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Abstract. Nonlinear relations among frequencies and phasedong time evolution of the Alfén modulational instability in

in modulational instability of circularly polarized Alén the DNLS and in the Hall-MHD models differs significantly,
waves are discussed, within the context of one dimensionaleven though the initial plasma and parent wave parameters
dissipation-less, unforced fluid system. We show that generaare chosen in such a way that the modulational instability is
tion of phase coherence is a natural consequence of the modhe most dominant instability among various parametric in-
ulational instability of Alfiven waves. Furthermore, we quan- stabilities. One of the most important features which only
titatively evaluate intensity of wave-wave interaction by us- appears in the Hall-MHD model is the generation of sound
ing bi-coherence, and also by computing energy flow amongwvaves driven by ponderomotive density fluctuations. We dis-
wave modes, and demonstrate that the energy flow is directlguss relationship between the dispersion relation, energy ex-
related to the phase coherence generation. We first discushange among wave modes, and coherence of phases in the
the modulational instability within the derivative nonlinear waveforms in the real space. Some relevant future issues are
Schibdinger (DNLS) equation, which is a subset of the Hall- discussed as well.

MHD system including the right- and left-hand polarized,
nearly degenerate quasi-parallel Afv waves. The domi-
nant nonlinear process within this model is the four wave
interaction, in which a quartet of waves in resonance can ex-

change energy. By numerically time integrating the DNLS | various areas in space and astrophysical environment, for
equation with periodic boundary conditions, and by evaluat-instance in the solar wind and in foreshock region of plan-
ing relative phase among the quartet of waves, we show thagtary bowshocks, parametric instabilities of magnetohydro-
the phase coherence is generated when the waves exchangynamic (MHD) waves are thought to play essential roles in
energy among the quartet of waves. As a result, coherengenerating MHD turbulence. Spacecraft observations sug-
structures (solitons) appear in the real space, while in thgyest that, within the MHD turbulence in the solar wind and
phase space of the wave frequency and the wave number, thg the earth’s foreshock, a large number of localized struc-
wave power is seen to be distributed around a straight lineyyres are often embedded (Mann et al., 1994; Dudok de Wit
The slope of the line corresponds to the propagation speeg g, 1999; Lucek et al., 2004; Tsurutani et al., 2005). Also,
of the coherent structures. Numerical time integration of thergcent surrogate data analysis using magnetic field data ob-
Hall-MHD system with periodic boundary conditions reveals tzined by Geotail spacecraft (Hada et al., 2003; Koga and
that, wave power of transverse modes and that of longitudiada, 2003) has revealed that large amplitude MHD waves
nal modes are aligned with a single straight line in the disper-gpserved in the earth’s foreshock are not completely phase
sion relation phase space, suggesting that efficient exchang@ndom, but are almost always phase correlated to a certain
of energy among transverse and longitudinal wave modegjegree. Furthermore, the larger the MHD wave amplitude,
is realized in the Hall-MHD. Generation of the |Ongitudinal the Stronger the wave phase COfre'ation, |mp|y|ng that the de-
wave modes violates the assumptions employed in derivingected phase coherence is a consequence of nonlinear interac-
the DNLS such as the quasi-static approximation, and thugion among the MHD waves. Since the finite phase coherence
in the Fourier space corresponds to the presence of localized
Correspondence toY. Nariyuki structures in the real space, the large amplitude MHD turbu-
(nariyuki@esst.kyushu-u.ac.jp) lence in the foreshock should be regarded as a superposition
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426 Y. Nariyuki and T. Hada: Phases and frequencies in nonlineaeilkaves

of random phase MHD turbulence plus a large number of lo-plasma density fluctuations and “daughter” Afv waves
calized structures. with the same polarization as the “parent”. As early as in
Since the MHD waves are dispersive in general, it is natu-the 1960s, it was shown by Galeev and Oraevskii (1963),
ral to infer that the localized structures once produced wouldand Sagdeev and Galeev (1969) that the circularly polarized
disperse away as time elapses. On the other hand, the nodfv én waves are subject to parametric decay instability (see
linearity of the MHD set of equations acts as a source forAppendix). Later, Goldstein (1978) and Derby (1978) de-
production of the localized structures. In fact, inspection ofrrived the dispersion relation of the decay instability of the
a simple model representing interaction of parallel Adv  circularly polarized Alfen waves using ideal MHD equation
wave modes suggests that, the phase coherence is generat&t. Roles of the dispersion effect was investigated using the
whenever there is an exchange of wave energy among wavidall-MHD (two-fluid) set of equations by Wong and Gold-
modes in resonance (Nariyuki and Hada, 2005). Namelystein (1986), Longtin and Sonnerup (1986), and Terasawa et
the localized structures are unstable and fade away, but ar@l. (1986). The Hall-MHD equations are
also continuously born due to intrinsic nonlinearity of the

MHD system. Such behavior of the localized structures is g—ﬁ; = —V-(pv) (1)
typically seen in nonlinear evolution of Alén wave para- )

metric |nstap|llt|e§, in pe_mrucular, .|n.nonI|near evolution of 3_" — —V.VV— EV <p + ﬁ) + E(b V)b )
the modulational instability. In a similar context, Nocera and 9t P 2 Y

Buti (1996) discussed formation of localized pulses in a non- 5 1

dissipative DNLS system, and Hasegawa et al. (1981) ob--- = Vx(V x b) = Vx (;(VXb) x b) )

served emergence of organized structures in the Korteweg-v_b —0 @
de Vries equation. The four-wave interaction scheme was™ =~ —
used to explain the emergence of organized structures in th@here the density is normalized to the initial uniform den-
unforced, dissipative DNLS (Krishan and Nocera, 2003). Insity o, the magnetic fieldh to the background constant field
this paper, we discuss implications of the presence of finitemagnitudebq,, the velocityv to the Alfvén velocity defined
phase correlation, which corresponds to the presence of loby oo andbo,, and the pressurg to the ambient magnetic
calized structures, generated by the wave-wave interactiongressure. Time and space are respectively normalized to the
in modulational instability of circularly polarized Alen  reciprocal of the ion cyclotron frequency and the ion inertial
waves, within the context of one dimensional, diSSipation-length defined using the background quantities.
less, unforced fluid system. We will emphasize the impor- |n this paper, all the physical quantities are assumed to
tance of nonlinear relations among frequencies and phases e dependent only on one spatial coordinafe (Then the
identifying relevant physical process involved in the modu- governing equations become
lational instability. 5 5

The plan of the paper is as follows: In Sect. 2, we re- 9% _ ——(pu) 5)
view and compare the parametric instabilities in the Hall- ot dx

MHD system and in the DNLS equation. In Sect. 3, we dis- 94 ou 19 n 1612 ©6)
cuss the relationship between generation of solitary wavesdr =~ dx  p dx p 2

and nonlinear wave-wave interaction in detail, by examining P v 19b

numerically produced Alfénic turbulence using the DNLS — = —u— 4+ —— @)
equation. Our main discussions on the phase coherence igt Ox = pox )

presented in this section. In Sect. 4, we discuss phase anfl? _ _ 9 <ub — v+ L%) (8)
frequency features in the Hall-MHD system. From the rela- 9¢ dx p ox

tion between the plasma density and the envelope of the MaGyhereb=>b,+ib, andv=v,+iv, are the complex transverse

approximation used in the DNLS. When the longitudinal and ongjtudinal velocity. For simplicity, we assume the equa-

can couple strongly, and as a result the phase coherence c@fe squared normalized sound wave speed.

