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Abstract. A stochastic version of the Iterative Amplitude
Adjusted Fourier Transform (IAAFT) algorithm is presented.
This algorithm is able to generate so-called surrogate time
series, which have the amplitude distribution and the power
spectrum of measured time series or fields. The key dif-
ference between the new algorithm and the original IAAFT
method is the treatment of the amplitude adjustment: it is not
performed for all values in each iterative step, but only for
a fraction of the values. This new algorithm achieves a bet-
ter accuracy, i.e. the power spectra of the measurement and
its surrogate are more similar. We demonstrate the improve-
ment by applying the IAAFT algorithm and the new one to
13 different test signals ranging from rain time series and 3-
dimensional clouds to fractal time series and theoretical in-
put. The improved accuracy can be important for generating
high-quality geophysical time series and fields. The tradi-
tional application of the IAAFT algorithm is statistical non-
linearity testing. Reassuringly, we found that in most cases
the accuracy of the original IAAFT algorithm is sufficient for
this application.

1 Introduction

The Iterative Amplitude Adjusted Fourier Transform
(IAAFT) algorithm was developed by Schreiber and Schmitz
(1996, 2000) to generate surrogate time series for statisti-
cal nonlinearity testing (Theiler et al., 1992; Theiler and
Prichard, 1996; Kugiumtzis, 1999). Surrogates are time se-
ries which share certain statistical properties with the original
time series. In case of the IAAFT algorithm, the surrogates
share their distribution and power spectrum with the mea-
surement. To stress that the surrogate is a permutation of the
original, i.e. that the values of the original are reproduced ex-
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actly, the term amplitude distribution is preferred over proba-
bility density function, but in this article we will also simply
use the term distribution.

Besides nonlinearity testing, the IAAFT algorithm is ap-
plied to generate realistic geophysical fields. It is, for ex-
ample, not possible to measure a full 3-dimensional cloud
field, but one can simulate a surrogate cloud field based on
estimates of the distribution and power spectrum from a lim-
ited measurement (Venema et al., 2006). Surrogate fields can
also be used as idealised boundary conditions for dynamical
models. For applications where the distribution is equally
important as the structure, IAAFT surrogates could be useful
instead of (multi-)fractal time series or fields. Furthermore,
the algorithm is a practical method to generate time series
with interesting statistical properties for testing, e.g. analysis
and error-detection, algorithms. We expect to see many more
geophysical applications when the technique becomes better
known in that community.

In the engineering community the IAAFT algorithm was
recently discovered independently to simulate pressure fields
from strong winds and offshore waves (Masters and Gurley,
2003). Masters and Gurley also compared the algorithm to
older ones used in the engineering community and found
the IAAFT algorithm to be more accurate. An example of
such an older algorithm is the one proposed by Popescu et
al. (1998) to generate fields of soil properties such as the elas-
tic modulus and the mass density. Lewis and Austin (2002)
used a similar algorithm to create fractal clouds with a log-
normal distribution.

The structure of a cloud field is important for its radia-
tive properties, e.g. for the reflection of sun light by clouds
(Scheirer and Macke, 2001; Pincus et al., 2005). For this pur-
pose it is important that surrogate fields capture this struc-
ture very accurately. Figure 1 shows the reflectance bias
of surrogate cloud fields created with the IAAFT algorithm
based on sparse cumulus fields generated with a Large Eddy
Simulation (LES) model. LES models are able to simulate
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Figure 1. The reflectance of sparse cumulus clouds compared with the reflectance (R) of their 
IAAFT surrogates. The surrogate cumulus clouds have a bias toward a too high reflectance. 
The accuracy was improved by repeating the calculation and selecting the best converged 
surrogate. For every cumulus cloud, we have generated two surrogate clouds. The most 
accurate cloud (average ∆=3.4 10-3; see Eq. 4) is denoted by a cross, the least accurate 
(average ∆=4.7 10-3) one by a circle. Even in this optimised set of clouds, the accurate 
surrogates have a little less bias (∆R=8.1 10-3), than the less accurate ones (∆R=8.9 10-3). 

