on human activities – in particular those of interest
for financing institutions and countries.

Different targeting strategies have been proposed and
tested by means of experimental campaigns. Methods based
on Singular Vector Decomposition (SVD) (Palmer et al.,
1998; Bergot et al., 1999) of the tangent linear model esti-
mate “sensitive” regions, where inaccuracies present in the
analysis are foreseen to amplify the most, resulting in a
degradation of the forecast at the verification area and time.
SVD calculations are performed with different norms (in
essence, scalar products), mainly the total energy norm and
the “Hessian” (of the variational cost function) norm, which
is an approximation, based on the (stationary) prior covari-
ances, to the inverse analysis error covariance.

The complete and time-evolving inverse analysis error co-
variance has been proposed as the ideal initial time norm for
SVD by Ehrendorfer and Tribbia(1997). SVD calculations
with a norm based on a dynamically evolving covariance
from an EnKF have been performed byBuehner and Zadra
(2006). Recent results from the 2003 North Atlantic THOR-
PEX Regional field Campaign (NA-TReC) show that, still,
there are significant cases of degradation of the forecast, pre-
sumably depending, apart from “operational” limitations like
imprecise deployments and observational errors, on how the
supplementary data have been assimilated (stationary prior
statistics?).Fourríe et al.(2006) analyzed in detail the re-
sults of the NA-TReC with the French operational model
ARPEGE and discussed the impact of the different types of
supplementary observations.

In the Ensemble Transform Kalman Filter (ETKF) ap-
proach (Bishop et al., 2001) the adaptive observations are
deployed with the aim of minimizing a measure of the fore-
cast error covariance matrix, estimated at a verification fore-
cast time (successive to observation time) and geographically

localized inside a verification region. The estimate of the
covariance matrix is ensemble-based and the minimization
is realized with respect to a set of possible observation de-
ployments (i.e. a set of observation operators), by comput-
ing how the ensemble members are “transformed” through
the analysis step, before the model integration to verification
time. ETKF has also been employed in the NA-TreC and in
the Winter Storm Reconnaissance Program (WSRP) (Szun-
yogh et al., 2000, 2002): preliminary results showed some
improvements, but degradation cases still exist.

With regard to the ocean, there exist recent studies on the
impact of different possible future satellite “constellations”
on oceanic assimilation systems (Mourre, 2004; Mourre et
al., 20061). Köhl and Stammer(2004) studied optimal loca-
tions, using an inverse (adjoint) method in which the obser-
vational increments are the control variables.

In the present work, targeting is not focused on improving
the forecast at a particular location and time. Rather, the as-
similation of supplementary observations is aimed at keeping
the trajectory of the cyclic observation-assimilation-forecast
system close to the real system trajectory. A major improve-
ment in the control of errors derives from the combination of
targeting strategies and dynamically consistent assimilation;
the benefit of adaptively located observations is greatly en-
hanced if their positions and their assimilation are designed
in order to target the instabilities; the estimate of unstable
directions is based on BDAS (Breeding on the Data Assimi-
lation System), and AUS (Assimilation in the Unstable Sub-
space) is such that the analysis update has locally the same
structure as that of the unstable vector whose maximum is in
the location chosen for the adaptive observation.

The basis of the BDAS-AUS method used here have been
introduced byTrevisan and Uboldi(2004, hereafter TU04),
who applied it to a small chaotic (and noisy) system (Lorenz
and Emanuel, 1998). Since then, applications to more com-
plex models have been considered (Uboldi et al., 2005, here-
after UTC05). Complete results obtained with the quasi-
geostrophic atmospheric model ofRotunno and Bao(1996),
also in presence of observational errors, are presented in a
recent work (Carrassi et al., 20062, hereafter CTU06). Expe-
rience showed that each application requires specific imple-
mentation choices , but that the method is sufficiently flexible
and robust to be successfully applied to different contexts:
models of various complexity and in the presence of obser-
vational and model error. In the present work the focus is
on a complex, primitive equation ocean model with a large
number of unstable directions. Experiments are done in a
perfect model, perfect observations setting: this is of course
a limitation, because realistic models and real observations

1Mourre, B., De Mey, P., Ḿenard, Y., Lyard, F., and Le Provost,
C.: Relative performances of future altimeter systems and tide
gauges in controlling a model of the North Sea high frequency
barotropic dynamics, Ocean Dynamics, in review, 2006.

2Carrassi, A., Trevisan, A., and Uboldi, F.: Adaptive observa-
tions and assimilation in the unstable subspace by breeding on the
data-assimilation system, Tellus, submitted, 2006.
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are affected by errors; on the other hand, that of perfect set-
tings is a necessary and meaningful step, because it allows to
clarify some theoretical aspects, and to highlight the mecha-
nism of error growth, rather than the various sources of error.

Details of the technique used to estimate the (local struc-
tures associated with the) unstable directions depend on the
characteristics of the system. First of all, the number of un-
stable vectors and their growth rates characterize each freely
evolving system. Moreover, independent unstable structures
may appear well separated in the geographical space, or, in
contrast, they may be concentrated and overlapping in the
same region (where a front is located, for example). If a fixed
observational network is present, then its features may have
an influence on the estimate of instabilities: a network of
fixed vertical profiles based on land for atmospheric obser-
vations provide an “observational forcing” (TU04, see also
Sect. 2 below) that is different from that provided on an
ocean system by satellite sea surface height (SSH) observa-
tions, available under satellite tracks that cover a wide hor-
izontal domain, but without direct information on the verti-
cal structure of the ocean. The use of adaptive observations
and their type (profiles, floating buoys, adaptable remote sys-
tems) contribute to change the characteristics of the instabil-
ities that appear (survive) in the forced system. Finally, these
are also influenced by the characteristics of the assimilation
scheme, through which the observational forcing enters the
system.