be generated. We summarize the results and discuss some of|n, the following, linear perturbation analysis is used to dis-

the fundamental issues presented in the paper in Sect. 5. cyss parametric instabilities of parallel propagating Atfv
waves, using the DNLS equation (Sect. 2.1) and the Hall-

_ _ _ o MHD equations (Sect. 2.2).
2 Basic equations and analytical study of parametric in-

stabilities 2.1 Linear perturbation analysis of the DNLS system

It has long been known that circularly polarized (“parent”) By applying a quasi-static approximation in which hydrody-
Alfvén waves are parametrically unstable to generation ohamic nonlinearities and steeping are weak (i.e., variation of
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the plasma density is caused only by magnetic ponderomoef longitudinal perturbations (quasi-modes}p. At order
tive fluctuations), Rogister (1971) derived a kinetic equationof /=1, we obtain linearized equations

describing the long time evolution of the Aim waves. Es-

sentially the same equation was subsequently obtained starf2 = 2K (b§ + ko) £ K/ K2 + 2bZko + b3 (13)
ing from the two-fluid set of equations (Mjglhus, 1974; Mio

et al., 1976; Spangler and Sheerin, 1982; Sakai and SorHf 0<|K|<bo,/—2ko—b§, the system exhibits the modula-
nerup, 1983; Mjglhus and Hada, 1997). The fluid version,tional instability. The wave number corresponding to the

now known as the DNLS, reads maximum growth rate iKmax=bo(—ko—b3/2)*/2. When

5 the system is modulationally unstable, the frequency of
b +ai(|b|2b) + iﬂﬁ =0 (9)  sideband modes is obtained from the real part of (13) as
ot dx ax2 7 w+1=2v40k+1—wo, Wherevgo=wo/ko. Therefore, the dis-

where normalizations are the same as in Egs. (1_4)persio_n relation .of the.sidebanq modes appears as a sFraight
a/Ca=C2/4(C2—~C?2), 21/ Ca=c/w,; is the ion inertia dis- line, since the dispersion term is cancelled by the nonllngar
persion length, and’4, C;, C, are the Alfén, intermedi-  term. In other words, the nonlinear effect and the dispersion
ate, and sound speeds, respectively. In the DNLS equatiorfffect are balanced. We will encounter again such a disper-
h=—v, and sion relation in numerical analysis in Sects. 3 and 4, where
) more detailed discussions will be given.
b
=p= 2(1|—113) (10) 2.2 Linear perturbation analysis of the Hall-MHD equation

Where,Bzcsz/Cf‘ (the quasi-static approximation). Finite amplitude, circularly polarized Alen wave in the
The DNLS describes evolution of weakly nonlinear, form below is an exact solution to Eqs. (5-8),

guasi-pa[allel propagating, both right- and left-hand polar—bp — bo expli (wot — kox)), (14)

ized Alfvén waves (or “magnetosonic” and “shear Afv _ X0 & 15

waves), which are nearly degenerate. Modulational insta» = Y0 &XPi (ol —kox)), (15)

bility is driven unstable for the left-hand polarized waves where vo=—bo/vg0, vgo=wo/ ko, p=1, andu=0, together

when <1, and for the right-hand polarized waves when with the dispersion relation

B>1 (Mjglhus, 1976; Spangler and Sheerin, 1982; Sakaiand » >

Sonnerup, 1983), although presence of resonant ions signh‘—o0 = koL + o). (16)

icantly alter the above conditions, especially o1 and  Now we add small fluctuations and write

moderate to large ion to electron temperature ratio (Rogister, 1.

1971; Mjglhus and Wyller, 1988; Spangler, 1990; Medvedevp =1+ 2 > el o, expli (nQt — nKx)) +c.c., a7
etal., 1997). The DNLS is known to be integrable under var- n=1

ious boundary conditions (Kaup and Newell, 1978; Kawata 1 | .

and Inoue, 1978; Kawata et al., 1980; Chen and Lam, 2004)% = 0+ 5 > "l expii (121 —nKx) +c.c., (18)
In this paper, we restrict our discussion to the cfisel, "Ozol

since only within this regime the use of the fluid version of v=u,+ Z €y, eXpli (wnt — knx)), (19)

the DNLS is justified, unless the ion to electron temperature

=—00

ratio is extremely low. ! 00

By re-scaling of the variables—pur/a? andx—px/a, b =b, + Z e, expli(wpt — knx)), (20)
(9) is reduced as n=—00
9b 5 32 wherek,=ko+nK, w,=wo+n2, n is an integer, and-.c.
— + —(b|%b) + i— =0. (11)  represents the complex conjugate. At ordee /s, we ob-
ot ox dx tain the following linearized equations
A parallel, circularly polarized, finite amplitude Akn Qpy = Kus, 21)

wave, b,=bg expi (wot —kox)), wherebg, wg, andkg are .
real, satisfies (11) with the dispersion relation for the parent $2#1 = Kbo(b+ +b~) + SKpa, (22)

wave,w0=b§k0+kg. Now we superpose small fluctuations _ bouy 5, bokoky
to b, and write Wby = kv ke o A RDy PRI
b bokok
- w_bt = —k_vt k22t 2y - 0 (24)
b=by+ Y €"lb, expli(wit —knx)), (12) . 2 2
= 0v0 oko
n=-00 WLV = ) ug — k+b+ + T,Ol, (25)
wherek, =ko+n K, w,=wo+n<2, andn is an integer (except kovo boko
for 0). Here Q andK are the frequency and the wave number @-v* = S U1 k_b* + 5 Pl (26)
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Fig. 1. Dispersion relation of parametric instabilities in the Hall-
MHD system. Shown are the real (red lines, left scale) and imag-
inary (blue lines, right scale) normalized frequencies plotted ver- -1.5 R | T | | |
sus the normalized wave numbek,/kg. Parameters used are, -1.0 -0.8 -0.6 -0.4 -0.2 0.0
ko=—0.5, =0.5, andby=0.4. For comparison, the dispersion re- k

lation of sideband wave modes and the sound wave (zero parent

wave amplitude) is superposed as black solid and dashed lines, re-

spectively. Forward and backward lower (upper) sideband wavesig. 2. The three frequency contributionsyin, wp;, and gisp,

are labeledf —(+) andb—(+), and the sound wave is labeled plotted versug, using the same set of parameters used for Fig. 1.
See text for explanation of how to make the plot. Bothd&jdfed
solid line) andwjj, are linearly dependent oy and so should be

where we write the subscript£1) as(=+) for brevity. Com-  the sum ofwgisp and w,;, suggesting that the dispersion and the

bining these equations above, we obtain, nonlinear effects are cancelled each other.
2 2 K Zbg
(QF =KLy L = 2 (LyR-+L-Ry), (27) (eigenvector). By varying< in both positive and negative
where regimes, the dispersion relation can be visualized by plot-
ting the real part ofo=wo+£2 as a function ok=ko+K, as
Li=0? — K31+ wy), (28)  shownin Fig. 2 as a solid red line. Superposed in the figure
are the plots otu“,,:(kivf))/bgf), wnlzkiboul/Zbi"), and
ko2 Qwy wdisy=k2 —bokoks p/2b%" versusk, which are frequenc
Ri =koks [ o + =25 1wy ). 29 Isp=ICt ~DOKONLP /20 ’. quency
* o+ (woK + koK wi) (29) contribution from the three effects introduced above. By def-