Fig. 1. The reflectance of sparse cumulus clouds compared with
the reflectance (R) of their IAAFT surrogates. The surrogate cu-
mulus clouds have a bias toward a too high reflectance. The ac-
curacy was improved by repeating the calculation and selecting
the best converged surrogate. For every cumulus cloud, we have
generated two surrogate clouds. The most accurate cloud (aver-
age1=3.4×10−3; see Eq. 4) is denoted by a cross, the least ac-
curate (average1=4.7×10−3) one by a circle. Even in this opti-
mised set of clouds, the accurate surrogates have a little less bias
(1R=8.1 10−3), than the less accurate ones (1R=8.9×10−3).

atmospheric flow at spatial resolutions that are sufficient to
resolve turbulent eddies. The IAAFT cumulus surrogates
display some noise (wisps of cloud) in the cloud free sec-
tions, which biases their reflectance. The surrogate cumulus
clouds generated with our more accurate Stochastic IAAFT
(SIAAFT) algorithm do not have a bias; see Venema et
al. (2006). This illustrates that the accuracy of the power
spectrum can be important for geophysical applications. On
the other hand, the accuracy is not always a limiting factor. In
case of less demanding stratocumulus clouds a much lower
accuracy of the power spectrum was high enough to avoid
biases in the reflectance of their surrogates.

Another method to generate surrogates that are more accu-
rate than the IAAFT surrogates is constrained randomization
using global search algorithms such as simulated annealing
(Schreiber, 1998). Unfortunately, Schreiber is unsure if his
algorithm can be applied to statistical problems such as non-
linearity testing. The computation of large geophysical fields
using simulated annealing will be very computationally ex-
pensive.

In Sect. 3, we present the SIAAFT algorithm which gen-
erates surrogates whose power spectra match the original
power spectra more accurately than the surrogates generated
with the original IAAFT algorithm. Furthermore, we demon-
strate the accuracy of the SIAAFT algorithm by generating

surrogates from a range of different inputs (Sect. 4). Be-
fore explaining the step from IAAFT to SIAAFT, the original
IAAFT algorithm will be shortly reviewed (Sect. 2).

2 IAAFT algorithm

The IAAFT algorithm is explained mathematically below for
a time series and illustrated by its application to a cloud
liquid water path (LWP) measurement in Fig. 2. LWP
is the vertically integrated amount of liquid water in a
cloud. On our webpage (http://www.meteo.uni-bonn.de/
venema/themes/surrogates/), the algorithms are further clar-
ified using pseudo code; working Matlab versions for time
series and fields can be downloaded.

The measured time series (Fig. 2, upper panel) is denoted
by the vector{mn}, with the index n={0,1,...,N-1}, and N the
number of values of the original. The algorithm starts with a
random shuffle of the data points (panel 2). Then an iterative
process is started as illustrated in the flow diagram (left side
of Fig. 2). As explained later on, in each iteration, (i), the
Fourier spectrum is adjusted first (panel 3) and then the am-
plitudes (panel 4). The time series after the spectral adjust-
ment is called{x1,i}; the 1 denotes that it is the time series
after the first adjustment, the i denotes the current number
of iterations. Similarly the time series after the amplitude
adjustment is called{x2,i}.

2.1 Spectral adjustment

Based on the original time series the power spectrum is esti-
mated as

M2
k =

∣∣∣∣∣N−1∑
n=0

mne
i2πkn/N

∣∣∣∣∣
2

, k = 0, ..., N − 1. (1)

The spectral adjustment starts by calculating the Fourier
transform (S′

k) of the time series after the last amplitude ad-
justment{x2,i−1} (or in the first iteration the Fourier trans-
form of the initial white noise time series). The magnitudes
of these Fourier coefficients are replaced by those of the orig-
inal time series (Mk). The phases remain unaltered in this
step. If we defineϕk=S′

k/
∣∣S′

k

∣∣, then the complex Fourier co-
efficients of{x1,i} are given by

Sk = |Mk|ϕk. (2)

From Sk, {x1,i} is calculated using an inverse Fourier trans-
form. Consequently, the time series in panels (1) and (3)
share the same power spectrum; the difference between their
structures is due to differences in their distributions.

2.2 Amplitude adjustment

In the second step, the amplitudes are adjusted based on their
ranking. A new time series is created with the values of{mn},
but with the order given the ranking of the{x1,i}-values. For
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Figure 2. The Iterative Amplitude Adjusted Fourier Transform algorithm illustrated with a 
LWP measurement. The left column is the flow diagram of the algorithm, the middle column 
shows example LWP time series, and the right column are the histograms of the LWP time 
series. For the explanation of the algorithm, see Section 2. 

