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Abstract. In this paper we present an algorithm based on
wavelet multiscale decomposition, designed to detect lines
of maximal gradients in horizontal direction within two-
dimensional data sets. The algorithm is capable of identi-
fying layer boundaries within sediment profiles, as demon-
strated for artificial as well as two field data sets. Layers are
detected with a good resolution within (i) digital images of
a deep sea sediment core (IODP-expedition 301, core 15H)
and (ii) chemical concentration patterns of recent tidal sedi-
ments (North Sea).

1 Introduction

The interpretation of sedimentary formations is based on the
careful analysis of textural and structural properties. Re-
cently, much progress has been achieved in identifying units
and layers of sedimentary sequences and their internal char-
acteristics as well. This is considerably due to the applica-
tion of methods based on wavelets (Daubechies, 1992; Louis
et al., 1998). Wavelets have been used successfully in the
analysis of seismic (Gunninga and Glinsky, 2006; Capilla,
2006) or gravity data (Fedi et al., 2005; Cooper, 2006), and in
the characterisation of porous media (Sahimi, 2000). How-
ever, there are not many works which use wavelets as a tool
to directly detect sediment layer boundaries.Niebuhr and
Prokoph(1997) used wavelets to detect periodicities in sed-
iment successions from one dimensional data.Maroni et al.
(2001) used a multiscale approach for the detection of deep-
sea subbottom horizons from two dimensional images. This
method looks for the maxima lines in smeared acoustic pro-
filer images.

For many questions it is sufficient to get a rough estima-
tion on the sequence of the layers. However, whenever a
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quantitative analysis is needed, it is indispensable to separate
the different layers, to be able to assess statistical measures
for the individual layers. This task is simple as long as the
layer boundaries are just horizontal straight lines or bound-
ary regions can be dropped. But this is often not the case, the
layers can be rippled or even rather complicated in their ge-
ometrical structure. Moreover, the data sets are often small
so that every point is needed to improve the statistics. Thus
an algorithm is required which is able to detect such bound-
aries. Conventional methods from image processing libraries
mostly fail in such cases, because they do not consider addi-
tional information such as the orientation or the curvature of
the boundary line. The standard method in this area is the
one introduced byCanny(1986) and is now part of most im-
age processing toolboxes. Canny’s work uses the derivative
of a Gaussian as an optimal filter function which emphasises
large gradients. This method works well for detecting any
gradients in images, but yields lots of false positives as not
every gradient in the image is a layer boundary. One has to
make the definition of a layer boundary more strict.

In this work we present a method which helps to detect
layer boundaries within two-dimensional data sets obtained
from sediment profiles. The data may be high-resolution
photographs or two-dimensional maps of certain features,
e.g. chemical element densities. A change from one layer
to the next one is characterised by a considerable change
of the particular feature over a long contiguous range. This
change can be identified by a strong gradient of the feature.
Our method makes use of the fact that in most applications
the layers are to some extent parallel to a baseline. Natu-
rally this is also the baseline of the data set. This is the ma-
jor difference to conventional edge detection methods (e.g.
Canny, 1986) where no direction information is assumed, but
it turned out that this additional information is very helpful
in order to avoid lots of false positives. The presented algo-
rithm is based on a two-dimensional multiscale decomposi-
tion (Mallat, 1989a) of the data. More or less horizontal lines
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of maximal gradients are searched within the coarse grained
data. Afterwards the lines are transferred back to the finer
scales. After applying this procedure it is possible to detect
the different layers and subsequently to analyse the proper-
ties of every single layer.

First we present the proposed algorithm in detail by means
of an artificially created profile. We evaluate this profile
where the layer boundaries are known and compare the ex-
pected versus the calculated result. We proceed by applying
our method to a core taken from the Pacific deep sea floor,
where the layer boundaries are quite smooth and regular. Af-
terwards we analyse a micro-sequence of a profile taken at
Mellum Island in the North Sea. This illustrates the capabil-
ities of the algorithm when applied to sediments with a clus-
tered structure where the boundaries are very irregular. At
the end we summarise the results and draw our conclusions.