_ _ _ _ inition, w=wiin +wn+wdisp.
The dispersion relation (27) has been obtained and solved o the figure we notice that boihanday;, almost lin-
numerically (Wong and Goldstein, 1986; Longtin and Son- g1y depend ok, and thus sum af,; andwgisp should also

nerup, 1986; Terasawa et al., 1986; Vinas and Goldsteingepend linearly o, suggesting that the nonlinear effect and

1991; Hollweg, 1994; Champeaux et al., 1999). Figure Ly,e gispersion effect are balanced, as they were for the DNLS
shows the real and imaginary frequencies of the longitu-gqyation discussed previously. In other words, the mismatch
dinal waves wheng=0.5, bo=0.4, andko=0.5. Under  qfhe resonance condition due to the dispersion effect is re-

this particular set of parameters, the modulational instabilityduced by nonlinear interaction among the Fourier modes, just
(0<K/ko<1) has a growth rate larger than (or almost com- |ike in the case of the DNLS (Sect. 2.1).

parable with) the beat instability arouke:1.3.

It is instructive to look at Egs. (23) and (24) in order to
discuss how the side band mode frequencies are determineg.
The r.h.s. of these equations represent three basic processes

which determine the transverse magnetic field; the linear re; _ ., . . . . .
sponse K.0%"), thevxb nonlinearity (.bouz/2), and the In_thls section, we discuss the relationship t_)etween gener
+ /) ’ ation of solitary waves and the wave-wave interaction. In

Hall effect (3b%” — bokoksp/2). Hereafter we will call Fig. 3 we show numerical time integration of (11) under peri-
these terms as “linear”, “nonlinear”, and the “dispersive” odic boundary conditions, where the envelojsg)(s plotted
terms, respectively. For a given set of parent wave paramin the phase space of time) @nd spacex(). As initial condi-
eters po andko), B, andK, one can solve Eq. (27) to find tions, finite amplitude, left-hand polarized, monochromatic
Q associated with the modulational instability (eigenvalue), Alfv én waves with the wave amplituég=0.4 and the wave

together with ratios among variables, u1, bf), and vf) mode numbem=mo=—11 are given, superposed with a

Phase coherence in the DNLS equation
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Fig. 3. Time evolution of envelopg| in the DNLS model (11) with  Fig 4. Time evolution of the power spectrum (in logarithmic scale),

periodic boundary conditions. Initial conditions are given as a SU"|og |by |, plotted in the phase space of the wave mode numgr (
perposition of finite amplitude, left-hand polarized monochromatic 5 time. The parent mode is given initially/ag=—11. Positive

waves, and very small amplitude white noise. (negative)n corresponds to right- (left-) hand polarized waves. The
wave number is given by=27m/L, whereL=256 is the system
sSize.

very small amplitude white noise with |bnoisd?>1/2=10"°
within the range of-256<m <256, where the bracket de- )
notes spatial average over the simulation system. In thdliscentof the presence of (near) recursion of the DNLS equa-
above, the wave numbéris related to the mode number 10N with periodic boundary conditions.
ask=27wm/L, where the system size is=256. We have Nex_t we show that distribution of wave .phases a}nd fre-
used the convention that andk positive (negative) repre- duencies are cllosely related to thg generatlon and disappear-
sents the right- (left-) hand polarized waves. For the numeri-2nce of.the. solitary waves. We wrlte.the Fourier transformed
cal computation, we have employed the rationalized RungeMagnetic fieldb,=|bx| expi¢y, and discuss the relation be-
Kutta scheme for time integration and the spectral method fofWeen behavior of solitary waves and correlation among
evaluating spatial derivatives. Number of grid points used forvave phaseg.. A method to evaluate the wave phase coher-
this run is 2048. ence has been proposed (Hada et al., 2003; Koga and Hada,

Since in Fig. 3 we are plotting the magnetic field enve- 2003), Wh'(.:h. we briefly explain below. “Squgse we have a
lope, which is constant for the monochromatic, circularly Sla't_a_contalang WavesFora(x), Where_ OR.G _stands for
polarized waves, at the beginning not much wave activities orlg_lnal d_ata - In the present anaIyS|_s, t.h's IS a snapshot
are apparent. However, starting fram200, modulation of of simulation data evaluated at certgm fixed time. From
the envelope becomes increasingly more evident, and arounQORG(x) we make a phase randomized surrogate (PRS),
t~300 a series of solitary waves is created. The number o PRS(X)’.and a phasg correlated surrogate (PaﬁhS(x)’.
solitary waves is decided by the wave number that has th y shuffling and maklrJg equal all the ph_ases,” respectively.
largest growth rate in Eq. (13). After~300 we observe a hen we compute the "phase coherence index’,
cpmplex behavi.or of solit{:\ry waves: they appear, propagateC¢ — (Lprs— Lora)/(Lprs— Lpcs), (30)
disappear, and interact with each other.

Corresponding time evolution of the power spectrum iswhere
shown in Fig. 4. During &¢<200, the parent wave energy
(m=—11) is gradually transferred to the side-band daughter- = Z 1By (x +8) — Bi(¥)] (31)
waves (mainly,n=—4 andm=-18) through the modula- g
tional instability. Later on, increasingly more waves at dif- is the first order structure function evaluated for data (*),
ferent mode numbers are generated due to coupling amongnd the asterisk stands for either ORG, PRS, or PCS. In the
finite amplitude waves, and also due to the modulational in-above,s is an external parameter representing the coarsing
stability of the daughter waves, as can be seen as wideningcale, which we choose to be the grid size for the present
of the power spectrum in the-space. Around~300, the  analysis. Wher€ is close to 0, wave phases are almost ran-
width of the spectrum is maximized, corresponding to thedom, whileCy being close to unity suggests that phases are
appearance of the solitary waves. When the solitary wavesimost completely coherent. Figure 5 shows time evolution
disappear, the power spectrum becomes narrow again, repref Cy for the run shown in Fig. 3. Apparently, the appear-
senting the uncertainty principle, i.e., the width of the wave ance and disappearance of solitary wave trains correspond
packet in the real and Fourier space are inversely proportionéio the increase and decreasegf This is easily understood
to each other. We note that solitary waves disappear almostince the solitary waveform may be produced by equal-phase
completely at certain time intervals like-900. Thisisremi-  superposition of many waves with different wavelengths.
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1-07¢, 2.0, 1d6/dt]