Fig. 2. The Iterative Amplitude Adjusted Fourier Transform algorithm illustrated with a LWP measurement. The left column is the flow
diagram of the algorithm, the middle column shows example LWP time series, and the right column are the histograms of the LWP time
series. For the explanation of the algorithm, see Sect. 2. Figure reprinted with permission from: Venema et al. (2006).

example, the highest value of the iterated time series is sub-
stituted by highest value of the original time series. To per-
form this operation for all values, a sorted list is created of
the values of the measured time series{m′

n}, where the prime
denotes here that it is a sorted vector. Let the function rank()
return the ascending rank number, i.e. return 1 for the high-
est number, 2 for the second highest, etc., then the amplitude
adjusted time series is given by:

x2,i = m′

rank(x1,i)
. (3)

Since this amplitude adjustment will alter the power spec-
trum, both the amplitude and the spectral adjustments are re-
peated until a convergence criterion is reached (panel 5).

3 A stochastic IAAFT algorithm

Schreiber and Schmitz (2000) suggested that one can start the
IAAFT algorithm either with a random shuffle of the mea-
surements (white noise) or with a surrogate created with the
non-iterative and less accurate Amplitude Adjusted Fourier
Transform (AAFT) algorithm (Theiler et al., 1992). We ob-
served that the surrogates which were initialized with the
AAFT surrogate started with a better fitting power spectrum,
but finally obtained a lower accuracy, than the surrogates that
were initialized with white noise; compare the dashed lines
in Fig. 3. Apparently a high initial quality can cause the al-
gorithm to get stuck in a less accurate local minimum, be-
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Figure 3. The convergence of the algorithms as a function of the number of iterations. As test 
statistics we used a fractal time series (N = 8192) with a power law power spectrum with an 
exponent of -5/3 and an exponential amplitude distribution. The three line types represent the 
IAAFT algorithm starting with white noise (thick dashes), the IAAFT algorithm starting with 
an AAFT surrogate (thin dashes) and the SIAAFT algorithm (noisy full line). 

 

Fig. 3. The convergence of the algorithms as a function of the
number of iterations. As test statistics we used a fractal time se-
ries (N=8192) with a power law power spectrum with an expo-
nent of−5/3 and an exponential amplitude distribution. The three
line types represent the IAAFT algorithm starting with white noise
(thick dashes), the IAAFT algorithm starting with an AAFT surro-
gate (thin dashes) and the SIAAFT algorithm (noisy full line).

cause the algorithm favours solutions that are close to the
first guess. Consequently, we looked for ways to slow down
the convergence speed.

www.nonlin-processes-geophys.net/13/321/2006/ Nonlin. Processes Geophys., 13, 321–328, 2006
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Figure 4. The flow diagram of the Stochastic Iterative Amplitude Adjusted Fourier Transform 
algorithm. The two stages are similar to the original IAAFT algorithm and differ in their 
treatment of the amplitude adjustment.  

 

 

Fig. 4. The flow diagram of the Stochastic Iterative Amplitude Ad-
justed Fourier Transform algorithm. The two stages are similar to
the original IAAFT algorithm and differ in their treatment of the
amplitude adjustment.

The SIAAFT algorithm differs from the IAAFT algorithm
in three points. First of all we changed the way the am-
plitudes are adjusted. Because of this we also altered the
convergence criterion and introduced two stages. These two
stages differ in the fraction of amplitudes that is adjusted.
See the flow diagram in Fig. 4 for an overview.

Just as the standard version of the IAAFT algorithm, the
SIAAFT algorithm starts with white noise. In the first stage
only a fraction of the amplitudes is substituted instead of all
of them. We have tested three different methods to adjust the
amplitudes. The main method, which is used for all figures
in this paper, is the “partially stochastic” adjustment. This
method calculates 5 vectors with equidistant indices,{{1, 6,
11, . . .}{2, 7, 12, . . .}{3, 8, 13, . . .}{4, 9, 14, . . .}{5, 10, 15,
. . .}}, and each iteration selects randomly one of these 5 vec-
tors. In this new amplitude adjustment only the amplitudes
pertaining to the ranks in the indices are exchanged. The
“deterministic” adjustment uses the same equidistant indices.
However it does not select one randomly, but uses a fixed pat-
tern for the indices; the first index is given by: 1, 2, 3, 4, 5,
1, 2, . . . . The “fully stochastic” version simulates drawing
numbers without replacement. The differences in accuracy
of the surrogates produced by these three methods are dis-
cussed in Sect. 4.2.