2 Method

The basic idea of our method is that we make use of a mod-
ified multiscale approach which was originally developed by
Maroni et al.in 2001to automate the search for layer bound-
aries in our sediment profiles. The algorithm is based on a
wavelet decomposition of the underlying image in various
scales (Mallat, 1989a,b). While in the original work byMa-
roni et al.the aim was to find longest connected lines of sim-
ilar height within greyscale images, we are looking for max-
imal gradients. Furthermore, we use smoothing techniques
in order to suppress noise influences and a modified line fol-
lowing algorithm which manifests the assumption that the
orientation of the layer boundaries does not deviate too much
from the baseline orientation. This has proven to help avoid-
ing many false positives for our application.

2.1 Theoretical background

The multiscale decomposition method which is the heart of
our proposed algorithm allows a signalf (x, y) to be decom-
posed into two parts: an approximation partas(x, y) and a
detail partds(x, y) at a certain scales. The detail part con-
tains all information of the signal ats, while the approxima-
tion part contains all information off at smaller scales. The
original signal can be retrieved by adding both

f (x, y) = as(x, y)+ ds(x, y) . (1)

as(x, y) can further be decomposed and more and more de-
tails can be removed from the signal and a coarse represen-
tation of the image is obtained

f (x, y) = as−n(x, y)+ ds(x, y)+ · · · + ds−n(x, y) . (2)

Actually in two dimensions the detail coefficientsds(x, y)
are split into three partsdhs , dvs anddds which hold the in-
formation contained in horizontal, vertical and diagonal di-
rection. However, this is not relevant for our application and

we summarise this as the detail part. For our analysis we are
only interested in the approximation part.

The decomposition algorithm works the following way:
Let f (x, y)∈L2(R2) be the measured image.L2 is the
vector space of measurable, square-integrable functions.
There exists a “scaling function”φ(x)∈L2(R), such that if
φ2j (x)=2jφ(2jx) is the dilatation ofφ(x) by 2j , j ∈ Z, then
(
√

2−jφ2j (x−2−jn)φ2j (y−2−jm))(n,m)∈Z2 is an orthonor-
mal basis of the vector spaceA2j of all possible approxima-
tions at scale 2j of the functions inL2 (Mallat, 1989a). We
can approximate the signalf (x, y) with φ2j by calculating
the inner products

a2j (n,m) =

〈f (x, y), φ2j (x − 2−jn)φ2j (y − 2−jm)〉(n,m)∈Z2

=

∫∫
+∞

−∞

f (x, y)φ2j (x − 2−jn)φ2j (y − 2−jm) dxdy .

(3)

A similar theorem exists for the detail part at scale 2j . It
can be shown that for every scaling functionφ(x) there ex-
ists a corresponding orthogonal waveletψ(x)∈L2(R), where
(
√

2−jψ2j (x−2−jn))n∈Z forms an orthogonal basis in the
space of signal details.

Let A2j be the vector space of signal approximations at
scale 2j , then

A2j+n ⊂ . . . ⊂ A2j+1 ⊂ A2j . (4)

This means that the image may be decomposed into coarser
and coarser parts as the finer scales are successively removed.
This is the property we want to exploit for our purposes. For
our analysis we use the well known Haar wavelet

ψ(t) =


1 0 ≤ t < 1

2

−1 1
2 ≤ t < 1

0 otherwise,

(5)

whose corresponding scaling function is

φ(t) =

{
1 0 ≤ t ≤ 1

0 otherwise
(6)

(Louis et al., 1998). This wavelet is also known as the
Daubechies D2 wavelet as it is a special case of the
Daubechies wavelet family and is orthogonal to polynomi-
als up to second order (Daubechies, 1992). Wavelets with
higher vanishing moments may also be used for our method
and may yield better results in some applications. However,
this was not the case with our data sets, so we decided to keep
the simplest wavelet possible.

2.2 The algorithm

The main idea of the algorithm is to look first at a coarse
grained instance of the original image, search for some de-
sired property and then propagate it back again to the finer
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Fig. 1. Artificial example layers. The boundaries are sines. In the
two outer layers to each pixel the value 0 is assigned as the charac-
teristic feature, while in the middle layer this value is elevated by
1. Afterwards Gaussian random numbers with a variance of 2 and
zero mean are added to the image. The red lines mark the theoreti-
cal, undisturbed boundaries.

scales. The property we are interested in are distinguished
gradients more or less parallel to the image baseline. In or-
der to demonstrate the algorithm, we produce an artificial
sediment profile. We generate an empty image filled with ze-
ros, add two sinusoidal layer boundaries and fill the space in
between them with ones. Afterwards we add random Gaus-
sian noise with a variance of 2 to the whole image. Thus, the
characteristic feature of the layers are their mean values. The
result is shown in Fig.1.