0.8+ 1.5-

0.6 1.0-

0.4 0.5

0.2+ -80 40 = 40x10° 80
time

0. 0 — e
0 200 400 600 800 1000 Fig. 6. Relation betweerF (k) and |0 (k)| (see text for detailed ex-
planation of the plot and the variables). The set of wave numbers
chosen for the plot are;=27m ; /L, whereL=256 is the system
Fig. 5. Time evolution of the phase coherence indey, When size, andmg=mg=mqo=—11, m1=—15, moy=mgz+mg—m1=—7.
C4~0, the wave phases are almost random, wijje-1 represents  The figure suggests that the exchange of wave energy between the
that the wave phases are almost completely correlated. sites is enhanced (reduced) when the relative phase is almost con-
stant (varies rapidly) in time. The unit of the vertical axis is degrees
per unit time.
Now we discuss how phase coherence is generated by the
modulational instability in the DNLS. Since the nonlinearity ] ) ) )
of the DNLS equation is cubic, it follows that, the basic non- the evolution of wave energy of a certain mode is determined
linear interaction in this model is the four wave resonance by “energy flow” exchanged between the quartets,
(Onthe o@her hand,. if we reggrﬂ|2' asa quasrmode asrep- p(k) = ky|br1||brzl|bisl|bral SINO(K). (36)
resented in the static approximation (10), the interaction can
be viewed as the three wave resonance among twoeAlfv The direction of the energy flow is determined by the sign of
waves and the quasi-mode.) sinf (k) andk;.

We have the resonance relation among the wave numbers, Figure 6 is a scatter plot in the phase space’dt) and
|do (k) /dt| (=]6(k)|), inwhich a single dot is plotted at every

ki + k2 = k3 + ka, (32)  time step based on the simulation run shown in Fig. 3. The

and a similar relation should hold for the wave frequenciesS€t Of Wavenumbers, =2mm /L, with mg=ms=mo=—11,

as well. While the resonance condition of the wave frequen-ml_:_ls’ ma=—1 are Choser.‘_'” such a way that the waves
cies usually has the mismatch due to the dispersion effect il’?at'Sfy the resonance condition, and also that the modes
the DNLS, as we saw in Sect. 2, the dispersion effect and th&'=""1 @ndmz are the two daughter waves driven unstable

nonlinear effect cancels each other, and so there is no mi t-r?/ the parent wave am:":ﬁ' flt is seen that dexc.hangﬁ of d
match of frequencies when the wave modes are coupled. € wave energy among the four wave modes IS enhance

Let us define the relative phase among the four waves as (reduced) when the relative phase is close to constant (varies
rapidly) in time. The same tendency is seen in any quartets in

0(K) = ¢r1 + P2 — Px3 — Gra, (33) resonance with different choice of the wave numbers. Using
this result, we can now interpret the time evolution shown in
where k={k1, k2, k3, ka} represents the quartets of wave Figs. 3 and 4 in detail. Around~200, due to the modula-
modes in resonance. Small temporal chang@(kj |mpl!es tional instability driven by the finite amplitude parent wave,
that the phase coher_ence between the four waves is stror};gpair of side band waves (daughter waves) appears. At this
(Io_cked), because this temporallghange corresponds to thg'tage, phase coherence is generated only within a small num-
mismatch of the resonance condition of frequencies. ber of resonant quartets, and the growing sideband waves are
From Egs. (11) and (33), we have restricted withink <0 (wheng is low), because of the deriva-
d <|bkl|2> ' tive nonlinear term in Eq. (11): if a quartet includes some
= klz bkl |kl |bi3l|bkal SINO (K), (34)  of the right-hand polarized wave modés-(), this quartet

dt 2 is “stable” in the sense that the exchange of energy among
and them stays only at a fluctuation level. Around300, the
d \bial bl |bral sideban.d waves are sufficiently Iar.ge, and quartets of higher
o (Pr1) = k1 Z T cosf (k) + kf, (35) harmonic sideband wave modes (including0 modes) be-

come unstable. This broadening of the power spectrum (as
where the summation is to be taken over all the combinationseen in Fig. 4) corresponds not only to generation of soli-
of (ko, k3, k4) which satisfy (32). Equation (34) indicates that tary waves (Fig. 3), but also to the generation of the phase
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coherence (Fig. 5), since a large number of quartes undergc - (a)
significant nonlinear interaction among them as evidenced ing _ .
Fig. 6.

The interpretation above is justified by inspection of the
dispersion relation directly computed from the simulation 2
run. By computingp; using (35) and plotting it versus,
the dispersion relation in the simulation system can be visu-
alized for any given time. In Fig. 7 we show time evolution of
the dispersion relation, at=0, =200, and:=550. Initially,
almost all the wave modes have extremely small amplitude
except for the parent wave, and thus they are located arounc
the linear dispersion relatiom:b§k+k2. As many of the .
wave modes acquire finite wave amplitude via the wave-wave 4 -
interaction, they tend to be aligned on straight lines (two line
segments exist in (b): notice a little difference in slopes of
lines fork positive and negative). The slope of the line cor- 2
responds to the propagation speed of a soliton, and the in-
terval of k which are aligned on the line segment represent
the waves the soliton is composed of. At later time (c), it 0
is more evident that the wave modes are concentrated on ¢ -
number of different line segments, with different ranges,of
and with different slopes. These line segments do not nec-
essarily go through the origin, since they represent the four
(but not three) wave interaction. Consequently, even though
there can be many solitary waves (coherent structures) with
different propagation speeds, the resonance condition amon
the four waves is well satisfied, i.e., the frequency mismatch 9 |
is small, and thus a large flow of energy exchange among the
modes is expected.

The nonlinear interaction among different waves can be 0
inspected through evaluation of the so-called bi-coherence
(Dudok de Wit et al., 1999; Diamond et al., 2000), ' ' ' ' ! ' i

i

| < prabi2biz > | (37) k

be(ka, k2, k3) = :
V< |pribeal? > < |beal? >
Presence of finite wave power &, k2, k3, together with Fig. 7. The wave frequencyy (red circles) versus evaluated at
bc~1 suggests that the waves are in resonance. Figure 8)7=0, (b)7=350, and (cy=550. Atr=0, all the wave modes ex-
compares time evolution of averaged bi-coherence indexCept for the parent wave have very small wave amplitude, and thus
b¢=N*l " be, total absolute energy flow among all the they are located around the linear dispersion relaﬂmb%k+k2
quartets,FtotzN‘lz |F(k)|, and the phase coherence in- (blqellne). However, as t.he wave modes.grovy via wave-wave inter-
dex,C,. On computing, and Fioy, all the combinations of action, they tend to be aligned along straight lines. The slope of the
Lo @ tot,

b diff h d A | line corresponds to the propagation speed of a soliton, and the inter-
wave numbers different ways) are exhausted. Apparently val of k which are aligned on the line segment represent the waves

variations of the three quantities agree well to each othery,e soliton is composed of. Among the quartet of waves on a sin-

suggesting that the phase coherence is generated as the waye line, the frequency mismatch for the resonance condifido |

energy is exchanged among resonant quartets. is small, and consequently, energy exchange among théo is
Finally, we make a remark on the direction of the en- large, as seen in Fig. 6.

