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Abstract. Recently found unstable time-periodic solutions
to the incompressible Navier-Stokes equation are reviewed
to discuss their relevance to plane Couette turbulence and
isotropic turbulence. It is shown that the periodic motion em-
bedded in the Couette turbulence exhibits a regeneration cy-
cle of near-wall coherent structures, which consists of forma-
tion and breakdown of streamwise vortices and low-velocity
streaks. In phase space a turbulent state wanders around the
corresponding periodic orbit for most of the time, so that the
root-mean-squares of velocity fluctuations of the Couette tur-
bulence agree very well with the temporal averages of those
along the periodic orbit. The Kolmogorov universal-range
energy spectrum is observed for the periodic motion embed-
ded in high-symmetric turbulence at the Taylor-microscale
Reynolds numberReλ=67. A laminarization strategy in-
spired by investigation of the phase-space structure in the
vicinity of the unstable periodic orbit is presented for the
Couette turbulence.

1 Introduction

The states of fluid motion are generally classified into lami-
nar and turbulent flow. The turbulent flow exhibits spatiotem-
porally chaotic behaviour and its details repeat neither in
space nor in time. Most of fluid motion seen in daily life,
such as water flowing out of a fully-turned-on tap and vorti-
cal smoke emitted from a chimney, is turbulent.

We have a very long history of turbulence research since
the famous experiments of the transition to turbulence in
circular pipe flow performed byReynolds(1883) over 120
years ago. In the course of the research statistical proper-
ties, e.g., mean velocity and velocity correlation, of various
kinds of turbulent flows have been investigated to find out
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that there exist universal statistical laws of turbulence, such
as the−5/3 power law of energy spectrum in the inertial
range and the logarithmic law of mean velocity profile in
wall turbulence (seeDavidson, 2004). However, it is still dif-
ficult to quantitatively explain what is going on in turbulent
flows and how the events relate with statistical properties of
turbulence. This difficulty might arise from the fact that we
do not have any simple spatiotemporal description of chaotic
behaviour of turbulent flows.

Recently, much experimental and numerical evidence for
the existence of striking coherent motion and structures has
been found in various turbulent flows, and the coherence in
turbulence has attracted attention of many investigators (see
Holmes et al., 1996). Near-wall streaks and streamwise vor-
tices, which will be described in Sects.2 and 3, are typi-
cal examples of coherent structures. Besides them a variety
of coherent structures, e.g., tubular vortices in isotropic tur-
bulence, transverse rollers in mixing-layer turbulence, hair-
pin vortices and so on, have been reported. The coherent
structures are much simpler than incoherent turbulence be-
cause we can identify them and track their temporal evo-
lution. Therefore, it is expected that we would be able to
understand complex spatiotemporal structures of turbulence
through the coherent structures. In order to characterise the
spatiotemporal structures of turbulence in terms of the coher-
ent structures, we must first define strictly the coherence in
turbulent flows with strong irregularity, where no two flow
structures with completely the same shape are observed.

In the present paper we review a new approach to the prob-
lem of defining coherent structures in turbulent flows. In this
approach the incomplete coherence appearing in autonomous
turbulent systems is exactly characterised by unstable peri-
odic solutions to the Navier-Stokes equation. This paper is
organised as follows. In Sect.2 we discuss the recurrent dy-
namics of coherent structures found byJiménez and Moin
(1991) and Hamilton et al.(1995) in near-wall turbulence,
which is the trigger of the course of our research. Motivated
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by these findings, in Sect.3 we obtain unstable periodic mo-
tion numerically in plane Couette turbulence, which is one of
canonical near-wall turbulence, and we describe exactly the
recurrent behaviour of coherent structures in terms of the pe-
riodic motion (Kawahara and Kida, 2001). In Sect.4 the re-
cently found unstable periodic motion representing isotropic
turbulence is reviewed (van Veen et al., 2006), and in Sect.5
turbulence control strategy inspired by unstable periodic mo-
tion is briefly explained (Kawahara, 2005). Finally, conclud-
ing remarks are given in Sect.6.

In this paper the approach by unstable periodic orbits will
not be applied to geophysical problems; however, we ex-
pect that the present approarch would also be useful in geo-
physics. Actually,Kazantsev(2001) has recently described
deterministic chaos in the barotropic ocean model in terms
of unstable periodic orbits.