In this work it is shown that it is possible to estimate
the (local) unstable structures that are present in a primitive
equation ocean system, so that, if the observational network,
in its fixed and adaptive components, is able to detect them,
then the assimilation of observations is successful in control-
ling the error growth.

The assimilation method, already presented in the authors’
previous works, is described in Sect.2. The ocean system
and a standard assimilation scheme are presented in Sect.3.
Section4 describes the choices made in the implementa-
tion of BDAS, and summarizes some results obtained using
the fixed observational network, already included in UTC05.
Section5 deals with implementation choices and analysis
of results obtained by combining the standard network with
adaptive observations, assimilated by AUS. Conclusions are
summarized in Sect.6.

2 Assimilation in the unstable subspace of the data
forced system.

2.1 Estimating the unstable directions by Breeding on the
Data Assimilation System (BDAS)

A forecast state is obtained by integrating the model from a
previous analysis state:

xf

k+1 =M
(
xa
k

)
(1)

The (tangent linear) perturbative equation relative to Eq. (1)
is:

δxf

k+1 = Mδxa
k (2)

whereM is the Jacobian ofM. A small perturbation of the
state evolves and, if kept small, progressively acquires the
structure of a linear combination of the unstable directions.
The breeding method computes these directions by integrat-
ing the nonlinear model on a control state and on one (or
more) perturbed states, and periodically renormalizing the
amplitude of the perturbations to a “small” value. In at-
mospheric applications, the normalization amplitude and fre-
quency and the length of the complete breeding period may
be adjusted in order to filter out fast-growing convective in-
stabilities that quickly saturate to small energy values, and
to select, in this way, baroclinic scale instabilities (Toth and
Kalnay, 1997; Kalnay, 2003).

When observations are available, an analysis step is per-
formed:

xa
k+1 = xf

k+1 − KH
(
xf

k+1

)
+ Kyo

k+1 (3)

whereH is the (possibly nonlinear) observation operator and
K is the gain matrix, linearly relating the analysis increment
xa

−xf to the innovationyo
−H

(
xf

)
. This expression, typ-

ical of schemes such as Optimal Interpolation and Kalman
Filters (analysis step), may also account for 3D-Var schemes
in which the observation operatorH is linearized on the fore-
cast state. The same expression may also represent a lin-
earized (or incremental) 4D-Var scheme assimilating obser-
vations distributed in a time interval, by extending the con-
cept of observation operator to include a model integration:
on this point, see the book byBennett(2002), or, for a dis-
crete formulation,Uboldi and Kamachi(2000).

By substituting Eq. (1) in Eq. (3), the evolution equation
between two successive analysis states (the same can be done
for two successive forecast states) is obtained:

xa
k+1 =M

(
xa
k

)
− KH

[
M

(
xa
k

)]
+ Kyo

k+1 (4)

This is the equation of the systemforcedby the cyclic assim-
ilation of observations.

If ηa is the analysis error, its first-order evolution from
analysis stepk to analysis stepk+1 is:

ηa
k+1 = (I − KH ) Mηa

k + (I − KH ) ηMk+1 + Kεo
k+1 (5)

whereH is the Jacobian ofH and I is the identity matrix.
In this equation,ηM is the model error andεo is the ob-
servational error, which includes the (representativity) error
relative to the observation operator. If they are small enough
(in particular their systematic parts), all these errors eventu-
ally grow or decrease depending on the amplitudes of their
components on the unstable directions.

Assimilating the same observations by the same scheme
in the perturbed and in the control trajectories, the perturba-
tion equation for the system subject to observational forcing,
Eq. (4), is:

δxa
k+1 = (I − KH ) Mδxa

k (6)
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By effect of the matrix(I−KH ), and depending on its prop-
erties, the analysis has, generally speaking, a stabilizing ef-
fect. In some circumstances, it may happen that the un-
stable components are amplified by effect of the assimila-
tion, but assimilation schemes in general, and particularly
the present formulation, are designed to reduce the rapidly
amplifying components of the error. As a consequence, the
number of independent unstable directions relative to Eq. (6)
and their associated growth rates are smaller than those rel-
ative to Eq. (2). In practice, in an intermittent assimilation
system, during the forecast step the perturbations growth is
dominated by the free system instabilities, and, at the anal-
ysis step, some unstable components are reduced by the as-
similation of observations. Therefore some of the unstable
components present in the forecast error are absent, or at least
reduced, in the analysis error. After the analysis step, how-
ever, some unstable components, either because they have
not been completely eliminated, or, in the worst cases, be-
cause they have been introduced by the analysis, are still
present and will grow during the next forecast step.

In order to account for the observational forcing in the es-
timate of the instabilities that grow along the assimilation cy-
cle, we adopted a modified form of breeding, that is referred
to as Breeding on the Data Assimilation System (BDAS),
based on Eq. (6) rather than Eq. (2). As in classic breeding,
the control parameters are the normalization amplitude and
frequency, and the length of the breeding period. Details on
the choice of these parameters are given in Sects.4 and5.