2.2.1 Finding the line seeds

1. As can be seen in Fig.1, the raw image is very irregular.
Although it is possible to distinguish brighter and darker
layers by eye, it is very difficult for a computer to dis-
tinguish different regions. This is a common problem
also with sediment data. Fortunately, the disturbances
only play a role at small scales, so we use the multiscale
decomposition to remove them.

We start the algorithm by decomposing the measured
imagef (x, y) according to the Mallat algorithm de-
scribed in Sect.2.1. According to Eq. (3) this gives
us a series of imagesa2d (x, y), d=0 . . . l, wherel is
the maximum decomposition level (d=0 is the original
image). l has to be chosen by the user. Usually the
finiteness of the data sets tight limits on what is a useful
coarse graining.

2. We define a layer boundary as a more or less horizon-
tal curve where the gradients in vertical y-direction are
maximal. Therefore, we do not look at the decomposed
imagea2l (x, y) itself, but at the image of absolute val-
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Fig. 2. Absolute value of the gradient in the y-direction of the de-
composed images. From upper left to lower right decomposition
levels 4 to 1 are shown. The size of the moving average window is
2 in x- and 1 in y-direction.

ues of gradients in y-direction

1a2l (x, y) = |a2l (x, y)− a2l (x, y + 1)| . (7)

In Fig. 2 this is shown for our artificial example. It can
be seen that the width and height of the image is divided
by 2 for every coarse graining step.

3. Often the approximation image is still quite irregular.
Thus in the next step the decomposed gradient image at
level l may be smoothed by a moving average filter

1h(x, y) =
1

MN

M+y−1∑
j=y

N+x−1∑
i=x

1a2l (i, j) , (8)

whereN andM are the sizes of the moving average
window. These parameters have to be chosen by the
user. The results have to be harmonised with the ex-
pected results by adjustingN andM. With our used
data sets this was possible within a few iterations. Un-
suitable values often result in sudden high jumps in the
layer boundaries. The right configuration yields quite
smooth boundaries with only a few jumps.

4. Our aim is to find thek strongest gradient lines which
are more or less parallel to the x-axis of the image and
which are as long as possible. This number of linesk

we search for has to be chosen in advance. As the lines
do not have to be exactly parallel to the x-axis, we cal-
culate the deviation of each column at positionx from
the parallel as the cross correlation to the first column

ξ(τ (x)) =

∑
y

1h(1, y)1h(x, y + τ) . (9)
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Fig. 3. Cross sections along the y-axis of1h. The lines are shifted
by the lagτ which yields the maximal correlation coefficientφ be-
tween the first and the concerned line. The thick red line is the mean
of all lines.
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Fig. 4. Maximum gradients of a column within various coarseness
levels. The blue line denotes column 30 of the gradient image at
level 4, the red line is column 60 at level 3 and the green line column
120 at level 2. The crosses mark the two tracked maxima. The
position of the points on the abscissa is multiplied with 2j , wherej
is the scale. This way points from different scales neighbour each
other. The curves are normalised so that the maximum is 1, in order
to make them comparable.

To get the main layer boundaries we take the average
over all gradients shifted byτ(x) whereξ is maximal

1h̃(y) =
1

N

N∑
x

1h(x, y + τ(x)) . (10)

Let the k highest maxima in1h̃(y) be at yi , with
i=1 . . . k. Then our layer boundaries in the coarsest
image are at(x, yi+τ(x)). To demonstrate this proce-
dure, a cross section along they-axis is shown in Fig.3.
The shifted profiles and the resulting mean value are dis-
played.
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Fig. 5. Upper panel: The blue lines are the layer boundaries recon-
structed by the algorithm from the noisy artificial sediments. Lower
panel: a magnification of the upper boundary. The red line indicates
the theoretical boundary and the blue line the one the algorithm cal-
culated.