2 Regeneration cycle in near-wall turbulence: the trig-
ger of the course of research

There exist two kinds of coherent structures in the near-wall
region of turbulent flows. One is the low-velocity streak
which is elongated in the streamwise direction and arranged
roughly periodically in the spanwise direction. The other is
the streamwise vortex which takes a tubular form with its
rotation axis aligning with the streamwise direction. The
streamwise vortices often appear along the streaks. In near-
wall turbulence the streaks and the vortices exhibit compli-
cated behaviour in space and time.

In their direct numerical simulations of plane Poiseuille
turbulence, which is pressure-driven turbulent flow between
two parallel plates,Jiménez and Moin(1991) minimized
the streamwise and spanwise dimensions of a computational
periodic box while sustaining turbulence activity to obtain
the simplified turbulent field without any irregular large-
scale motion. In this numerically established turbulence the
streaks and vortices arrange periodically in the wall-parallel
directions. As a consequence of reducing spatial complexity
of turbulence, they found cyclic dyamics for the regenera-
tion of coherent structures embedded in turbulent motion. By
using the same numerical technique,Hamilton et al.(1995)
lowered the Reynolds number to realize highly regularized
plane Couette turbulence, which is driven by two parallel
plates moving with different constant velocities. In this plane
Couette turbulence with high spatial coherence they reported
a recurrent dynamical process, that is, regeneration cycle (or
temporal periodicity), of formation and breakdown of the
near-wall streamwise vortices and the low-velocity streaks,
in a qualitative way.

In chaotic systems of few degrees of freedom, such as
the H́enon map (Auerbach et al., 1987) and the Lorenz sys-
tem (Franceschini et al., 1993), a number of unstable peri-
odic orbits, which are embedded in a chaotic attractor, have
been shown to provide a useful characterisation of proper-

ties of the attractor. Recently the existence of a periodic so-
lution to a dissipative partial differential equation (namely
the Kuramoto-Sivashinsky equation) has been proved by a
rigorous computer-assisted method (Zgliczyński, 2004), and
spatiotemporal chaos appearing as a solution to the partial
differential equation has been characterised in terms of un-
stable periodic orbits (Christiansen et al., 1997; Zoldi and
Greenside, 1998). In this context, it is expected that the sim-
plest description, in phase space, of spatiotemporal coher-
ence in turbulence should be given by an unstable periodic
orbit embedded in a turbulent attractor. Although it is much
more difficult to find an unstable periodic orbit in that high-
dimensional system, there is a possibility of extracting a pe-
riodic orbit in the above-mentioned highly regularized plane
Couette turbulence of relatively low degrees of freedom. The
recurrent behaviour found byHamilton et al.(1995) suggests
the existence of unstable periodic motion embedded in the
Couette turbulence.

3 Unstable periodic motion in plane Couette turbulence

In this section we consider the Couette turbulence under
the same conditions as those investigated byHamilton et
al. (1995) to search for the periodic solution (Kawahara and
Kida, 2001). We first perform direct numerical simulations
of the incompressible Navier-Stokes equation, by using a
spectral method, for the plane Couette turbulence. The simu-
lation code used in this work was developed by Toh (seeItano
and Toh, 2001). The time-advancement is achieved by the
2nd-order Adams-Bashforth scheme for the nonlinear terms
and the Crank-Nicolson scheme for the viscous terms (Kim
et al., 1987). The geometry of plane Couette flow is shown
in Fig. 1. The upper and lower plates aty= ± h move in the
streamwise (x) direction at constant velocities±U , respec-
tively. We impose no-slip boundary conditions on the plates
where the fluid velocity coincides with the plate velocity. A
laminar state, which is represented by a linear profileUy/h

of the streamwise velocity, in the plane Couette system is
known to be linearly stable at any Reynolds number, imply-
ing that the laminar state has a basin of attraction in phase
space. Therefore the state tends to laminar or turbulent flow
depending on the initial condition. The developed turbulent
states are obtained from the long-time simulations from ap-
propriate initial conditions.