2.2 Assimilation in the Unstable Subspace (AUS)

The forecast error can be seen as the sum of two components:

ηf
= Eγ + ξ (7)

where Eγ is the forecast error component on the sub-
space spanned byN estimated unstable directions, stored as
columns in a matrixE of dimension (I,N), andξ is the fore-
cast error component on the complementary subspace.I, the
number of rows inE, is the state dimension and the vectorγ

represents the forecast error component in the unstable basis.
This implies:

Pf
= E0ET

+ E
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〉
+
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ξγ T

〉
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+
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ξξT
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(8)

wherePf
≡

〈
ηf

(
ηf

)T〉
is the forecast error covariance and

0≡

〈
γ γ T

〉
is the forecast error covariance in the unstable

subspace. Because unstable directions grow, they dominate
the forecast error. If terms containingξ are neglected in
Eq. (8):

Pf
' Pf

EE = E0ET (9)

then, for a given observation operatorH, the minimum error
variance analysis corresponding to the approximation (9) is:

xa
= xf

+ E0 (HE)T
[
(HE)0 (HE)T + R

]−1

·

[
yo
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(
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)]
(10)

whereR is the observational error covariance matrix. In this
way, the analysis increment is confined to theN-dimensional
subspace spanned by the columns ofE: for this reason the
present scheme is referred to as Assimilation in the Unstable
Subspace (AUS). A useful expression, equivalent to Eq. (10),
is:

xa
= xf

+ E
[
0−1

+ (HE)T R−1 (HE)
]−1

(HE)T R−1

·

[
yo

− H
(
xf

)]
(11)

In the general expression of the Kalman analysis, that can be
compared with Eq. (10), the “complete”Pf appears, instead:

xa
= xf

+ Pf HT
[
HPf HT

+ R
]−1 [

yo
− H

(
xf

)]
(12)

where the gain matrix, as defined in Eq. (3), is the Kalman
gain. In this expression, ifM is the number of observa-
tions, the analysis increment appears confined to theM-
dimensional subspace spanned by the “representers” (Ben-
nett, 1992, 2002; Uboldi and Kamachi, 2000), that is to say
the columns of the (I,M) matrix Pf HT. In a stationary anal-
ysis scheme, a fixed “background” error covariance matrix,
B, is used instead ofPf : in such schemes theM columns
of the matrixBHT span the subspace where the analysis in-
crement is confined. In the present scheme, ifM≥N , theM
observations are used, in Eq. (10), in a least-square sense,
to compute an analysis increment that is constrained into the
selectedN-dimensional subspace.

The neglected components ofPf in Eq. (8) are covariances
between (and with) directions belonging to the linear com-
plement of the subspace spanned by the columns ofE. If the
gain matrix is the “complete” Kalman gain, as in Eq. (12),
then the Kalman filter equations provide the technique for
updating the “complete” forecast error covariance to that of
the analysis (and, then, of the successive forecast). If, how-
ever, the gain matrix is computed in a subspace, by using an
approximation similar to Eq. (9) for the forecast error covari-
ance, as it is also done in EnKFs and in other “suboptimal”
filters (differences being in how the subspace is estimated),
then the analysis has the effect of reducing the error compo-
nents in that subspace. This means that, on the one hand, the
amplitude of the error is reduced, but, on the other hand, that
the relative amplitude of its components on the complemen-
tary subspace is increased. In other words, the directions (the
ensemble) just used for estimatingPf andK are less valu-
able after the analysis step: the error reduction is obtained by
“spending” part of the information previously available on
the error covariance. This is the reason why a “refresh” pro-
cedure is introduced here: details are given, with reference to
the implementation choices, in Sect.4. This is also the rea-
son why, in EnKFs, it is appropriate to implement some sort
of re-sampling or ensemble re-initialization (Whitaker and
Hamill, 2002). Evensen(2003) reviewed some of the tech-
niques that have been implemented to this purpose in EnKFs.
Corazza et al.(2002) showed that refreshing bred vectors im-
proved substantially their efficacy.
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The experiments presented in this work are made in a per-
fect model and perfect observation setting, that allows to
highlight the mechanism discussed above for explaining the
need of a refreshing procedure. In case a small model error is
introduced at each time step during the model integration, it
is subject to the perturbation dynamics. Then it also progres-
sively acquires the structure of the unstable vectors as the
time integration proceeds. The resulting effect on the fore-
cast error is a larger uncertainty on its components along the
unstable directions. These amplitudes can be measured by
the observations if they are appropriately located (Sect.2.3).
The “yet unstructured” components of the model error in-
crease the neglected part of the forecast error,ξ . The impor-
tance of the refresh procedure seems then enhanced by the
presence of model error. These concepts appear worthy of
investigation in future work.

2.3 Unstable directions and observations

For each estimated unstable direction one or more observa-
tions can be used to eliminate or reduce the error component
along that direction. In order to show how this is carried
out, we consider the case of a single unstable directione,
M≥N=1. The analysis is, from Eq. (11):

xa
= xf

+ e
(He)T R−1

[
yo

− H
(
xf

)]
γ −2 + (He)T R−1He

(13)

where the (N,N) matrix 0 is reduced to the scalarγ 2. It can
be seen that the direction of analysis increment is that of the
single unstable direction, the vectore, while the amplitude of
the correction is estimated by means of theM observations,
weighted with their uncertainties.