ergy flow. From Fig. 4 we see that the parent wave

mode &=ko=2mrmg/L) remains to be the dominant one

throughout the simulation run. Therefore, among the many .

quartets of wave modes in resonande, kz, ks, ks) with In fact, the set of wave nu_mpers usec_i for Fig. 6 was cho-

ki-+ko—ka+ka, the most dominant quartet (which makes sen so that Eq. (38) is satisfied. In Fig. 9 we have plotted

(36) the largest) is the one witty=ks=kg. The resonance sind (k) in the'phase space of; and time, Withk?’:k“,:ko ]
condition of wave number for this quartet is, andk; determined by Eq. (32). The plot shows the direction

of the energy flow between the parent wave and the daughter
ko + ko = k1 + ko. (38) waves. For example, associated with the first formation of
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Fig. 8.  Time evolution ofCy (red area)by (blue area), and

Fiot/1078, (black solid line). Variation o’y well corresponds to

those ofbs and Fiot. Fig. 10. Time evolution of envelop&| due to Egs. (5-8) with peri-

odic boudary conditions. Initial conditions are given as a superposi-
tion of finite amplitude, left-hand polarized monochromatic waves,
and very small amplitude white noise.

sin0
<" Ll . .
= with < |ancisd®>1/2=10"5, wherea represents any variable
., ,‘i\ ""- " " B . 0.5 in Egs. (5-8) within the range 6f128<m<128. The sys-
“ ‘}“ l."ﬂm‘;w?’u “re e e { tem size isL=256, in which there are 1024 grid points. We
m ‘VI‘\J‘,*““N\W‘N‘;"‘:wu\““ 0.0 choses=0.5 so that the modulational instability growth rate
‘\MWH‘\"\“\‘]“ ”\,w\mm | . is the largest among all the parametric instabilities possibly
| \ww“‘l‘u‘” 'w‘ ‘MHMM ﬂ " -0.5 driv table. Th i ified h )
“\\“\‘\““W“ ‘|”,\” ‘m‘““““‘““\”\‘*. ..“l W Iriven unstable. The parameters specified here are essen
\““m““\“w‘w\MH“"”)"\J\"W\‘”H\;"m‘\‘\ bl ﬂ"“:‘” , ) nm . |r .” e tially equivalent to the ones used in the previous section.
J?o‘e“‘Ju\\u\'\\“ﬁ“l“Ll‘l“u\\ul““\‘”wl“‘“ﬂw"“"ﬁ‘,‘{w | .n“m,‘l}‘ b i " i ' Figure 10 shows time evolution @] plotted in a way sim-
M B R e ilar to Fig. 3, and Fig. 11 represent time evolution of |bg|
0 200 400 600 800 1000 and log|p,,|, which is the power of the transverse and the

longitudinal waves, respectively, as a function of the wave
mode number.

From comparison of the DNLS and the Hall-MHD simu-
lation runs, we dicuss validity of various approximations as-
sumed in the DNLS. In particular, we look at the following:

solitary wave rows#~200—350), sind (k) <0 for k;<0 and (a) the quasi-s.tati.c approximation, Eq. (10), (b) conservati.on
sin6.(k)>0 for k;>0. Namely, in both regimes d >0 and of the magnetic field energy alone, .and (c;) the assgmptlon
k1<0, the energy flow defined in Eq. (36) is positive, i.e., the of constant plasmfil den5|ty_ in _the _d_|sper3|on term (i.e., the
energy is transferred from the parent wave to the daughte""a" -term,d/9x (o™ ~9b/dx), is simplified by assuming to

waves. During the time interval when solitary waves disap- be constant). These approximations are justified as long as

pear (~350-400), we observe the opposite, i.e., the energythe power of the longitudinal modes .(Flg 11b) is much less
flows back from the daughter to the parent waves. than that of the transverse modes (Fig. 11a). Araun850,
the power spectrum of sideband wave modes and the daugh-

ter wave modes begin to grow. To check the validity of the
4 Nonlinear relation among phase and frequency: Hall- appr(_)ximation in EQ. (10), we evaluate the cross-correlation
MHD equations function,

Fig. 9. Evolution of sind (k), plotted in the phase space of the wave
mode numberr4) and time.

<bx+rt+0)%px, 1) >

In this section, we discuss the modulational instability in ¢(A, 7) = = = (39)
the Hall-MHD equations (Eqgs. 5-8), and compare the results V< Ib@ A+ D >< (p(x,0)2 >
with that in the DNLS. where we simply leh=t=0 in the present analysis. The re-

Numerical time integration of the Hall-MHD set of equa- sult is plotted as a solid line in Fig. 12a. Wheaf<~350,
tions, Egs. (5-8), is performed, in a similar way as for therelation (10) is well held, but around-350, the cross cor-
DNLS equation discussed in the preceding section. As initialrelation starts to decrease. Figure 12b shows time evolution
conditions, finite amplitude, left-hand polarized, monochro- of the magnetic field energy (broken line), parallel kinetic
matic, parallel Alf\en waves are given, with the wave am- energy (solid line), and perpendicular kinetic energy (dot-
plitude hp=0.4 and the mode number=mo=—20. Super- ted line). The decay of the correlation function occurs at the
posed with the parent wave is a small amplitude white noisesame time as the magnetic field and the perpendicular kinetic
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Fig. 12. Time evolution of(a) the cross-correlatior;(A=0, t=0)

Fig. 11. Time evolution of power spectrum (in logarithmic scale), e =
evaluated for the run shown in Fig. 10 (solid line), ard, O) eval-

log|b,| and loglpn,|, plotted in the phase space of the wave - ; ) , b
mode numbers) and time. The parent mode is given initially at uated for a run in which the advection term is artificially removed

mo=—20. Positive (negative}: corresponds to positive (negative) 10M the Hall-MHD set of equations (broken linefb) magnetic
helicity. field energy (broken), perpendicular kinetic energy (dotted), and

parallel kinetic energy (solid), plotted versus time. Around50,
together with the decay of the cross-correlation function, the mag-
netic field and the perpendicular kinetic energy decrease and the
parallel kinetic energy increases.

energy both decrease. Around500, inverse cascade begins
to take place (discussion of the inverse cascade in the DNLS
can be found in Krishan and Nocera, 2003). Egs. (5) and (6), we have
2 2 2 2

The validity of the static approximation has been exam-a—g — ,88—2 = 8_2(|b_| + puz). (40)
ined by several authors. By performing hybrid (kinetic ions xS 8x%" 2
+ an electron fluid) simulations, Machida et al. (1987) ar- This equation describes propagation of sound waves in a
gues that the system automatically adjusts itself to a stat@resence of a source term (r.h.s.), which consists of the
described by the static approximation when ion kinetic ef- ponderomotive forcejb|?/2, and the advection effecbu?
fects are included. However, as time elapses, longitudina(Spangler, 1987). The latter represents the “self-coupling”
mode grows and the static approximation is soon violatedof longitudinal waves.
Spangler (1987) concluded that the breakdown of the static In order to clarify the roles of the “self-coupling” term,
approximation takes place in association with rapid evolu-which is not discussed in the analysis of Spangler (1987), we
tion of wave packets by ponderomotive force. Combining have run numerical experiment in which the advection terms
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In a similar way described before to plot the dispersion re-
lation of nonlinear Alfien waves in the DNLS directly from
the simulation run, we have computed gigand4?, using
Egs. (5) and (8), respectively. Corresponding to appearance
of solitary waves and localized structures, the frequency dis-
tribution (¢ and¢p), i.e., the dispersion relation, appears
along a straight line, as shown in numerically evaluated dis-
persion relation, Fig. 13. Since these waves propagate in the
same direction as the parent wave, the frequency distribution
along a straight line is usually satisfied at the origin. Fur-
thermore, Fig. 13 shows that the longitudinal and transverse
wave modes have a similar slope, which is the velocity of the
structures composed of these waves. Thus, the three wave
resonance condition between the transverse wave modes and
the longitudinal wave modes is approximately satisified.