The flow is supposed to be doubly periodic with the spa-
tial periods,Lx andLz, in the wall-parallel directions,x and
z. The volume flux in thex-direction and the mean pressure
gradient in thez-direction are set to be zero. The streamwise
and spanwise periods are(Lx, Lz)=(1.755π, 1.2π) (Hamil-
ton et al., 1995). The dealiased Fourier expansions are em-
ployed in the streamwise and spanwise (z) directions, and
the Chebyshev-polynomial expansion in the wall-normal (y)
direction. Numerical computations are carried out on 8,448
(=16×33×16 inx, y, andz) grid points atRe≡Uh/ν=400,
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Fig. 1. Couette flow configuration.

whereν is the kinematic viscosity of fluid. It is known that
the mean velocity profile in the near-wall region of turbulent
flows scales withν and the wall friction velocityuτ=

√
τw/ρ,

being independent of the Reynolds number and the way of
driving the flow (seeDavidson, 2004). Hereτw is the mean
wall shear stress, andρ is the mass density of the fluid. Here-
after(·)+ denotes the quantity non-dimensionalised byν and
uτ . The sizes normalised byν/uτ , of the computational pe-
riodic box are (L+

x , 2h+, L+
z )=(188, 68, 128).

The energy is injected through the frictional force on the
moving walls and consumed at small scales over the whole
flow field by viscous dissipation. The energy input rate

I =
h

2LxLzU

∫ Lx

0

∫ Lz

0

(
∂u

∂y

∣∣∣∣
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)
dx dz

and dissipation rate

D =
h

2LxLzU2

∫ Lx

0

∫
+h

−h

∫ Lz

0
|ω|

2dx dy dz

normalised by those for a laminar state are calculated, where
u is the streamwise velocity andω is the vorticity vector. The
energy input and dissipation vary in a chaotic way in time,
and their temporal averages, which are substantially larger
than the corresponding ones (I=D=1) in a laminar state are
the same (I=D≈3) because the turbulence is statistically sta-
tionary.

In the present numerical scheme the independent vari-
ables are 31 Chebyshev coefficients for the mean streamwise
and spanwise components of velocity, 7424 (=16×29×16)
Fourier-Chebyshev-Fourier coefficients for the wall-normal
velocity, and 7936 (=16×31×16) Fourier-Chebyshev-
Fourier coefficients for the wall-normal vorticity. The num-
berN of degrees of freedom of the present dynamical system
is therefore about 15 000. An instantaneous state of the flow
field and its temporal evolution should be represented respec-
tively as a point and its trajectory in theN -dimensional phase
space spanned by all the independent variables. In Fig.2, we
plot, with a solid line, a projection of the turbulence trajec-
tory over a period of 104 h/U on the two-dimensional sub-
space spanned byI andD. Grey dots are attached at inter-
vals of 2h/U . The orbit generally tends to turn clockwise.
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Fig. 2. Projections of a turbulent and a periodic orbit on the(I,D)-
plane (Kawahara and Kida, 2001). The lateral and longitudinal axes
respectively represent total energy input rateI and dissipation rate
D normalised by those for a laminar state. The solid line denotes
the turbulence trajectory, to which grey dots are attached at intervals
of 2h/U . A closed grey line denotes a periodic orbit. Nine circles
on the periodic orbit indicate the phases of panels(a–i) in Fig. 3.
The energy input and dissipation rates are in balance on the dashed
diagonal.

The energy input and dissipation rates are in balance on the
dashed diagonal. ThoughHamilton et al.(1995) reported the
recurrent behaviour of the Couette turbulence, the variation
of the trajectory seems to be in a chaotic state rather than in
a periodic state.

Now we shall search for a periodic orbit embedded in the
turbulence attractor. In a turbulent state, the spatial symme-
tries in theNagata(1990) steady solution:

(i) the reflection with respect to the plane ofz=0 and a
streamwise shift by a half periodLx/2, and

(ii) the 180◦ rotation around the linex=y=0 and a span-
wise shift by a half periodLz/2,

are observed to appear approximately without being imposed
on the flow. Therefore, we impose them on a time-periodic
solution to be searched for, which allows us to reduce the
degrees of freedom roughly toN/4. Note that a solution
with these symmetries cannot be a travelling wave in either
thex- or thez-direction.