In the case of perfect observations it becomes:

xa
= xf

+ e
(He)T 6−1

[
yo

− H
(
xf

)]
(He)T 6−1He

(14)

where the matrix6 may contain the co-variabilities of the
observed variables (their physical dimensions can be differ-
ent from each other). Equation (14) minimizes the6−1 dis-
tance between the innovation and the “observed” component,
H

(
xa

−xf
)
, of the analysis increment, strongly constrained

in theedirection.
If the observed variables are physically homogeneous and

uncorrelated, with the same error varianceσ 2, then Eq. (13)
becomes, after small rearrangements:

xa
= xf

+ e
(He)T

[
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− H
(
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)]
(He)T He

γ 2 (He)T He

σ 2 + γ 2 (He)T He
(15)

When a single observation is used with a single unstable di-
rection,M=N=1, yo andHe are scalars and:

xa
= xf

+ e
yo

− H
(
xf

)
He

γ 2 (He)2

σ 2 + γ 2 (He)2
(16)

In Eqs. (15) and (16), the last ratio on the right-hand side
accounts for observational errors, and reduces to 1 when ob-
servations are considered perfect with respect to the forecast

state. By considering Eq. (16), it can be seen that the am-
plitude of the correction (in the direction of the single un-
stable directione) fits the single observation, exactly if this
is perfect. In this work, only experiments with perfect ob-
servations are presented; for results obtained with noisy ob-
servations in the context of a quasi-geostrophic model of the
atmosphere, and an estimate ofγ 2, see CTU06.

In the rightmost denominator appearing in Eq. (15), the
observational error variance becomes less important when
many observations are available and each of them detects
a relevant component of the vectore, so that(He)T He is
large. Therefore the perfect observation case can be con-
sidered representative of a situation where there are many
noisy observations available at the appropriate locations. In
general, referring to Eq. (11), the observation locations and
variables (as represented by the components ofH) are most
valuable when a measure (for example the trace) of the ma-
trix (HE)T R−1 (HE) is large with respect to that of0−1.
This criterion can be used as a guideline for choosing obser-
vation locations (and variables) when it is possible to take
“adaptive” or “targeted” observations. Other criteria were
discussed byBerliner et al.(1999). In practice, in the exper-
iments presented here, we put a single perfect observation
in the maximum of each estimated unstable “structure” (see
Sect.5 for details).

As described in Sect.4, when only a fixed network of ob-
servations is available, it can be used to detect the unsta-
ble structures if these happen to be located, at observation
time, in geographical regions where standard observations
are available. If the unstable structures are not detected by
the standard observation network, they still may migrate in
an observed region, before errors become too large, and be
detected at a later observation time. In any case, our abil-
ity to control the system depends on the number of unstable
structures present and on their growth rate, in relation to the
frequency and distribution of observations by which we can
detect and eliminate them.

3 The ocean system and the standard assimilation
method

The primitive equation ocean model MICOM (Bleck, 1978)
is set up here in a simplified adiabatic configuration: a
flat bottom basin, with a 180×140 horizontal grid and 4
isopycnal layers, with constant surface wind forcing. Vari-
ables are the layer thicknesses (or, alternatively, the layer
interface elevations) and the zonal and meridional compo-
nents of velocity, defined on an Arakawa C scattered grid.
The number of independent components in the state vec-
tor is 301120. The layer densities are 1024.590 kg m−3,
1026.520 kg m−3, 1028.187 kg m−3 and 1030.130 kg m−3.
The average depths of the internal interfaces between layers
are 440 m, 1048 m and 2026 m, while the bottom depth is
fixed at 5000 m. The horizontal resolution is approximately
20 km, with latitudes ranging from 27.12 N to 52.12 N, and a
longitude interval of 42 degrees.



72 F. Uboldi and A. Trevisan : Detecting unstable structures and controlling error growth

The typical dynamic situation is that of a double gyre, cy-
clonic in the northern half of the domain, anticyclonic in the
southern half, with an eastward jet detaching from the west-
ern boundary and a wide recirculation region in the eastern
part of the domain. The eastward jet is characterized by sharp
meanders and energetic eddies; moreover, large velocity gra-
dients appear in regions that are close to the western bound-
ary. The leading Lyapunov exponent of the (freely evolving)
system has been approximately estimated (from a 6-year in-
tegration) and corresponds to a doubling time of about 19
days.

Experiments are made with perfect model conditions
(identical twins): a 6-year model trajectory represents the
truth, from which perfect observations are taken. The
fixed observational network consists of “satellite” sea sur-
face height, observed every 10 days on the whole domain
from the true trajectory. A standard assimilation scheme is
also available, theCooper and Haines(1996) scheme, here-
after CH, based on conservation of linear potential vorticity,
and characterized by a homogeneous vertical shift of isopy-
cnals, with no change in the bottom pressure. This scheme,
that consists in a vertical displacement of the internal layer
interfaces and geostrophic adjustment of velocity, has the ad-
vantage of being particularly simple to implement with MI-
COM. The most important limitations of the scheme are that
it is stationary (i.e. assumes constant forecast error covari-
ance) and that it accounts only for one vertical “mode”. Other
stationary schemes, in which more vertical modes are consid-
ered in the estimation of the background error covariance (De
Mey and Benkiran, 2002, for example) may have a superior
performance; however the CH mode, at least, accounts for
a vertical displacement of the pycnocline without degrading
its signal, as it may happen when using statistics based on
climatology.

As it was shown in UTC05, the standard CH assimilation
scheme is able to reduce an initially large error (difference
between two randomly chosen states) to values oscillating
between 0.3 and 0.4 of the natural variability. The error
reaches the same range of values in one year even when start-
ing from a small value (initially rescaled to 0.1 of natural
variability) as the standard CH scheme is unable to maintain
the initially small error.