Figure 14 displays time evolution of the wave frequency
(¢7) for the parent wavenf=—20, solid line), and some
of the daughter waveai=—8, dotted line) f1=—3, broken
line). When G<z <~500, the parent wave mode is dominant,
and its frequency stays almost constant. Arour800, the
inverse cascade begins to take place, and the parent wave
frequency starts to be modified. On the other hand, the fre-
quencies of the lower sideband wave modes remain almost
constant (broken line). Thus, the phase velocity of the modes
with the maximum power is close to the velocity of the struc-
tures, and it corresponds to the slope of the dispersion rela-
tion in Fig. 13.

Now we examine the approximation (c) we listed before
in the DNLS, i.e., the assumption of constant density in the
Hall term. In order to do so, let us explicitly write down the
phase relation of Eq. (8),

dgy |

= @nl + @disp+ @in, (41)
Fig. 13. Numerically obtained dispersion relation(a) t=350, (b) 0 lukl|brzl cogobub 42
t=500, (c) t=720. The blue line indicates the linear dispersion re- @nt |bi | Or=kri2): (42)

. i k=k1+k2
lation, and the red circles and black crosses show the frequency
e\_/aluated from the temporal variqtion of the magnetic field mode |bisl| Vieal bbV
(#?) and that of the density mode/), respectively. Superposed ®aisp = k3k Z BTN COO, =134 44)> (43)
(green) line has a slope equal to the phase velocity of the wave mode k=k3+k4 k
which has the maximum power. Corresponding to the appearance
of so!itary waves and I(_)caliz_ed structures, the wave power tends t%)“n _ —kM cos(cpb — oY), (44)
k k

be aligned along a straight line. |k |

are artificially removed from the Hall-MHD set of equations. WhereV=p"1and62]  =¢; —¢; —¢;,. In the linear per-
The broken line in Fig. 12a depicts time evolution of the turbation analysis in Sect. 2.2 we have caliggl, wqisp, and
cross correlation function evaluated for the run without thewiin @s contribution to the wave frequency via “nonlinear”,
advection terms, using the same simulation parameters aglispersion”, and “linear” effects, respectively. The disper-
the previous run. The time evolution for both runs are es-sion effect is not simply?2, but iskz—bokoKp/Z/bi"), where
sentially the same, suggesting that the process playing ththe latter term arises due to longitudinal perturbation. Just
most dominant role in violating the static approximation is like in the DNLS model, the balance between the “nonlin-
the ponderomotive force, as suggested by Spangler (1987¢ar” and the “dispersion” terms also exist in the Hall-MHD
The self-coupling term cannot be neglected, however, sincequations.

its magnitude becomes comparable to other terms as the lon- Figure 15 showsv,;, wdisp: andwiin evaluated at=350,
gitudinal wave modes grow. 500, and 720. We see thafj, is linear ink: this may be
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200 400 600 800 1000

Fig. 14. Time evolution of the wave frequency'),{() for the waves
with m=—20 (solid line),m=—8 (dotted line), andn=—3 (bro-

ken line). The wave number of these modes/are-0.49, —0.19,
and—0.07, respectively. When< <500, the parent wave mode is
dominant, and its frequency is almost constant. Aroun800, the
inverse cascade begins to take place, and the parent wave frequenc
starts to vary. On the other hand, the frequencies of the lower side-
band wave modes remain almost constant af&00.

regarded as self-generation of the (dispersive) Walen’s rela-
tion, which is the relation between the transverse magnetic
and the velocity field satisfied for Alénic fluctuations and
rotational discontinuities (e.g., Landau and Lifshitz, 1962).
For example, the normalized magnetic and the velocity field, { |
bo andug in Egs. (14-15), satisfyo= F bo/vg0, Where the

signs represent parallel/anti-parallel propagation with respect () _ o O%gd%%c@% T |

to the background magnetic field, and the phase velogiy o 5);3@8@(9 © TR S o 5

is determined from the dispersion relation (16). The term _{ ‘?é%% 5 ® 009 g © 9,
cos¢?—¢}) in the r.h.s. of Eq. (44) takes the value of ei- 0% % St 0 O
ther 1 or—1 (so thatwjin / k==]|vk|/|bx|) in association with -9 - | | © o |
broadening of the power spectrum. Also, from Figs. 13 and ) -1 0 1 9
15, we find numerically thabjin / k~k/w (corresponding to K

the appearance of near straight lines in these plots). There-

fore we find that the system approaches automatically to a

state where /w= =+ |v|/|bx| (Walen's relation) is automat-  Fig. 15. The three basic elements of the wave frequengy,(light
ically fulfilled. Furthermore, sincey, is almost linear irk blue squares)y,; (blue circles), anajsp (green crosses), defined
in Fig. 13, so is the sum abgisp andw,; as Eq. (41) sug-  in Eqgs. (42-44), plotted versiésevaluated afa) =350, (b) =500,
gests, i.e., the contribution to the wave frequency nonlinea@nd(c) t=720. As discussed in Sect. 22, is almost linear in

in k |S Cance”ed due to balance between the dlspers|0n an@, Suggesting that the diSpeI’Sive Walen'’s relation is held. Since
the nonlinear effects. the dispersion relation (Fig. 13) suggests that the wave frequency,

. o . L . which is a sum of the three terms above, is lineak ialso, the

Figure 16 shows distribution aff (similar to ;) versus linearity in k of the sum ofwgisp andw,; should be held as well,
k. When 0<r <500, these longitudinal fluctuations are found indicating that the dispersion and the nonlinear effects cancel each
to be distributed along the same straight line in the disper-other, and the system is brought to a state where the wave resonance
sion relation, and should be recognized as the ponderomaeondition is easily satisfied.
tive density fluctuations, produced via interaction of &lfv
waves. In the present case, the fluctuations are produced in
the course of the modulational instability, and the two in- ~0.70, respectively. The former two are (almost) equal, and
teracting Alfven waves are on the same branch with nearlyare distinct from the last one. Thus we conclude the longitu-
equal wave numbers and the wave frequencies, so that thainal fluctuations observed ak@<500 are the ponderomo-
resultant ponderomotive fluctuations have similar phase vetive density fluctuations, rather than the sound wave. Around
locity as the interacting Alfén waves. The phase velocities 1~500, however, the dispersion relations of the longitudi-
of the longitudinal fluctuationsp(and« in Fig. 16), trans-  nal fluctuaions start to approach the sound wave branch.
verse fluctuationsh(andv in Fig. 13), and the acoustic wave This is a consequence of the nonlinear development of the
(solid line in Fig. 13), are measured &%.78, ~0.78, and  modulational instability, in which the ponderomotive density
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tion models (Vasquez, 1995) and/or theoretical models (Sny-
der, 1997; Passot and Sulem, 2004) that include the strong
nonlinearity and kinetic effects are desired.