After the first stage, the algorithm generates a surrogate
where both amplitude distribution and spectrum fit closely,
but none exactly. As we would like to have a perfect fit of
the amplitude distribution, a second stage is applied where
all amplitudes are adjusted, just as in the standard IAAFT
algorithm. This second stage is initialised with the surrogate
from the first stage.

The convergence criterion is based on the accuracy mea-
sure (1), which is the root mean square (RMS) difference of
the Fourier Spectra of the originalMk and the surrogateS′

k:

1 =
1

σ

√
1

N

∑
k

(
|Mk| −

∣∣S′

k

∣∣)2 (4)

The measure is normalized by the standard deviation (σ) of
the original time series for ease of comparison between var-
ious originals. Due to the stochastic nature of the algorithm,
the last iterated time series is not always the best; see the
noisy drawn line in Fig. 3. Thus, for the final result the best-
converged surrogate is stored in a separate variable. The final
accuracy depends on how many iterations one is willing to
wait for the next surrogate with a better fitting Fourier spec-
trum. We use the exceedance of this number of iterations,
which we call the iteration threshold, as termination criterion
for both stages. The noisy line in Fig. 3 depicts the accuracy
of a SIAAFT surrogate as a function of the number of itera-
tions. For this calculation we utilized an iteration threshold
of 1000 iterations. The small peak near the maximum num-
ber of iterations (see the arrow in Fig. 3) is the reduction in
accuracy that is typical for the beginning of the second stage;
the second stage is very short compared to the first stage.

The algorithm is not very sensitive to the fraction of values
substituted in the amplitude adjustment. Figure 5 shows that
the quality as function of the fraction of adjusted values has a
broad minimum. Any value between a few percent and about
40% will perform well. We use 20% in the rest of this paper.
The calculation time scatters strongly, but there is a tendency
for fractions below 40% to be faster. Except that adjusting
all values (as the IAAFT algorithm does) is faster.

We tried a number of other ways to improve the accuracy
of the SIAAFT algorithm. We found that the accuracy does
not improve by making the spectral adjustment stochastic in
a similar way as it was implemented for the amplitude ad-
justment. Analogous to the cooling scheme in simulated an-
nealing (Vidal, 1993), we tried to gradually increase the frac-
tion of amplitude adjustments in a small steps from 20 to a
100 percent. This did not lead to improvements. Calculating
an ensemble of surrogates and selecting the best converged
ones, is an important way to improve the accuracy. This is
especially true for the IAAFT algorithm as its accuracy has a
broad distribution; see Fig. 6.

4 Results

To investigate the improvements by the SIAAFT algorithm,
we calculated surrogates for 13 cases ranging from rain and
clouds to theoretical statistics. These cases are described in
Sect. 4.1. From each of these original time series we pro-
duced 25 surrogates (except where indicated otherwise), and
calculated the mean accuracy. All three methods for the am-
plitude adjustment of the SIAAFT algorithm (explained in
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Figure 5. The accuracy of the SIAAFT algorithm as a function of the fraction of values that is 
adjusted in the amplitude adjustment. This was calculated with the test function described in 
Figure 3. The SIAAFT algorithm with an adjusted fraction of one is similar to the IAAFT 
algorithm. The SIAAFT algorithm used an iteration threshold of 103. An ensemble of one 
hundred surrogates was utilised to calculate the statistics. 

Fig. 5. The accuracy of the SIAAFT algorithm as a function of
the fraction of values that is adjusted in the amplitude adjustment.
This was calculated with the test function described in Fig. 3. The
SIAAFT algorithm with an adjusted fraction of one is similar to the
IAAFT algorithm. The SIAAFT algorithm used an iteration thres-
hold of 103. An ensemble of one hundred surrogates was utilised to
calculate the statistics.

Sect. 3) are assessed. In addition, we utilise two iteration
thresholds: 100 and 10 000. To make the calculations well
comparable, the results marked IAAFT were calculated with
the SIAAFT algorithm, substituting all values in the ampli-
tude adjustment. The results are summarized in Table 1 and
described in Sect. 4.2.