Error structures which are well corrected by the CH
scheme are characterized by an error in the depth of the pycn-
ocline, which can be reduced by modifying the thicknesses of
the first and bottom layers only, so that they compensate each
other without changing the bottom pressure. In UTC05, it
was shown that errors having vertical structure different from
the CH mode appear frequently. Errors present in the fore-
cast are mostly located either in the region of the eastward
jet (see e.g. Fig4), which detaches from the western bound-
ary between latitudes 39 N and 42 N, or within the two west-
ern boundary currents associated with the northern cyclonic
and southern anticyclonic gyres (Figs. 6 and 7 of UTC05).
The CH corrections are mostly located in the eastward jet
region, while other errors are insufficiently corrected, to the
point that the analysis error is even larger than the forecast

error in the northwestern part of the domain. These results
support the need for more realistic, flow-dependent, dynam-
ically consistent vertical covariances in the assimilation of
surface height observations.Brasseur et al.(1999) used the
same model MICOM, in a configuration that appears simi-
lar to that used in the present study, but with a much smaller
basin. They showed that the dynamically evolving SEEK
(Singular Evolutive Extended Kalman) filter, even with few
ensemble members, quickly approached small values of fore-
cast errors, as estimated by the 10-day SSH innovation.

4 Assimilation of standard observations

In UTC05, the BDAS-AUS assimilation has been applied
with the standard observational network described above.
There, it is shown that at least some of the unstable com-
ponents present in the forecast error are detected and elim-
inated, by taking advantage of the fixed SSH observations
only, assimilated in the estimated unstable subspace. Refer-
ring the reader to UTC05 for details, we briefly recall here
how BDAS and AUS are implemented in this configuration.

A CH analysis scheme starting from a climatological ini-
tial forecast state reaches in a year its typical error values,
between 0.3 and 0.4 of natural variability. At this point (day
360), perturbations are initially introduced and bred for 2
months, during which the only assimilation running is still
CH. At each SSH assimilation time (every 10 days), af-
ter the analysis step, a set of 6 independent (total-energy-
orthogonal) perturbations are introduced; initial perturba-
tions are built randomly as differences between model states.
Before forecast integration, all perturbations, old and new,
are rescaled to 0.1 of natural variability (total energy norm).
At the end of the initial 2 month period (day 420), 36 per-
turbed trajectories are being integrated. At day 420, the new
assimilation system begins to act. Each of the 6 “current”
bred perturbations, the oldest set, is searched for local max-
ima and minima structures, starting from the largest (in ab-
solute value).

The need to isolate local maxima stands from the fact that
bred vectors are (approximately) combinations of Lyapunov
vectors (Trevisan and Pancotti, 1998) so that the forecast er-
ror may have opposite correlations with different local struc-
tures appearing in the same bred vector.

At analysis time the following four steps are taken (details
in UTC05).

1. Regionalization, obtained by point-by-point multiplica-
tion of the bred vector with an elliptically shaped Gaus-
sian, whose position, shape, orientation and width are
chosen (by least-square minimization) in order to iso-
late, without deformation, the regional structure of the
bred vector surrounding a local maximum or minimum,
from other structures or signals present in the same bred
vector.

2. Selection, obtained by comparing each structure (ob-
tained by regionalization) with the innovation (sea sur-
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face elevation field) and retaining only those that have
a regional correlation larger than 0.8 in absolute value.
Of course, this step had to be modified for the targeted
vertical profiles, as explained in Sect.5.

3. Assimilation. The selected structures are used one by
one in a sequence. The reason for this choice is to rule
out the possibility that, when the same local structure
appears in two different bred modes, anomalously large
corrections may be introduced in the (non-significant)
direction of the local difference between the two vec-
tors: this may be particularly dangerous with regard
to the unobserved components. The analysis, obtained
with a single structure by means of Eq. (15) after set-
ting σ 2

=0, is used as background field in the analysis
with the next selected structure. After the last structure
has been used, the innovation has been significantly re-
duced, but still it is different from zero, thus a standard
CH analysis is performed. The assimilation of targeted
vertical profiles, performed at times when SSH obser-
vations are not available, is discussed in Sect.5.

4. Refresh. The reasons for introducing a refresh proce-
dure are explained in Sect.2.2. However, we point out
that the current bred vectors, from which the regional-
ized unstable structures have been extracted and used
in the assimilation, still carry useful information, so we
do not discard the current set, in contrast with what has
been done with less complex systems (TU04, CTU06).
The following procedure has been implemented as a
trade-off between keeping and discarding the bred vec-
tors altogether. After the assimilation, one (at turns)
of the current, just used, bred vectors is point-by-point
added to all the other 5 vectors of the same set. One new
random perturbation is inserted in its place, so that a
new set of 6 vectors is obtained. These vectors are total-
energy-orthogonalized only at this point, before starting
to undergo a new 60-day breeding cycle.

Results (from a longer run with respect to UTC05) are in-
cluded, together with targeted observations results, in Fig.1
and are commented in Sect.5.2.1.

5 Assimilation of targeted observations

The bred vectors obtained by BDAS, subject to renormaliza-
tion and refresh at SSH assimilation times (as described in
Sect.4), being differences between the perturbed states and
the control state, can be computed at any time, in particular
at times that are intermediate between two successive SSH
assimilation times. At these intermediate times they are used
to locate and assimilate adaptive observations.