5 Conclusions and discussions

In this paper, we discussed the nonlinear relation among
phases and frequencies in the modulational instability of
parallel propagating Alfén waves in the context of one-
dimensional two fluid models, using linear perturbation anal-
ysis and numerical experiments.

The main results of the present paper may be summarized
as follows:

(1) Corresponding to generation of solitary waves or co-
herent structures by the wave modulation, dispersion relation
of the waves tend to be aligned along straight segments of
lines (Figs. 7 and 13). The slopes of these straight lines cor-
respond to velocities of the solitary waves and the structures,
and are well estimated as the phaselje group) velocity of
the wave with the largest wave power.

(2) The exchange of wave energy among the resonant
wave modes is enhanced (reduced) when the relative phase
is close to constant (varies rapidly) in time (Fig. 6). This is a
universal feature in a wide variety of nonlinear systems: e.g.,
it can also be seen in a single triplet model (Appendix A).

(3) The fact that the dispersion relation is essentially given
as segments of lines in the dispersion relation suggests that
the mismatch in the resonance conditions among the coupled
wave modes is reduced automatically. The waves can effi-
ciently exchange wave energy and generate the phase coher-

Fig. 16. Numerically computed frequengy’ (red circles) and;

ence.
(black crosses) versus the wave numbet (a) t=350, (b) t=500, . .
(c) t=720. When 6:1<500, the longitudinal modei, ¢ are dis- In the DNLS equation (Sect. 3), increase and decrease of

tributed around a line slightly (but distinctly) above the sound wave tN€ phase coherence index well corresponds to the appear-
branch (solid black line). The former may be called the “pondero- @nce and disappearance of solitary wave trains. However, in
motive density fluctuation” branch. As later times, however, we find the Hall-MHD equations (Sect. 4), evolution of the phase co-
that the longitudinal wave frequencies are re-distributed around thdierence index turns out to be more complex. There are two

sound branch. issues to be discussed: the physical processes leading to the
variation of the phase coherence index, and the validity of the
index.

fluctuation acts as a driver to excite the sound waves, as rep- |nthe DNLS, the energy flow among the wave modes gen-

resented in Eq. (40). erates order not only among the wave frequencies but also

This excitation of the sound wave is also related to particleamong wave phases (see Appendix A, and also Fig. 9), and
heating due to the modulational instability of Aéfm waves. the associated broadening of the power spectrum always cor-
Many authors discussed Landau damping associated with emesponds to the global energy flow because of the balance
velope modulation of Alfen waves (Mjglhus and Wyller, between the dispersion effect and the nonlinear effect. How-
1986, 1988; Spangler; 1989, 1990; Medvedev and Diamondever, in the Hall-MHD, the presence of the localized struc-
1996; Passot and Sulem; 2003). However, the ion acoustitures does not always correspond to the broadening of the
wave mode is exclueded, as long as the “ponderomotive” expower spectrum. In Fig. 17 we plot time evolution G}
pansion is used in scaling of the system. In the case of th@ndby based on the Hall-MHD simulation run discussed be-
weak nonlinearity, the “triple-degenerate” expansion makes dore. The broadening of the power spectrum correlates well
similar description ag~1 (Hada, 1993). The kinetic "triple-  with by, but not quite well withCy. This probably is due to
degenerate” DNLS equation will be useful for elucidating the the fact that the structures observed in the simulation are not
physics of the heating process. The use of humerical simulaalways generated by the local energy flow.
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Fig. 17. Time evolution ofCy4 (red area) and, (broken line). In
association with the broadening of the power spectrbgnyaries 0 200 400 600
accordingly, buCy does not.

Fig. 18. Time evolution of the relative phase between the parent

: . . . . and the other wave modes, &, —¢?; —p'% ).
In case of the modulational instability starting from a sin- Sitlo= 911 ~9%)

gle parent wave plus small amplitude background noise, one
can evaluate the relative phase among the resonant wave
modes and also the energy flow among them, and identifyde Wit et al. (1999) and Soucek et al. (2003) discussed the
clearly time intervals the phase coherence is generated (se¥-called \Volterra model, a way to identify nonlinear wave-
Fig. 9, and also early part of Fig. 18). On the other hand, afteivave interactions using the satellite and the simulation data,
the initial stage of the modulational instability, wave modes Py utilizing the high order spectrum analyses and weak tur-
at low wave numbers produced via the inverse cascade bdulence theory. This method may shed light on understand-
come dominant, it is no longer possible to identify the time ing the nature of wave-wave interactions when the weak and
intervals in which the phase coherence is produced_ Strong turbulence processes co-exist. In the future, we hope
Regarding the phase coherence index, we have to say thig clarify the process of the_ phase cohe.rence generation via
its physical meaning is still not completely clear, although it the wave-wave |ntera_ct|on in more detail, and to extend the
was demonstrated that the index is a useful measure to idenoltérra-type models in such a way that the weak turbulence
tify the presence of wave-wave interaction (Koga and Hada2PProximation is not necessary.
2003). Since the concept of the phase synchronization is uni- Finally, we make a remark on energetic particle transport
versal (e.g., He and Chian, 2005), it is important to developin the turbulence including the localized structures. Since
a method that can characterize the underlying nonlinearity othese structures have broad power spectrum inktepace,
the system. This discussion is translated into the explanatioparticles with wide range of energy can resonate with them.
or improvement of the phase coherence index. However, this is not the more important side of the wave-
The relation between the longitudinal and transverseparticle interaction, from the viewpoint of the phase coher-
modes has important information on the nature of the paraence — rather, it is in the fact that large amount of electro-
metric instability. In the dispersion relation, longitudinal and magnetic field and plasma energy is concentrated within the
transverse modes were found to be both linear, with aimossolitary wave (phase correlated wave/structure), so that it can
the same slope, corresponding to the structures generated fjfluence particle motion via strong and correlated impulse
modulational instability. On the other hand, the longitudi- force rather than via sequence of random forces which last
nal fluctuations generated by the decay instability distributefor a long time.
on the sound wave line with some band width (Terasawa et For example, let us consider pitch angle diffusion due to
al., 1986). Such a cross relation among different variables irthe turbulence consisting of superposition of parallel, cir-
MHD turbulence is very important to understand the turbu-cularly polarized Alfien waves (slab model). Within this
lent dynamics. Henceforth, we have to analyze in detail themodel, it is well known that the particles cannot diffuse
general rules of the relation among these variables in parallehcross 90 degrees pitch angle, within the framework of the
Alfv én turbulence generated by parametric instability. Also,quasi-linear diffusion, simply because there are no waves
it is essential to include the kinetic effects wheis moder-  which can resonate with particles without parallel velocities.
ately large. However, the mirror force can reflect the particles quite eas-
It is important to identify the phase coherence brought byily, if there exist solitary waves with a finite amplitude vari-
nonlinear wave-wave interaction, in order to discuss under-ation of the total magnetic field. Furthermore, in a presence
lying physical processes leading to the generation of the coef many of these solitary waves, individual particle trajec-
herent structures. This is particularly important for analysistory may be given as combination of quasi-ballistic motion
of spacecraft data, since there are many localized structurdsetween the solitary waves and trapping by one of the soli-
in space plasmas which are produced, presumably, by praary waves. Fermi type acceleration is possible (Kuramitsu
cesses other than nonlinear wave-wave interactions. Dudoknd Hada, 2000), and furthermore, depending on relative
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Fig. Al. Time evolution of N; with the initial condition, Fig. A2. Same as Fig. Al except that the initial condition here
N3>> N1, N». The broken, dotted, and solid lines indicafg, No, is No>>N1, N3. The broken, dotted, and solid lines indicave,