In the phase space we take a Poincaré section
Im(ω̃y 0,0,1)=−0.1875U/h to define a Poincaré map, where
Im(ω̃y 0,0,1) is the imaginary part of the Fourier-Chebyshev-
Fourier coefficient of the wall-normal vorticity for the zero
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Fig. 3. A full cycle of time-periodic flow (Kawahara and Kida, 2001). Flow structures are visualised in the whole spatially periodic box
(Lx×2h×Lz) over one full cycle at nine times shown with open circles in Fig.2, where panels (a) and (f) correspond respectively to the
lowest and highest circles there. Time elapses from(a) to (i) by 7.2h/U . The upper (or lower) wall moves into (or out of) the page at
velocity U (or −U ). Streamwise vortices are represented by iso-surfaces of the Laplacian of pressure,∇

2p=0.15ρ(U/h)2, whereρ is the
mass density of fluid. Brightness of the iso-surfaces of∇

2p indicates the sign of the streamwise (x) vorticity: white is positive (clockwise),
black is negative (counter-clockwise). Cross-flow velocity vectors and contours of the streamwise velocity atu=−0.3U are also shown on
cross-flow planesx=const.

streamwise wavenumber, the zeroth-order Chebyshev poly-
nomial, and the 2π/Lz spanwise wavenumber. We have
chosen the variablẽωy 0,0,1, because it represents low- and

high-velocity streaks which play a crucial role in the regen-
eration cycle of near-wall turbulence. We here employ an
iterative method to numerically obtain an unstable periodic
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orbit as a fixed point of the Poincaré map. As an initial
point for the iterative method we choose a flow state that is
nearly time-periodic, i.e. a point on the Poincaré plane that
is mapped close to itself. We can filter such approximately
periodic points from a long time integration in the turbulent
state. The periodic orbit obtained in this way is drawn in
Fig. 2 with a closed grey line, the period of which isT =64.7
(T +

=188). Grey dots on the turbulence trajectory are much
denser near the periodic orbit, implying that the turbulent
state approaches it frequently. The approaches to the peri-
odic orbit have been confirmed not only in this(I, D)-plane
but also in other subspaces, during which the spatiotemporal
structures of the turbulent flow resemble remarkably those
for the periodic flow (see Fig.3). However, the approach
does not continue forever. The turbulence trajectory is des-
tined to go away, sooner or later, from the periodic orbit. In
other words, this periodic orbit should be of saddle nature.

A full cycle of the temporal evolution of spatial structure
of the periodic solution is depicted in Figs.3a–i at nine se-
quential phases indicated by open circles on the periodic or-
bit in Fig. 2. The phase of Fig.3a corresponds to the open
circle at the time of the least input and dissipation rates. We
can see typical near-wall coherent structures, i.e., streaks and
streamwise vortices (seeJeong et al., 1997). In Fig. 3 the
clockwise (or counter-clockwise) streamwise (x) vortices are
visualised by the white (or black) iso-surfaces of the Lapla-
cian of pressure,∇2p=0.15ρ(U/h)2, (see also the cross-
flow velocity vectors) and the streamwise streaks of rela-
tively low streamwise velocity are represented by the lifted
iso-contours,u=−0.3U , in the (y, z)-planes. The dynam-
ics of the periodic flow is described by a cyclic sequence of
events which consists of

(i) the formation and development of low-velocity streaks
through the advection of streamwise velocity in the
cross-flow induced by decaying streamwise vortices
(Figs.3a–d),

(ii) the bending along the streamwise direction and tilting
in the spanwise (z) direction of the streaks followed by
the regeneration of streamwise vortices (Figs.3e–g),

(iii) the breakdown of streaks and the violent development
of streamwise vortices (Figs.3h, i).

This cyclic sequence is completely consistent with a previ-
ously reported regeneration cycle (Hamilton et al., 1995).