4.1 Measurements and statistics

– Fractal time series: As the first test case – a fractal time
series – we used theoretical statistical input: an expo-
nential amplitude distribution and a power law power

spectrum with an exponent of−5/3, i.e.S2
k∝k−

5
3 . This

exponent is typical for the inertial subrange of turbu-
lence and stratiform clouds.

– Discrete Gaussian: With the same fractal power spectral
shape of the first test function, we used a “discrete Gaus-
sian” amplitude distribution. This distribution was com-
puted starting with a Gaussian distribution with stan-
dard deviation 3 and rounding its values to integers.

– Positive Gaussian: The third case again had the same
power spectral shape as the previous cases. Its PDF
was constructed by starting with a Gaussian PDF, from
which the negative instances were set to zero.

– Model cumulus clouds: 52 Cumulus cases were gener-
ated with a Large Eddy Simulation model. These simu-
lations represent the diurnal cycle of cumulus over land,
from no clouds in the morning, to a maximum of 16%
mean solar reflectance in the afternoon, to little, but
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Figure 6. The Probability Density Functions (PDF) and the Cumulative Distribution Functions 
(CDF) of the accuracy (∆) of the IAAFT and the SIAAFT algorithm. The SIAAFT algorithm 
used an iteration threshold of 1000 and the test function described in Figure 3. An ensemble 
of one hundred surrogates was generated to calculate these statistics. Three outliers of the 
IAAFT algorithm, were not plotted, to get a clearer plot. 

Fig. 6. The Probability Density Functions (PDF) and the Cumula-
tive Distribution Functions (CDF) of the accuracy (1) of the IAAFT
and the SIAAFT algorithm. The SIAAFT algorithm used an iter-
ation threshold of 1000 and the test function described in Fig. 3.
An ensemble of one hundred surrogates was generated to calculate
these statistics. Three outliers of the IAAFT algorithm, were not
plotted, to get a clearer plot.

thicker clouds in the evening (Brown et al., 2002). The
clouds have a resolution of 100 m in the horizontal and
112 m in the vertical. The number of grid boxes is 66 by
66 horizontally. The model grid has 122 height levels,
but the levels with clear air above and below the cloud
have been removed. To maintain the vertical structure
of the clouds, the amplitude adjustments are performed
separately for every height level following Venema et
al. (2006).

– Daily rain sums: As input for these surrogates we used
daily rain sums for 5 different stations in Germany (Bre-
men, Hamburg-Fuhlsbuettel, Hohenpeissenberg, Karl-
sruhe and Potsdam) with a length of approximately 90
years (DWD, Deutscher Wetterdienst, Offenbach, Ger-
many,http://www.dwd.de/en/FundE/Klima/KLIS). For
every station 8 surrogates were calculated.

– River discharge: These surrogates were generated based
on 3 stations (Cologne, Rees, and Lobith) with daily
discharge measurements of the river Rhine (approxi-
mately 90 years; GRDS, Global Runoff Data Centre
of the federal institute of Hydrology, Koblenz, Ger-
many,http://www.bafg.de). For every station 8 surro-
gates were calculated.

– EEG (electroencephalogram): From the Department of
Epileptology of the University of Bonn we used two
EEGs (Andrzejak et al., 2001). The first is an EEG from
within the epileptic zone during an epileptic attack; the
second one was recorded during a seizure free interval.

www.nonlin-processes-geophys.net/13/321/2006/ Nonlin. Processes Geophys., 13, 321–328, 2006
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Table 1. The final accuracy of the IAAFT and the SIAAFT algorithm for various test functions. N is the number of values of the time
series.1(SIAAFT-102) or 1(SIAAFT-104) denotes the accuracy of the SIAAFT algorithm, which stops if it does not find a better surrogate
within 100 or 10 000 iterations, respectively. The values marked IAAFT-104 in this table are calculated with the SIAAFT algorithm, but all
values are adjusted as in the IAAFT algorithm. In square brackets is the number of fully converged surrogates. For the difference between
deterministic, partially stochastic and fully stochastic see Sect. 3.