2.2.2 Propagating the seed lines to the finer images

The propagation to the finer scales is quite straightforward.
In the previous subsection we calculated the initial lines to be
at (x, yi+τ(x)) at resolution levell. In level l−1 the width
and height of the image doubles for the Haar wavelet and
the lines from the coarser level get smeared from(x, y) to
(2x,2y). The upscaling happens now as follows.

1. We calculate the gradients in y-direction (see Eq.7) of
a2l−n(x, y), wheren=1 . . . l.

2. Then the result is smoothed with the moving average
procedure according to Eq. (8).

3. Let (x, yi+τ(x)) with i=1 . . . k be the layer bound-
aries at resolutionl−n+1. As mentioned above
the upscaled boundary atl−n gets smeared around
(2x,2(yi+τ(x))). Therefore we look for the
maxima in a band at(2x,2(yi+τ(x))+ε) and
(2x+1,2(yi+τ(x))+ε) with ε=−1,0,1. Looking at
2x+1 is necessary as the size of the upscaled image is
doubled. These are the positions of the boundaries at
resolutionl−n.
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Fig. 6. Left: the visual core description from the expedition log. (Picture courtesy of IODP.) Right: The layer boundary lines found by the
algorithm. A moving average smoothing of 20 in x-direction and 3 in y-direction was used. The number of lines is 35.

4. The procedure has to be repeated until resolution level 0
is reached. Figure4 shows the tracking of two maxima
throughout the upscaling process.

The layers reconstructed by the detection algorithm are dis-
played in Fig.5. It can be seen that despite the bad sig-

nal to noise ratio of the example, found boundaries follow
very good the theoretical layer boundary. As shown in Fig.2
the multiscale decomposition successfully removes the noise
which mainly acts on the small scales, but the large struc-
tures, which are the ones we are interested in remain. When
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Fig. 7. Layer boundaries found by the Canny edge detection algorithm. The standard deviation for the Gaussian filter was set to 50.

going up to the finer scales the fluctuations within the image
have also an impact on the boundary which becomes visible
in the magnification.

3 Borehole data

As an application for the algorithm introduced in the pre-
vious section, we analyse samples from deep-sea borehole
cores. The data are taken from the Integrated Ocean Drilling
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Program (IODP) expedition 3011. This expedition gathered
core samples from the eastern flank of the Juan de Fuca
Ridge west of North America (Expedition 301 Scientists,
2005). The section analysed by us is from core 15H, Sect. 3.

We convert the high-resolution colour JPEG image from
the database to a greyscale image. The resulting image ma-
trix has 14 700×433 points. Systematic trends are removed
by subtracting the mean from each column.

The image is decomposed down to the fourth level and
smoothed with a moving average window of size 20×3. This
size turned out to yield the smoothest lines and eliminates
high jumps which occur at smaller window sizes. We search
for 35 boundaries. The resulting boundaries found by the
algorithm are shown in Fig.6. By comparing the algorith-
mic result on the right with the lines drawn by the ship board
party on the left it can be seen that they match very well.
Nearly every boundary found by visual inspection is also au-
tomatically detected by the algorithm. Even the finer struc-
tures are well resolved. In between 0 and 10 cm of depth two
false positives are found, which are likely due to artifacts in
the image or from the cutting of the core. The boundary at
100 cm is not found, probably as it is too badly resolved on
the photograph.

The result of the proposed algorithm looks even better if it
is compared with the result of the Canny edge detector dis-
played in Fig.7. The standard detector is clearly unsuitable
for the application as it finds much too many boundaries. As
it makes no assumption on the orientation of the layers, it
detects every contour within the image. This is what the al-
gorithm was designed for, but this is clearly undesirable in
this particular application. Also adjusting the standard devi-
ation of the Gaussian filter does not improve the result sig-
nificantly.

4 Experimental data from tidal sediments

Now we demonstrate the capabilities of the algorithm to find
boundaries of complicated geometrical structure. To this end
we analyse samples from a barrier island (Mellum Island) in
the Wadden Sea in the German part of the southern North
Sea. This island is located at 53◦43′16′′ N, 8◦8′58′′ E. The
samples were taken from lower supratidal areas and consist
of porous siliciclastic sediments with high biological activ-
ity. The laminated sediments are nerved with microbial mats
(Gerdes et al., 1985; Block et al., 1991).