Figure4 compares the r.m.s. (root-mean-square) velocities
for the time-periodic flow (symbols) with those for the turbu-
lent flow (thick and thin lines), where circles and solid lines
indicate the streamwise component, triangles and a dotted
line the wall-normal component, and diamonds and a dashed
line the spanwise component. It can be seen that the r.m.s.
velocities for the time-periodic flow are in excellent agree-
ment with those for the turbulent flow (thick lines) at the
same values ofRe and (Lx, Lz). The r.m.s. velocities for

100 101 102
0

1

2

3

u’
, v

’,
 w

’

y +

+

+

+

Fig. 4. Comparison of r.m.s. velocities between the time-periodic
and turbulent flow. The lateral and longitudinal axes are normalised
by ν/uτ anduτ , respectively.u′+, v′+, w′+ are the streamwise, the
wall-normal, and the spanwise components, respectively. The sym-
bols represent the periodic flow. The thick lines denote the turbu-
lent Couette flow forRe=400 and(L+

x , 2h+, L+
z )=(188, 68, 128),

while the thin lines denote the turbulent Couette flow forRe=3000
and(L+

x , 2h+, L+
z )=(1008, 320, 252). ◦ and solid line, the stream-

wise component;M and dotted line, the wall-normal component;♦

and dashed line, the spanwise component. The r.m.s. are computed
by taking averages in time and on wall-parallel plane.

the time-periodic flow qualitatively coincide even with those
for the turbulent flow (thin lines) at much higherRe in the
near-wall region (see alsoJiménez et al., 2005).

It follows from the above results that at least in the low-
Reynolds-number Couette turbulence, complete spatiotem-
poral coherence, which is described in terms of the periodic
motion, appears in incomplete shape in physical space. Since
the turbulent state often approaches the periodic orbit to stay
in the vicinity of it, not only the coherent structures but also
the turbulence statistics are represented by the periodic mo-
tion.

Recently, for simple chaotic dynamical systems with a
large number of degrees of freedom,Kawasaki and Sasa
(2005) have found that there is an ensemble of unstable pe-
riodic orbits with the special property that the expectation
values of macroscopic quantities can be calculated using
only one unstable periodic orbit sampled from the ensemble.
There should be infinitely many unstable periodic orbits em-
bedded in Navier-Stokes turbulence. Although the systems
analysed byKawasaki and Sasa(2005) are different from the
Navier-Stokes system, their results suggest that the present
unstable periodic orbit might be a member of such an en-
semble, and that other members of the same ensemble could
also represent structures and statistics of turbulence.
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4 Unstable periodic motion representing isotropic tur-
bulence

The unstable periodic motion discussed in Sect.3 represents
coherent structures and low-order statistics in restricted tur-
bulent flow, i.e., near-wall turbulence in a small periodic box
and at low Reynolds number. It is an interesting question
whether there exists periodic motion that characterises the
essence of turbulence even in larger periodic domain and at
higher Reynolds numbers. In particular, if it exists, we would
be interested in the relevance of periodic motion to the uni-
versal statistical laws of turbulence, e.g., the Kolmogorov en-
ergy spectrum and the logarithmic velocity profile, which are
observed in fully developed turbulent flows at high Reynolds
numbers. Recently,Kato and Yamada(2003) have found un-
stable periodic orbits in a relatively low-dimensional system
for the GOY (Gledzer-Ohkitani-Yamada) shell model of tur-
bulence. One of their periodic solutions represents not only
the Kolmogorov spectrum but also the intermittency. Their
findings have suggested the existence of the unstable periodic
motion representing the universal statistical law. In this sec-
tion we consider isotropic turbulence, which is one of the
canonical forms of turbulence. We show that the Navier-
Stokes equations for this flow allow for time-periodic solu-
tions and we discuss periodic motion representing the Kol-
mogorov similarity law (van Veen et al., 2006).

In fully developed forced turbulence the energy injected
in the largest-scale motion is successively transferred to the
smaller-scale motion through the nonlinear interaction be-
tween different scales, and finally dissipated in the smallest
scale (the Kolmogorov scale). In stationary turbulence the
energy disspation rateε is in balance with the energy injec-
tion rate and with the rate of energy transfer to smaller scales.
At high Reynolds numberε is believed to be independent of
the kinematic viscosityν. The statistical properties of the
small-scale motion in high-Reynolds-number turbulence are
expected to be characterised byε andν. In particular, the en-
ergy spectrum normalised withε andν has a universal form
in small scales (i.e., in the universal range), and at extremely
high Reynolds numbers there appears the energy spectrum
proportional to the−5/3 power of wavenumber in the iner-
tial range that is the lower-wavenumber part of the universal
range (seeDavidson, 2004). This is the Kolmogorov phe-
nomenology, and its validity has been confirmed in experi-
ments and in numerical simulations.