Test function N 1(IAAFT-104) 1(SIAAFT-104) 1(SIAAFT-102) 1(SIAAFT-104) 1(SIAAFT-104)

Deterministic Part. stochastic Part. stochastic Fully stochastic

Fractal time series 8192 1.5×10−5 4.3×10−6 7.8×10−6 2.3×10−6 1.4×10−6

Fractal time series 1024 2.7×10−4 1.7×10−4 1.3×10−4 5.1×10−5 5.9×10−5

Discrete Gaussian 1024 3.1×10−3 1.5×10−3 1.6×10−3 1.3×10−3 1.3×10−3

Positive Gaussian 1024 5.2×10−4 1.7×10−4 3.0×10−4 1.4×10−4 1.5×10−4

Cumulus clouds 5.8×10−4 1.2×10−4[39]
Daily rain 1 32 768 3.9×10−4 1.4×10−4 2.6×10−4 1.4×10−4 1.4×10−4

Discharge2 32 768 1.0×10−5 3.1×10−6 4.2×10−6 3.4×10−6 3.0×10−6

EEG epileptic zone 256 2.1×10−3 1.1×10−3 1.1×10−3 7.3×10−4 7.3×10−4

EEG seizure 4096 7.7×10−5 3.5×10−5 3.8×10−5 2.9×10−5 2.8×10−5

Henon map 1024 1.5×10−4 6.0×10−5 6.4×10−5 4.2×10−5 3.6×10−5

step-function 1024 4.2×10−3 [6] <10−10 [25] <10−10 [25] <10−10 [25] <10−10 [25]
random binary 1024 1.0×10−2 5.1×10−3 [3] 7.0×10−3 5.9×10−3 [4] 5.1×10−3 [7]
Random sine 1024 1.6×10−3 9.9×10−4 1.5×10−3 1.3×10−3 1.1×10−3

1 Based on 40 surrogates, 8 repetitions from 5 stations.
2 Based on 24 surrogates, 8 repetitions from 3 stations.

– Henon map: A chaotic time series was calculated using
the Henon map (Kantz and Schreiber, 1999).

– Step-function: Especially the behaviour of the algo-
rithms in case of bimodal distributions is interesting.
One of the simplest cases of this type is a binary time
series consisting of only ones and zeros. The first case
considered, is a step-function signal with 512 ones, fol-
lowed by 512 zeros.

– Random binary: As an example of a more random bi-
nary function we used a signal with 1024 numbers, with
all values set to zero, except for the indices 10 to 25,
100 to 225, and 300 to 625, which were set to unity.

– Random sine: In a further test we created a time se-
ries by substituting the three blocks (with ones) of the
previous test time series with the positive parts of sine
functions, i.e. sin(x), with x=[0,π ].

4.2 Accuracy

The largest improvement (see Table 1) of SIAAFT over
IAAFT is found for the long fractal time series. The accu-
racy of the fully stochastic SIAAFT surrogates with an it-
eration threshold of 10 000 is almost an order of magnitude
better than the accuracy of the IAAFT surrogates.

For the model cumulus clouds, the IAAFT algorithm ob-
tained an accuracy of 5.8×10−4. Of the 52 cloud fields 39
converged fully in one SIAAFT run, which is the main cause

of the factor 5 improvement in accuracy. In these fully con-
verged cases the surrogate was identical to the original LES
clouds except for horizontal translations and/or reflections
of the field. For completeness: also for the 13 LES clouds
that did not converge in the first run, a fully converged sur-
rogate could be generated by generating multiple SIAAFT-
surrogates. Thus, in these 13 cases the SIAAFT algorithm
got stuck in a local minimum.

In case of the step-function, the IAAFT algorithm achieves
full convergence in 6 of 25 trials; the SIAAFT algorithm
converged completely in all 25 trials. Because of compu-
tational error full convergence is defined as1<10−10. The
fully converged surrogates were a time shifted version of the
original time series. The random binary case is more diffi-
cult; in this case the IAAFT algorithm never converged fully.
The accuracy was around 1%, which is the highest value of
all cases considered. The fully stochastic SIAAFT algorithm
converged better by a factor of two, and it converged fully in
7 of 25 trials. For the random sine case, the SIAAFT algo-
rithm did perform a little, but not statistically significantly,
better than the IAAFT algorithm. None of the surrogates
converged fully.