5.1 Implementation

In the experiment shown here, the unstable structures are
estimated at +2.5 d, +5.0 d, and +7.5 d with respect to the
last SSH assimilation (while the next SSH assimilation is at

+10 d). At each of these intermediate times, 3 adaptive obser-
vations are taken. Each observation is designed to simulate
a vertical profile of temperature and salinity, from which the
vertical density profile can be inferred. When a real verti-
cal profile is taken, however, it is difficult to obtain a precise
measure of the sea surface height (with respect to a reference
depth), particularly in comparison with what can be obtained
by satellite measurements. For this reason, in our simulated
profiles, we choose not to use the information on the sea sur-
face elevation, but only that on the elevation of the 3 internal
layer interfaces, i.e. that between layers 1–2, layers 2–3, and
layers 3–4. These three values are used in the “selection”
step, described below, while only one of the three scalar val-
ues is actually assimilated.

In fact, targeting is obtained by choosing, among the cur-
rent set of 6 forced bred vectors, 3 local maxima or minima in
the interface elevation fields: their positions are identified by
the 2 horizontal discrete coordinates and by the vertical one.
We anticipate here that the vertical position of the maximum
of the structure is important. The 3 structures are chosen with
the condition that they are horizontally well separated.

The regionalization procedure is the same as described in
Sect.4.

The selection procedure described for SSH observation in
Sect.4 has been implemented for the “vertical profile” ob-
servations with the obvious modification that the “observed”
component of the structure,He, and the innovation,d, con-
sist of the three layer interface elevations. Observations are
retained for assimilation only ifHe andd have a correlation
higher than 0.6, while a smaller value determines rejection.
The assimilation of the 3 observations, one scalar observation
for each profile (the elevation of the targeted layer interface),
is done in a sequence: the analysis field obtained after the
assimilation of one profile is used as background field for the
next one. This choice is made, rather than assimilating the 3
observations together, for the same reasons explained in the
description of the “assimilation” procedure step in Sect.4.

Each observation is assimilated by means of Eq. (16), with
σ 2

=0: it is clear that the observation is only used to estimate
the amplitude of the correction, while its 3-D structure, in all
the state variables, is that of (the regionalized structure of)
the bred vector, stored in the vectore. This estimate is ob-
tained, in the present case, by a single perfect observation. In
a realistic case, where observations are affected by errors, it
might be necessary to assimilate, by means of Eq. (15), more
observations: either more components from the same profile,
or possibly more profiles (eventually taken by the same ship),
located in the region where the unstable structure is active.

As an example, Fig.6a shows the analysis increment com-
puted from three bred vectors shown in Fig.5.

5.2 Results

5.2.1 Global error

A scalar measure of the error on the whole state, that is to say
on all layers and variables, including velocity components,
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Fig. 1. Square root of total energy error (normalized with natural variability) as a function of time:(a) forecast error;(b) analysis error.
“SSH CH”: standard CH assimilation of SSH only; “SSH AUS+CH”: assimilation of SSH observations only by AUS and CH, as described
in Sect.5; “SSH+ADAPTOBS”: AUS+CH assimilation of SSH and supplementary adaptive observations, as described in Sect.5.1.

is obtained by a total energy norm (normalized with natural
variability computed from a 6-year model trajectory). The
global error is defined here as the square root of its total en-
ergy, which is a quadratic function of the errors on the state
variables (interface elevation and velocity components). The
forecast error is shown in Fig.1a, and the analysis error in
Fig. 1b, for three experiments over a 5-year period, from day
360 (after a year in which only the standard CH assimilation
of SSH is active) to day 2160. In the first experiment, the
standard CH analysis of SSH is performed every 10 days. It
can be seen that a high variability of the error is present; in
particular there is a period, around day 1080, in which errors
are as high as 0.6 of natural variability. In the second exper-
iment, only the SSH observations are used with the BDAS-
AUS assimilation described in Sect.4 and in UTC05. As
discussed in UTC05, this scheme is successful in controlling
the worst error peaks and other oscillations. The third exper-
iment is the one with the adaptive observations located and
assimilated as described in Sect.5.1. As can be seen, after an
initial period of about one year, in which the errors are only
a little smaller than in the experiment without adaptive ob-
servations, errors start to systematically decrease and during
the last 28 months both the forecast error and analysis error
reach values as low as 0.1 of the natural variability.

It is worth noticing that errors start to decrease in a pe-
riod when the SSH standard assimilation alone fails to keep
the error within low bounds. In this period (from day 840 to
day 1320) the flow is characterized by the presence of par-
ticularly strong and persistent meanders in the eastward jet;
unstable structures present in the bred vectors are many, and
concentrated in the meander regions. A dynamically con-
sistent assimilation is particularly important in this situation.
Control of instabilities is partially obtained by exploiting the
surface height information, but it is fully achieved by making
use of the adaptive observations.

Another important comment is that the difference between
the forecast error curve (Fig.1a) and the analysis error curve
(Fig. 1b) is smaller for the BDAS-AUS dynamically consis-
tent assimilation of SSH with respect to what happens with
the stationary CH assimilation, and it is confined to even
smaller values for the adaptive observation experiment. This
is an indication of a slower error growth, during the forecast
step, achieved by a successful control of the instabilities.

5.2.2 Space distribution of adaptive observations

The number of adaptive observations located at each grid
point and at the different layer interfaces indicates how the
instabilities are structured horizontally and at the different
depths.

Figure2a shows the horizontal distribution of 359 obser-
vations of the elevation of the interface between layers 1 and
2: these observations are mostly located in the eastward jet
region. The corresponding unstable structures are connected
with fronts and gradients that characterize the eastward jet,
its meanders and eddies.