Small pieces were sub-sampled and surveyed as thin pol-
ished films under a scanning electron microscope equipped
with an energy dispersive x-ray analysis device. This gives
us a spatial image of the densities of various chemical el-
ements, i.e. aluminium, calcium and silicon. The element
densities give insight into the composition of the sediment.
The succession of various layers indicates different processes
that formed it.

1http://iodp.tamu.edu/scienceops/expeditions/exp301.html
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Fig. 8. Upper panel: Densities for calcium smoothed by a moving
average window of size 20 in x-direction and 3 in y-direction. In
blue are the calculated layer boundaries. Lower panel: The same
but the layers are searched by the Canny edge detector. The standard
deviation of the filter function was set to 15.

Out of the three measured chemical elements calcium
shows the most distinguished layer structure. We set the
number of boundaries to be found to 6 and got the lines dis-
played in Fig.8, upper panel. The boundaries found in the
image match very well to what one would expect from visual
inspection.

The result for the Canny edge detector is shown in Fig.8,
lower panel. For this data set the method performs much bet-
ter than for the borehole dataset, but again the result of the
multiscale algorithm is better. The boundary of the calcium
rich zone is detected quite well, but the boundary line is bro-
ken at many places. The boundaries of the other zones are
indicated but even more discontinuous.

It is now possible to compare the properties of the cal-
cium layers to the layers of the other elements. Therefore, we
transfer the boundaries obtained from the analysis of calcium
to the measurements of the other elements. This is shown in
Fig. 9. For calcium we can see that the fourth layer (counted
from top to bottom) consists of large clusters of calcium. For
silicon and aluminium this is a depletion zone. In the sixth
layer accumulations of silicon and aluminium can be found.
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Fig. 9. Left: image of silicon densities. Right: image of aluminium densities. The size of the moving average window was the same as for
calcium (see Fig.8).

Table 1. Mean densities〈ρ〉 and standard deviationσ within the
different layers.

Layer Si Ca Al
〈ρ〉 σ 〈ρ〉 σ 〈ρ〉 σ

1 1.902 0.644 1.245 0.417 0.815 0.272
2 2.057 1.119 0.880 0.497 0.773 0.237
3 1.536 1.102 1.420 0.679 0.616 0.216
4 0.893 0.389 2.462 1.228 0.457 0.144
5 1.707 0.634 1.180 0.526 0.759 0.225
6 1.688 1.130 1.636 0.603 0.648 0.232
7 2.444 1.437 1.191 0.578 0.760 0.253

In general one can see that the lines clearly divide regions of
different characteristics in terms of element densities.

Table1 lists the mean measured densities〈ρ〉 and the stan-
dard deviationσ for the found layers. It can be seen that the
standard deviations are quite high compared to the mean den-
sities for all layers. This is because of small clusters of very
high densities which are existent in all layers. Here a cluster
size analysis and the comparison of density distributions are
more suitable to get more pronounced differences between
the layers. In Fig.10 the density distributions for the differ-
ent layers are shown. We do not go into interpretation details
here, but it can be seen that the characteristics within the lay-
ers are clearly different. The obtained distributions make it
possible to develop and fit theoretical process models.

5 Conclusions

In this article we present an algorithm, which is able to dis-
criminate layers of different characteristics within sediments.
Our application to artificial and real experimental systems
yields very good agreements between expected and calcu-
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Fig. 10. Distribution of calcium densities within the calculated lay-
ers.

lated results. The algorithm has four degrees of freedom
which have to be chosen by the user: the maximum decom-
position level, the number of layer boundaries and the width
and height of the moving average window. The maximum
decomposition level is strongly dependent on the amount of
the data measured. For our application a number of 4 gives
satisfying results and a higher number would have led to un-
acceptable small images. If the number of layers is not too
high it sometimes can be guessed by visual inspection, oth-
erwise one has to play a bit by adding more and more bound-
aries. The size of the moving average window is a bit more
tricky and has to be found by trying different sizes, but in
practice this has proven to be not too difficult.

We have shown that the algorithm significantly outper-
forms the results of a standard edge detection method.
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The algorithm may be a helpful tool for detecting layer
boundaries as a prerequisite for a quantitative analysis of sed-
iment profiles. Extensions of this algorithm are possible by
using other wavelets as the basis of the decomposition.
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