It is interesting to note that in most cases the SIAAFT al-
gorithm with deterministic amplitude adjustments performs
worse than the two versions with stochastic adjustments.
However, the deterministic version does perform better than
the IAAFT algorithm. Thus, the improved performance of
the SIAAFT algorithm is only partially due to its stochastic
nature.

Nonlin. Processes Geophys., 13, 321–328, 2006 www.nonlin-processes-geophys.net/13/321/2006/
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The fully stochastic version is more accurate for the long
fractal time series than the other two SIAAFT versions. In
most cases, however, the partially stochastic version of the
SIAAFT algorithm is just as accurate as the fully stochastic
version. Since the fully stochastic SIAAFT version is about
20% slower in these cases, the partially stochastic version is
our first choice, but it is advised to test the fully stochastic
version for any new application.

4.3 Nonlinearity testing

An important application of surrogate modelling is nonlin-
earity testing. We compared the performance of the surro-
gates from the two algorithms numerically by calculating the
root-mean-square nonlinear prediction error on time series
with known dynamics. We used a standard nonlinear predic-
tion algorithm (Small, 2005) without distinguishing between
training and testing dataset.

For example, we generated an ensemble of linear time se-
ries by adding three sine functions with random wavelengths
that were a multiple of the total length of the time series to get
a periodic function without jumps. These time series were fil-
tered by different static nonlinear functions: we discretised
the values, or raised them to the third power or computed
their absolute values. From these time series and their surro-
gates the nonlinear prediction error was calculated utilising
six embedding dimensions and a delay time equal to the cor-
relation length. In all cases both the IAAFT surrogates as
well as the SIAAFT surrogates correctly identified the time
series as linear. In addition, a number of standard nonlin-
ear dynamical systems were combined with nonlinear static
measurement functions. In none of these cases, we found
a real advantage of the SIAAFT algorithm over the IAAFT
algorithm for nonlinearity testing.

Nonlinearity tests can generate false answers in case the
nonlinear prediction estimate is calculated with an insuf-
ficient embedding dimension (thus, care has to be taken
for typically high-dimensional geophysical systems) and for
time series with bimodal distributions. In the latter case,
the scientist is warned by a (near) significant difference
in the correlation of two consecutive points (Schreiber and
Schmitz, 2000) between the original signals and the surro-
gates.

In some of the cases, the SIAAFT algorithm found the
global minimum more often than the IAAFT algorithm. This
prompts us to make a critical comment on nonlinearity test-
ing with surrogates. One could argue that a fully converged
surrogate has converged too far, that the algorithm could have
produced a nonlinear surrogate and that it is not possible
to use such a surrogate for nonlinearity testing. However,
as soon as the Fourier phases are tuned, as the IAAFT and
SIAAFT algorithms do, the time series is nonlinear and one
cannot distinguish rigorously between a static and a dynam-
ical origin of this nonlinearity. Thus, also without full con-
vergence the surrogates are not fully guaranteed to represent

a linear dynamical system filtered through a static nonlinear
measurement function.

5 Summary

This paper presented a new algorithm to generate surrogate
time series, which is a further development of the Iterative
Amplitude Adjusted Fourier Transform (IAAFT) algorithm.
This Stochastic IAAFT (SIAAFT) algorithm was tested on
a number of test cases, e.g. various fractal time series, and
EEG, runoff, cloud and rain measurements. In all test cases
the SIAAFT algorithm achieved a higher accuracy than the
IAAFT algorithm, i.e. the power spectrum of the surrogates
was closer to that of the original time series. The largest
improvement in accuracy, almost a factor 10, was found for a
fractal time series. The algorithm also converged to a global
minimum more often. That improvements in the accuracy are
possible will hopefully inspire other researchers in finding
even more accurate and efficient algorithms.

The main change in the algorithm is that the SIAAFT al-
gorithm performs the amplitude adjustment only for a frac-
tion of the values. This fraction can be selected between a
few percent and 40 percent. We tested three different meth-
ods for the amplitude adjustment, which differ in the way the
amplitudes to be adjusted are selected. The method called
“partial random” was shown to be a good compromise be-
tween accuracy and efficiency.

Reassuringly, we found that in most cases the accuracy
of the IAAFT algorithm is sufficient for nonlinearity testing.
However, for bimodal distributions, the accuracy of both al-
gorithms can be insufficient.
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