and N3, respectively. The system is “unstable” in that the “quanta” N, and N3, respectively. The system is “stable” in the sense that
originally stored in mode 3 are re-distributed to modes 1 and 2variations ofNy, No, andN3 are small.

within an instability time scale~3000).

N1 — N2 = const (AB)
dominance between the ballistic and trapped trajectories, en- ) . )
semble of these particles may appear as either super- or sublow letus writeC;=A; exp(i¢;), with A;(=,/N;) andg,
diffusive (Zimbardo et al., 2000; Carreras et al., 2001). |nreal, then we obtain a relation about the phase difference
order to properly describe time evolution of the ensemble 2@M0ONg the tripletsi=¢3—¢p2—¢1),
one has to invoke the fractal diffusion formalism (Metzler , . : :
: 0 = ¢3 — 2 — ¢1, (A7)
and Nonnenmacher, 1998; del-Castillo-Negrete et al., 2004).
A1A2  ApA3  A3A1
=—( — — ) COsh, (A8)

Az A1 Ao

: d
Appendix A = cotez log(A1A2A3), (A9)

Three wave resonance: a single triplet where¢>'j is the (nonlinear) frequency artirepresents the

A triplet is known as the most basic element of nonlinear rédueNcy mismatch in the resonance condition. From the

interaction that can be extracted from various phenomenaf.ibove’ the following conservation law is derived

Decay inst_al_JiIity of Alf\én waves in space plasma is an ex- A1A2A3C080 = Doy = const (A10)
ample. A finite amplitude Alfén wave propagating parallel

to the ambient magnetic field decays into a backward prop-The 3W equations at a glance have six degrees of freedom,
agating Alfven wave and a forward propagating ion acoustic but if we write them into the real amplitude and phase, we
wave. We consider a set of three wave equations (3W) disfind that the equations actually have only four degrees of

cussed by Sagdeev and Galeev (1969), freedom: the real amplitude$;, A2, A3, and the phase dif-

. o ferencel. Since there are three invariants (A5, A6, A10), the
C1=—iC3Cs, (A1) 3w equation set is integrable. All initial problem of 3W can
Cp = —iCiCs, (A2) be solved, and the solution can be written using elliptic func-
C3= —iC1Co, (A3) tions. Behavior of the system may be physically interpreted

as either stable or unstable depending on initial distribution
whereC; is the normalized complex amplitude of thieth of wave quanta to the three eigenmodes (Figs. A1 and A2).
mode. The above set of equations is derived via resonance Let us define the flow of quant&, which represents the
condition among frequencies of each mode, interaction between the eigenmodes,

w3 = w1 + w. (A4)  F=N1=Nz=—N3=2A3A2A15in0, (A11)

By introducing the wave quanta (wave action), and consider its relationship to temporal change of the phase
N;=|Cj|?=¢;/wj, where ¢; is the wave energy of differenced. The sign of si® determines the direction of

mode j, we have the Manley-Rowe relations, quanta flow. N o _
As for the initial conditions there are two distinct possi-
N1+ N3 = const (A5) bilities. The first is that there are some modes without any
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Fig. A3. Time evolution of Ny, Np, N3, andé for the case that (b)
A1A»A3c0s9=0. 81

T YRR )
.

quanta, and the second is that all the modes have some finit. 4 |
number of quanta. In the first case, ées0 always since

Do=0. In Fig. A3, we see thad jumps 180 degrees peri- 7]

odically because the direction of the quanta flow remain un- I“ : L/’\J | : | LAl

changed per half the oscillation period. 0 5 10 15 20 o5 30
From now on, we only discuss the case where all x103 time

the modes have some finite number of quanta. Since 4 | ©
Do=const£0, we can rewriteF as
30 frequency

F = 2Dgtand, (A12)

and therefore, the conditionsr /2<6 < /2 is required in or- 20~

der thatF be finite. This condition is evident from Eq. (A10).
Equation (A12) suggests thgt | is large wher? is close to
either—z /2 orz/2, while F=0 whent=0 (Fig. Ada).

Figure Adb shows time evolution of;. Both fast and
slow temporal changes &f can be seen. Around the point
where the number quanta is close to take extremal values,
the temporal change @& becomes rapid. If the system is
unstable, temporal change of the phase difference is muckig a4, (a) The energy flow (solid line, left axis) and sia (dot-
faster when the quanta is at local minimum, than when it isted line, right axis) are plotted versus time. When the energy is
at local maximum. Figuré4c shows this relationship more exchanged between the modes, the relative phase stays at almost at
clearly. Using Egs. (A10) and (A12), aldij:—Do/Nj, we a constant level. The same tendency is observed in systems with
have multiple degrees of freedom (cf., Figs. 9 and 1@)) Time evolu-

tion of bj- The thin, solid, and dotted lines indicate, ¢», and
= Do—s, (A13) ¢3, respectively(c) Relation betweed andF _for a (single) triplet.
N3 N1 N 2G?2 The exchange of quanta between the sites is enhanced when the rel-
ative phase is approximately constant in time, while the exchange
of quanta is reduced when the relative phase varies rapidly.

101

T T T T 1
-0.4 -0.2 0.0 0.2 0.4

energy flow

whereG=A1A2A3. This equation exactly shows the rela-
tionship discussed above.

In summary, if the temporal change of the phase differ-
ence is small (large), quanta flow between the modes is large
(small). In other words, the stronger (weaker) the modes
are correlated, are the interaction between the modes strong

(Wefak)' Th.is relationsh?p between _the phase coherence an,gcknowledgementaNe thank S. Matsukiyo and D. Koga for
the interaction among eigenmodes is universal. For examplegitty| discussions and valuable comments. This paper has been

similar relationship is held in a system where many tripletssupported by JSPS Research Felowships for Young Scientists in
are connected, in the DNLS, and in the Hall-MHD models. Japan.

Also, when co®=0 initially, we have a situation similar to

the case thaw ;=0 for one (or more) of the modes, and thus Edited by: A. C. L. Chian
cos#=0 always. Reviewed by: two referees
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