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Abstract. Through an idealized model of a partial differ-
ential equation with discontinuous “on-off” switches in the
forcing term, we investigate the effect of the model error
generated by the traditional discretization of discontinuous
physical “on-off” processes on the variational data assimila-
tion (VDA) in detail. Meanwhile, the validity of the adjoint
approach in the VDA with “on-off” switches is also exam-
ined. The theoretical analyses illustrate that in the analytic
case, the gradient of the associated cost function (CF) with
respect to an initial condition (IC) exists provided that the
IC does not trigger the threshold condition. But in the dis-
crete case, if the on switches (or off switches) in the forward
model are straightforwardly assigned the nearest time level
after the threshold condition is (or is not) exceeded as the
usual treatment, the discrete CF gradients (even the one-sided
gradient of CF) with respect to some ICs do not exist due
to the model error, which is the difference between the ana-
lytic and numerical solutions to the governing equation. Be-
sides, the solution of the corresponding tangent linear model
(TLM) obtained by the conventional approach would not be
a good first-order linear approximation to the nonlinear per-
turbation solution of the governing equation. Consequently,
the validity of the adjoint approach in VDA with parameter-
ized physical processes could not be guaranteed. Identical
twin numerical experiments are conducted to illustrate the
influences of these problems on VDA when using adjoint
method. The results show that the VDA outcome is quite
sensitive to the first guess of the IC, and the minimization
processes in the optimization algorithm often fail to converge
and poor optimization retrievals would be generated as well.
Furthermore, the intermediate interpolation treatment at the
switch times of the forward model, which reduces greatly the
model error brought by the traditional discretization of “on-
off” processes, is employed in this study to demonstrate that
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when the “on-off” switches in governing equations are prop-
erly numerically treated, the validity of the adjoint approach
in VDA with discontinuous physical “on-off” processes can
still be guaranteed.

1 Introduction

The prediction of precipitation is one of the tough issues
in both numerical weather prediction and climate simula-
tion. There are considerable interests in improving the pre-
diction skill of precipitation by using variational data assim-
ilation (VDA) technique in operational applications (Fillion
and Mahfouf, 2000; Marecal and Mahfouf, 2000; Fillion and
Belair, 2004). Since the moist processes are strongly nonlin-
ear and characterized by the existence of “on-off” switches,
the researches on the treatment of physical “on-off” pro-
cesses have attracted quite a few authors (e.g. Zou et al.,
1993; Verlinde and Cotton, 1993; Zupanski, 1993; Bao and
Warner, 1993; Zupanski and Mesinger, 1995; Zou, 1997;
Xu, 1996, 1997, 1998, 1999; Mu and Wang, 2003; Mu
and Zheng, 2005). Due to the difficulties of the involved
problems, attentions are mostly paid to simplified theoreti-
cal “on-off” models: from an ordinary differential equation
describing the evolution of specific humidity on one grid
point to a partial differential equation describing the evo-
lution of specific humidity on a vertical or horizontal in-
terval (Xu, 1996, 1997, 1998; Zou, 1997; Mu and Wang,
2003; Mu and Zheng, 2005). The researches on the ide-
alized simple models demonstrate that when discontinuous
“on-off” switches occur in the governing equation, the ef-
fects of the VDA depend upon two facts: one is the simple
discretization at the switches of the forward model, which
usually induces the associated discrete cost function (CF)
to depend discontinuously on the initial condition (IC) and
the numerical solution of the forward model to contain the
zigzag oscillations (Xu, 1997; Mu and Zheng, 2005). This
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zigzag oscillation represents a model error between the ana-
lytic and numerical solutions to the governing equation. An-
other is the valid application of adjoint method. In the oper-
ation of VDA, the forecast model is taken as a constraint and
the CF gradient, which determines the linear decent direction
toward minimum in an iterative procedure (LeDimet and Ta-
lagrand, 1986; Courtier and Talagrand, 1987), is computed
by integrating backward the associated adjoint model. But
when forecast models involve discontinuous physical param-
eterization processes, whether the adjoint approaches can be
safely and effectively used or not remains questionable due
to the nonexistence of the classic tangent linear model (TLM)
in this situation.