Most of the observations, 736, are located at the deepest
interface, between layers 3 and 4, and their horizontal posi-
tions are shown in Fig.2b. These observations are mostly lo-
cated near the western boundary. The corresponding, “deep”,
unstable structures are connected with the strong velocity
gradients that appear in this area where western boundary
currents intensify in the proximity of the vertical “continen-
tal shelf”, before detaching and giving origin to the eastward
jet. Only 34 targeted observations are located at the inter-
face between layers 2 and 3: their distribution, not shown, is
similar to that of the deepest observations, Fig.2b.

There is a very close correspondence between the horizon-
tal and vertical distribution of the adaptive observations and
the average forecast error fields, as can be seen by compar-
ing Fig. 2 and Fig.3. This correspondence further corrob-
orates the conclusion that the forced bred modes, by means
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(a) (b)

Fig. 2. Number of adaptive observations per gridpoint:(a) interface between layers 1 and 2;(b) interface between layers 3 and 4. Contouring
values are set to: 0.1, 1.1, 2.1, 3.1.

(a) (b)

Fig. 3. Forecast error at SSH assimilation time, averaged in time from day 1440 to day 2160 (the 2-year period in which the errors are
stabilized at about 0.1 of natural variability):(a) elevation of interface between layers 1 and 2;(b) elevation of interface between layers 3
and 4. Both fields have been slightly smoothed out.

of which the adaptive observations were located, capture the
relevant part of the forecast error.

5.2.3 Errors on variables and layers

For each variable, on each layer, the Root-Mean-Square
(RMS) errors have been computed, and their time evolution
examined. They are not shown here, however all of them re-
flect the characters of the global error curves shown in Fig.1:
the adaptive observation experiment has a drastic and stable
reduction of errors, starting from about day 1320, and smaller
differences between forecast and analysis errors. With re-
gard to errors in the velocity fields at the different layers, for
the standard CH assimilation of SSH the difference between
the forecast error and the analysis error is much more pro-
nounced for layers 1 and 2 than for the deeper layers 3 and

4. This is partly true also in the experiment with the BDAS-
AUS dynamical assimilation of SSH, while this difference
between surface and bottom layer velocities does not appear
at all in the adaptive observations experiment, in particular
after the errors start to decrease. Differences between fore-
cast and analysis errors at the surface are reduced by means
of adaptive observations that (Sect.5.2.2) are mostly located
in the deeper layers. We conclude, from a “forecaster” point
of view, that the prediction of currents in layers that are close
to the surface is sensitive to errors present in the analysis
field in deeper layers. From an “oceanographer” point of
view, this is an indication of how the dynamical activity in
the upper ocean is sensitive to perturbations of the mass and
velocity fields in deeper layers.
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Fig. 4. True state at day 1935. SSH field (colour shading) and layer 1 velocity (arrows).

5.2.4 Bred vectors, analysis increment and forecast error:
adaptive observations at day 1935

In order to show how the analysis procedure works, it is in-
teresting to examine one case in detail. To get an idea of how
the flow is at a particular instant (day 1935), Fig.4 shows
the “true” state sea surface height field, with, superimposed,
the velocity vectors. Three adaptive observations have been
taken and all have been assimilated in this case.

Figure5 shows, in its panels (a), (c) and (e) the bred vec-
tors and, in its panels (b), (d) and (f), the corresponding lo-
cal structures that have been extracted, following the proce-
dure described in Sect.5.1. The field shown in each plot is
the interface elevation where the maximum is located in the
vertical: in all the three cases the targeted interface is that
between layer 3 and 4, so these are “deep” structures. The
target positions for the observations are the maxima, marked
with black dots. All three assimilated values are elevations
of the interface between layers 3 and 4, corresponding to the
vertical position of the structures’ maxima.

Figure 6a shows contour lines of the analysis increment
in this field, superimposed to the forecast error for the same
field, shown as colour shading. As can be seen, the struc-
tures used to compute the analysis increment are very well
correlated with structures that are present in the forecast er-
ror field. This is true in particular for the two observations lo-
cated at approximately 5 E, 38 N and 4 E, 43 N. The structure
located at 2 E, 47 N has a very small amplitude (measured
by the observation) in the forecast error field, and the analy-
sis increment is correspondingly small. In the forecast error
fields there exist other structures that could not be detected at
this time by using three observations only. However, in this

case, these other structures have been controlled by means
of other observations, taken at a later time; in fact the global
error curve in Fig.1 continues to decrease in the period im-
mediately after day 1935.

It is particularly important to remark that the vertical struc-
ture of the analysis increment is correct. Figure6b shows the
analysis increment relative to the same observations, together
with the forecast error, but for the sea surface elevation. The
horizontal position of the (deeply located) targeted observa-
tions is marked in this figure too, to illustrate how these struc-
tures also change in the vertical direction: for example, the
structure located at about 5 E, 38 N is evidently tilted. How-
ever, the correlation between the analysis increment and the
forecast error is high even at depths that are different from
where the observations are located.

Corazza et al.(2003) showed a similar comparison be-
tween the background error and the free (i.e. not forced by
the assimilation of observations) bred modes, that were used
(Corazza et al., 2002) to build a flow-dependent background
error covariance matrix.

5.2.5 Analysis increment and forecast error: assimilation
of surface height at day 1940

It is also instructive to illustrate in detail how the BDAS-AUS
dynamically consistent assimilation works with the standard
SSH observations. The case of day 1940 is considered here.