In order to establish the Kolmogorov energy spectrum
we should increase the Taylor-microscale Reynolds number
Reλ, up to more than 100 (seeKida and Murakami, 1987).
It is difficult to obtain an unstable periodic solution at such
a high Reynolds number even by using present-day powerful
computers. Therefore we introduce the high symmetry pro-
posed byKida (1985). This is the largest group of discrete
symmetries of the Navier-Stokes equations that allows for
turbulent flows. Flows with high symmetry can be described
with almost 200 times less degrees of freedom than general

triply periodic flows. This allows us to compute periodic so-
lutions.

A Fourier spectral method is used for direct numerical
simulations, where the temporal integration of the Navier-
Stokes equation is performed using the 4th-order Runge-
Kutta-Gill scheme (Kida and Murakami, 1989). The com-
putational domain is 2π periodic in all the three directions.
The amplitude of the low-wavenumber Fourier modes of the
velocity is fixed to inject the energy in the system so that we
obtain statistically stationary quasi-isotropic turbulence. Nu-
merical computations are performed on 1283 grid points. The
number of the degrees of freedom in the high-symmetric flow
is about 9000. In a weakly turbulent state at relatively low
Reynolds numberReλ≈57 we search for a recurrent state to
be used as an initial guess for the Newton-Raphson iteration
of periodic points of the Poincaré map. By gradually chang-
ing the kinematic viscosityν the numerically obtained peri-
odic solution is traced up toReλ=67, the highest attainable
Reynolds number under the constraint of the required spa-
tial resolution. The period of the solution is about 2.5 times
longer than the characteristic timescale of the largest-scale
motion in a turbulent state.

We normalise the one-dimensional longitudinal energy
spectrum withν and the time-average of the energy dissi-
pation rate

ε =
ν

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0
|ω|

2dx dy dz.

The normalised energy spectrum is shown in Fig.5 for the
periodic solution (+) atReλ=67 and for the turbulent solu-
tion (◦ ) at the same conditions as that of the periodic solu-
tion. The spectra for periodic and turbulent solutions are in
excellent agreement, and they are consistent with the spec-
tra obtained by experiments (Champagne et al., 1970; • )
and by the closure theory (Kida and Goto, 1997; solid line)
in the high-wavenumner range, implying that the present un-
stable periodic motion represents the Kolmogorov universal-
range energy spectrum. Actually, it is confirmed that around
Reλ=67 the energy dissipation rateε for the periodic motion
is nearly independent ofν and takes almost the same value as
that of the turbulence. This result also implies that the present
periodic motion scales withε andν as in the turbulent state.
As shown in Fig.5, however, the Reynolds number, at which
the periodic motion has been obtained, is not high enough to
clearly show the−5/3 power spectrum observed both in the
experiments and the theory.

5 Control of Couette turbulence

Ever since the 1990 pioneering work ofOtt et al.(1990) the
methods of controlling chaos have been extensively devel-
oped in low-dimensional nonlinear dynamical systems. It
is known that an infinite number of unstable periodic orbits
are embedded in a chaotic attractor, and in controlling chaos
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Fig. 5. One-dimensional longitudinal energy spectrum (van Veen
et al., 2006). The lateral and longitudinal axes are normalised by
(ν3/ε)1/4 and(εν5)1/4, respectively. +, the periodic state of high-
symmetric flow atRλ=67;◦ , the turbulent state of high-symmetric
flow; • , experimental data atRλ=130 taken fromChampagne et al.
(1970). The solid line represents the asymptotic form atRλ → ∞

derived theoretically by the sparse direct-interaction approximation
(Kida and Goto, 1997).

one of the embedded periodic orbits, which is more desirable
than chaos, is stabilized by a variety of techniques (Ott et
al., 1990; Pyragas, 1992). The key idea of controlling chaos
is to take advantage of the sensitivity of chaotic dynamics
to initial conditions or parameter values, which implies that
desired states can be produced by a small change in those
conditions or values. It is, however, difficult to find a nonlin-
ear goal solution to the Navier-Stokes equation, and this is a
serious obstruction to application of chaos-control strategies
to fluid turbulence. In this section we discuss turbulence con-
trol strategy, i.e., a reduction in skin friction drag, inspired by
investigation of the phase-space structure in the vicinity of an
unstable periodic orbit (Kawahara, 2005).