In most cases on the VDA studies which use a complex
forecast model with physical “on-off” processes, the TLM
and the associated adjoint model are derived by the conven-
tional approach, that is, to linearize the nonlinear forward
model around the basic state at every time step while keep-
ing the “on-off” switches the same as in the nonlinear for-
ward model (Zou et al., 1993; Zupanski, 1993; Vukićevíc
and Errico, 1993; Zupanski and Mesinger, 1995; Kuo et
al., 1996; Zou, 1997). However, when the discontinuous
“on-off” switches in the governing equation are simply dis-
cretized (such as the traditional numerical treatment), we do
not know whether the solution of TLM obtained in such way
is still an effective first-order linear approximation to the
perturbation solution of the nonlinear forward model? This
problem is significant for that it will impact the validity of the
associated adjoint model in the computation of CF gradient.
Vukićevíc and Bao (1998) discussed the linearization error
induced by the conventional method. They illustrated that an
error was introduced in the computation of the CF gradient
when one uses the adjoint integration and the quality of local
VDA results was correlated with the linearization errors.

Using practical diabatic assimilation models including pa-
rameterization physics, researchers have revealed that “on-
off” switches can create numerical noises in the time solu-
tion due to the “on-off” switches reoccurring (Zou, 1997;
Vukićevíc and Bao, 1998). In Mu and Zheng (2005), an ide-
alized model of a partial differential equation with discon-
tinuous “on-off” switches in the forcing term is adopted to
demonstrate that the improper numerical treatment of “on-
off” processes in the forward model can also give rise to
noises in the numerical solution. But these noises are dif-
ferent from the ones caused by “on-off” switches reoccur-
ring, for that in their idealized model, the “on-switch” at each
space grid point can only be triggered once during the assim-
ilation window.

This study, by using the simple idealized model presented
in Mu and Zheng (2005), is aimed to investigate the impacts
of the model error generated by the traditional discretization
of discontinuous “on-off” switches on the accuracy of the
TLM, to clarify the reason for and the mechanism of the lin-
earization error formation and examine the validity of the ad-
joint approach in the VDA with discontinuous “on-off” pro-

cesses.
Our paper is organized as follows. In Sect. 2, the analytical

model used in this paper is described and the properties of its
solution are discussed. The existence of the gradient of the
analytical cost function with respect to an initial condition is
presented in Sect. 3, which provides the benchmarks for the
discrete results in the later section. Section 4 is devoted to
discuss the problems caused by simple discretization at the
switches and the possibility of solving these problems. In
this section, linearization errors and the validity of the ad-
joint method are analyzed and numerically examined for the
case in which the “on-off” processes in the governing equa-
tion are discretized in the traditional way. Then the same
numerical examinations are performed for the case in which
the “on-off” switches in the forward model being treated
through intermediate interpolation approach. In Sect. 5, The
VDA numerical experiments are performed, and the impacts
of the model errors generated by the simple discretization at
the switches on the VDA are presented. Final section is the
summary and discussion.

2 Idealized model and the properties to its solution

As in Mu and Zheng (2005), the analytical model is de-
scribed by the following partial differential equation,{

∂q
∂t

+ a
∂q
∂l

= F −GH+(q − qc) 0 ≤ l ≤ L; 0 ≤ t ≤ T

q(t, l) |t=0 = q0(l), 0 ≤ l ≤ L;
∂q(t,l)
∂l

|l=0 = 0, 0 ≤ t ≤ T
(1)

where q(t, l)≥0 denotes specific humidity,qc the critical
state (called threshold),t the time variable,l stands for ei-
ther horizontal variablex (or y) or vertical variablez, the ve-
locity a(t, l) in the l direction is a given continuous function
with first-order continuous partial derivatives anda(t, l)>0
for l 6=L. G andF are the source terms induced in the pa-
rameterized process and the other physical processes respec-
tively. For simplicity,F andG are assumed to be positive
constants satisfyingF−G>0, which combines with the as-
sumptionq0(l)<qc ensures that only “on” switches may be
triggered during the assimilation window.H+(·) is the Heav-
iside unit step function defined as

H+(x) =

{
1 x ≥ 0
0 x < 0

,

mimicking the “on-off” switch in the parameterization pro-
cess,dq0(l)

dl
<0 for 0<l≤L and dq0(l)

dl
|l=0 =

∂q(0,l)
∂l

|l=0 .
Using the characteristics method, it can be proved under

the above assumptions that there exists a unique continuous
and piecewise differentiable solutionq(t, l) to Eq. (1) in the
rectangular domain