Figure7a shows, as contour lines, the analysis increment
computed by using the structures present in the bred vec-
tors, and extracted by regionalization, in comparison with the
forecast error on the same field.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Day 1935: bred vectors relative to the(a) first, (c) second and(e) third targeted observation. Panels(b), (d) and(f) show the same
fields, after regionalization. In all fields the black dot marks the maximum of the structure, i.e. the target position for the observation. The
field shown is the targeted interface elevation, that between layers 3 and 4 in the three cases.

Note here the theoretical importance of being able to pre-
dict structures that will be observed, and that the correlation
between the “dynamical” analysis increment and the forecast
error is also high in deeper layers, as shown in Fig.7b. This
means that the same tridimensional structure is present in the
forecast error and in the forced bred vector. There is no way

this could be obtained, for dynamic, evolving, nonlinear sys-
tems, with analysis schemes based on stationary estimates of
error covariances.

Notice, again, the complex vertical structures of the sig-
nals present: the structure located at about 11 E, 38 N appears
rotated when the surface fields are compared with deeper
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(a)

(b)

Fig. 6. Day 1935. Forecast error (colour shading) and analysis increment (contour lines):(a) elevation of the interface between layers 3 and
4; (b) sea surface elevation. The white dots mark the horizontal positions of the three adaptive observations, targeted at the interface between
layers 3 and 4.

fields; a dipole in the deeper field at about 2 E, 43 N appears
as an isolated maximum at the surface.

In correspondence with this last structure, the correlation
is even better in the deeper fields than at the observed surface
field. Since here the correlation between analysis increment
and forecast error is high even far (vertically) from the obser-

vations, the assimilation is successful. However, for AUS as
well as for other ensemble-based assimilation schemes such
as EnKF and SEEK, a dangerous situation may arise, espe-
cially when only a fixed observational network is used. If
an unstable structure is only marginally detected by obser-
vations that are located far from its maximum (say in mass
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(a)

(b)

Fig. 7. Day 1940. Forecast error (colour shading) and AUS analysis increment (contour lines):(a) sea surface elevation.(b) elevation of the
interface between layers 3 and 4.

or energy), then the amplitude of the forecast error compo-
nent on this mode may be inaccurately estimated, (for exam-
ple if other, independent structures exist in the same region,
or by effect of observational error) and the unstable compo-
nent, instead of being reduced, may even be amplified by the
assimilation. This clarifies the reasons why the “selection”
procedure (besides “regionalization” that acts in the horizon-
tal directions) discussed in Sect.4 has been implemented for
standard observations.

6 Conclusions

By means of BDAS it is possible to obtain an accurate es-
timate of the local structures present in the unstable vec-
tors, and that characterize the growing components of errors
in cyclic observation-analysis-forecast systems of the ocean
and of the atmosphere. By means of AUS it is possible –
and it is worthwhile – to use observations to eliminate the
unstable structures present in the forecast error at analysis
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time. In the present and in previous works (TU04, UTC05
and CTU06), BDAS and AUS have been successfully ap-
plied to atmospheric and oceanic systems that are different
for complexity and degree of approximation, in presence of
different standard observational networks and adaptive ob-
servations.

With particular regard to the present work, results have
been obtained in a perfect model and perfect observations
settings. Generally speaking, experiments done in perfect
conditions can produce deceivingly encouraging results, so
we caution the reader against too optimistic an interpretation
of the presented results.

While a thorough investigation of the effects of model er-
ror is beyond the scope of the present work, it is clear that a
large model error could degrade the estimation of the unsta-
ble directions. In the present work the perfect model choice
has allowed to highlight the role of chaotic instability in the
growth of errors and on how it can be neutralized. On the
other hand, as the error growth is linked to chaotic insta-
bility even for noisy systems, the estimation of the unsta-
ble directions also appears promising for realistic, imperfect
models, with real, noisy data. Results obtained with a Quasi-
Geostrophic atmospheric model in the presence of observa-
tional error (CTU06) are encouraging.

Using imperfect observations may lead to errors in the esti-
mate of the amplitude of the corrections. This means that the
unstable components cannot be eliminated, but only reduced,
by the assimilation. This problem can be overcome by using
more observations for each structure, thus obtaining some
error cancellation. Alternatively, a reduction of error can be
obtained by increasing the observational frequency.

All considerations on observational errors may be consid-
ered part of the more general problem concerning the ability
of the observational network to detect the unstable structures.
As predicted by the theory and confirmed by the experiments,
it is important that the observational network, in its fixed and
adaptive components, is able to detect the unstable structures
that are present in the system, and that migrate, while grow-
ing, through the domain, depending on the characteristics of
the flow.

The stabilization obtained by BDAS-AUS with adaptive
observations results in a remarkable reduction of errors for
all the variables and all layers, and in a reduction of their ten-
dency to grow during the model integration from the analy-
sis state to the next forecast state. Generally speaking, when
an assimilation scheme, by employing dynamically evolv-
ing covariances, is able to stabilize the system and to con-
trol the error growth, this means that a suitable estimate of
the unstable structures has been obtained and that the obser-
vational network has the ability of detecting them. On the
other hand, one or both of these two key elements are most
probably missing when errors show episodes of uncontrolled
growth.

Finally, the study of the horizontal distribution of adaptive
observations, in relation to the average error fields at the dif-
ferent levels, has led to the following conclusion. The use
of adaptive observations has been crucial to detect unstable

structures that grow in deep layers, particularly in western
boundary current regions, before they emerge in layers closer
to the surface and manifest themselves in instabilities asso-
ciated to the eastward jet, its meanders and its eddies. The
deep layers of the ocean may appear to be less active than
those near the surface, but, due to fluctuations of the former,
the dynamics of the latter can be destabilized.
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