The small grey closed orbit, which has been found by
Kawahara and Kida(2001), with low energy input and dis-
sipation rates (I=D≈2) shown in Fig.6 is an intermediary
goal for control of the Couette turbulence atRe=400. Note
that the energy inputI is also regarded as a skin friction nor-
malised by that of the laminar state. As can be seen in Figs.2
and6, the turbulent state occasionally approaches this quies-
cent periodic orbit with low skin friction drag.

Eigenvalues (or the Floquet multipliers) for the Jaco-
bian matrix at the fixed point (the periodic solution) of the
Poincaŕe map represent the stability characteristics of the pe-

1 2 3 4 5 6
1

2

3

4

5

1.8 1.9 2 2.1
1.8

1.9

2

2.1

I

D

I

D

Fig. 6. The (I, D)-projection of two trajectories slightly perturbed
in the positive (solid line) or negative (dotted line) unstable direction
from the periodic orbit (Kawahara, 2005). The thick grey closed tra-
jectory is the periodic orbit. The inset is a magnification of the two
trajectories around the periodic orbit, in which two other trajecto-
ries for the flows under weak spanwise rotation (2�h/U=±10−4)
of the fluid are also shown by thick lines. The thick solid and dotted
lines represent the flows under anti-parallel (positive) and parallel
(negative) rotation to the mean shear vorticity, respectively.

riodic solution to infinitesimal disturbances with the same
wall-parallel periods and symmetries as those of the peri-
odic solution. It has been found that there is only one (real)
unstable multiplier with modulus greater than unity, and all
the others are stable. Leteu denote the unit eigenvector
corresponding to the unstable eigenvalue. The two trajec-
tories shown with solid and dotted lines in Fig.6 are the
two-dimensional projection of the orbits in phase space that
start respectively from the initial pointsr=rf ±ε ||rf ||eu

(||rf ||=0.310) on the Poincaré section, whererf denotes
a fixed point of the Poincaré map, andε=10−4. The (solid)
trajectory slightly perturbed in the positive unstable direc-
tion +eu from the (thick grey) periodic orbit moves to the
turbulent state, while the (dotted) one perturbed in the neg-
ative unstable direction−eu moves to the laminar state
(I, D)=(1, 1). This means that the periodic orbit and its lo-
cal stable manifold form a separatrix between the basin of
attraction of the turbulent and the laminar states. The infor-
mation on such a basin of attraction is of great importance
not only for elucidation of transition mechanisms but also
for controlling turbulent flows. In general it is difficult to ex-
tract a basin boundary because it should be very complicated
in high-dimensional phase space. Here the discovery of the
periodic orbit leads us to the extraction of the local basin
boundary. In the following we shall discuss a laminarization
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Fig. 7. Time evolution of the wall shear rateI for uncontrolled
and controlled flows (Kawahara, 2005). The thick and thin solid
lines represent the two uncontrolled flows. One of them, shown
by the thick solid line, approaches the periodic orbit naturally, and
during its natural approach (t+=0) the rotation is turned on. The
thick dashed line represents the corresponding controlled flow. The
other (the thin solid line) does not approach the periodic orbit, but if
Pyragas’ external force withkh/U=0.1 is turned on att+=−302,
the corresponding state, denoted by the thin dotted line, approaches
the periodic orbit. During this forced approach (t+=0) the rotation
is turned on, and the corresponding controlled flow is shown by the
thin dashed line. The dotted-dashed line denotes the energy input
Iext through Pyragas’ forcing, normalised withI . The rotation is
imposed for the period shown by the thick grey segment.

method for the Couette turbulence based on the knowledge
of a separatrix of the basin of attraction.

It is possible to largely reduce the skin friction drag
by laminarizing the turbulent flow. The laminarization is
achieved by imposing small-amplitude control input for a
short interval during an approach of the turbulent state to the
periodic orbit so that the state point can go beyond the stable
manifold (i.e., the basin boundary) toward the laminar state.
For stabilization of the periodic orbit, on the other hand, the
control input is determined so that the state point can fall on
the stable manifold (seeOtt et al., 1990). Here we introduce
the rotation of the whole fluid around the spanwise axis at a
constant angular velocity� as an example of possible control
input. As shown in Fig.6, if the rotation is parallel (or anti-
parallel) to the mean shear vorticity induced by the two mov-
ing plates, the state point tend to the laminar (or turbulent)
state. Figure7 shows two examples of laminarization tests.
The thick solid line denotes a turbulent state without control,
and the thick dashed line denotes a controlled state. It can be
seen that a weak rotation, imposed during an approach of the
turbulent state to the quiescent periodic orbit aroundI≈2,
leads to the laminar state with the significantly low skin fric-
tion I=1. In this laminarization strategy we must wait for
an approach of the turbulent state to the quiescent periodic

orbit, but close approaches are not so frequent. Hence a lam-
inarization method without such waiting is desired, which we
briefly discuss in the following.

In order to make the turbulent state approach the peri-
odic orbit at any time, we implement the external force
kP(up−u) per unit mass in the Navier-Stokes equation by
following Pyragas(1992), wherek is a (positive) constant
andup andu are the velocities of the periodic flow and the
flow to be controlled, respectively. The projection operator
P provides the reconstitution of a solenoidal velocity field
given only by the Fourier-Chebyshev-Fourier coefficients of
the wall-normal velocity and vorticity,̃vm,l,n andω̃y m,l,n, for
(m, n)=(0, ±1), (±1, 0), (±1, ±1), (±1, ∓1), and l=0, 2.
Note that the number of degrees of freedom of the external
force is much smaller than that of the system,N . The exter-
nal force can globally stabilize the periodic orbit. Actually, if
we turn on the forcing at any instant, the turbulent state very
rapidly tends to the periodic orbit as shown in Fig.7 (thin
dotted line). After a close approach, the laminarization has
been achieved in the same way as above (thin dashed line).

In order to extend this strategy to turbulent channel flows,
we need the same kind of nonlinear solution to a plane
Poiseuille system. Such solutions have already been found
in the Poiseuille system at subcritical Reynolds numbers by
Itano and Toh(2001) and Waleffe (2003). They have re-
ported that their travelling-wave solutions are on a separa-
trix between the basin of attraction of turbulent and lami-
nar states. Their solutions could be a good candidate for the
base of laminarization. In the supercritical Poiseuille sys-
tem, however, the laminarization demands stabilization of a
laminar state.

6 Conclusions

In this paper we have reviewed our recent attempt at under-
standing and controlling turbulent flows with the aid of un-
stable periodic motion embedded in turbulence. Though the
attempt is confined to low-Reynolds-number turbulent flows
in a spatially periodic domain, it turned out that spatiotem-
poral coherence in such a turbulent flow is characterised in
terms of unstable periodic motion, and the low-order turbu-
lence statistics, such as r.m.s. velocities and energy spectrum,
are described by the temporal average along the periodic or-
bit. The relevance of the unstable periodic motion to the uni-
versal statistical law, e.g. the Kolmogorov similarity law, in
high-Reynolds-number turbulence has also been suggested.

Let us now recall one of the crucial subjects of turbulence
research mentioned in the introduction, i.e. a quantitative ex-
planation for what is going on in turbulent flows and how
the events relate with statistical properties of turbulence. It
is still difficult to extract a typical periodic motion, which
represents the essence of turbulent motion, from a variety of
many periodic orbits. However, if we extract such a typi-
cal motion, we might be able to understand what is going on
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in turbulent flows by fully examining exactly recurrent mo-
tion embedded in spatiotemporally complicated turbulence.
By comparing the statistical properties of the periodic mo-
tion with those of turbulent motion, we might elucidate how
much the coherence in turbulent flows affects the turbulence
statistics. If their properties are consistent, we might be able
to trace the origin of the statistical characteristics and the sta-
tistical laws of turbulent flows through the unstable periodic
motion. We would like to close this paper by stating our
hope and expectation that the study of unstable periodic mo-
tion will deepen our understanding of fluid turbulence and
provide useful strategy for turbulence control.
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