� = {(t, l),0 ≤ t ≤ T ,0 ≤ l ≤ L},

and along the characteristics issuing froml axis: l=l(t, r),
0≤r≤L, 0≤t≤T with l(0, r)=r, the solution satisfies:
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q(t, l(t, r)) = q0(r)+ F t −G(t − τ(r))H(t − τ(r)), (2)

whereτ(r)= qc−q0(r)
F

, 0≤r≤L.
By the inverse function theorem, Eq. (2) can be rewritten

as

q(t, l) = q0(ψ(t, l))+ F t −G[H(t − τ1(l))](t − τ1(l)), (3)

for (t, l)∈�1 = {(t, l) |0 ≤ t ≤ T , l(t, 0) ≤ l ≤ L }, here
r=ψ(t, l) is the inverse function decided byl(t, r)≡l in
the domain�1, the curvet=τ1(l):l(τ (0),0)≤l≤L represents
the switch time to the solution in�1 and is determined by
q0(ψ(t, l))+F t=qc.

Along the characteristics issuing fromt axis: l=l0(t, ζ ),
0≤ζ≤t≤T with l0(ζ, ζ )=0, the solution can be written as:

q(t, l0(t, ζ )) = q0(0)+ F t −G[H(t − τ0)](t − τ0), 0 ≤ ζ ≤ t ≤ T (4)

where τ0=τ(0)=
qc−q0(0)

F
. Similarly, using the variable

transformationζ=ϕ(t, l), which is the inverse function of
l0(t, ζ )≡l in �2={(t, l) |0≤t≤T , 0≤l≤l(t, 0)}, it follows
Eq. (4) that

q(t, l) = q0(0)+ F t −G[H(t − τ0)](t − τ0), (5)

for (t, l)∈�2. Especially,t≡τ0, 0≤l≤l0(τ0, 0) is the corre-
sponding switch time curve to the solution in domain�2.

We set

t = φ(l) =

{
τ1(l), (t, l) ∈ �1
τ0, (t, l) ∈ �2

,

thent=φ(l), the switch time curve of the solution, is contin-
uous in the rectangle domain� and satisfies:

φ(l1) ≤ φ(l2), for l1 ≤ l2, (6)

q(φ(l), l) ≡ qc, for 0 ≤ l ≤ L,

q(t, l) < qc, for 0 ≤ l ≤ L, 0 ≤ t < φ(l), (7)

q(t, l) > qc, for 0 ≤ l ≤ L, φ(l) < t ≤ T . (8)

Besides, according to the existence and the uniqueness the-
orem of the initial problem to the ordinary differential equa-
tion, the characteristicsl=l(t, 0) superposes with the char-
acteristicsl=l0(t,0). Obviously,�=�1 ∪ �2 and�1 ∩

�2= {(t, l) |l=l(t,0) =l0(t, 0)}.
The simple analysis presented above indicates that the

zigzag phenomenon in the numerical solution of the nonlin-
ear forward model, which is shown in Mu and Zheng (2005),
is not the inherent character of the parameterization “on-off”
processes.

The two kinds of the characteristics, as well as the switch
time curve of the solution to Eq. (1), are illustrated intuitively
in the following Fig. 1.

Figure 1 
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Fig. 1. The dot curve denotes the switch time curve, thin curve the
characteristics issuing fromt-axis and thick ones froml-axis.

3 The existence of the gradient of the CF with respect
to IC

The CF is taken as

J (q0) =
1

2

T∫
0

L∫
0

(q(t, l)− qobs(t, l))2dldt, (9)

whereq(t, l) is the state variable to model (1) andqobs(t, l)

the observation ofq(t, l). The formula (9) measures the mis-
fit between the forecast variable and the observation.

In VDA, the CF gradient with respect to the control vari-
able plays a key role, which provides the descent direction
for the optimization algorithm during the minimization pro-
cess. But whether discontinuous “on-off” switches impact
the existence of the CF gradient has been investigated only
in the case of single grid point model characterized by an
ordinary differential equation (Xu, 1996, 1997; Zou, 1997;
Mu and Wang, 2003). In the case of partial differential
equations, the numerical experiments performed by Mu and
Zheng (2005) show that traditional numerical treatment at
the switches would result in terrible CF zigzags (see Fig. 1
there), which indicates that the gradients of the associated
discrete CF with respect to some IC do not exist. Therefore,
the existence of the CF gradient deserves to be investigated
further in order to provide a benchmark for the numerical
treatment at switches in VDA.

In the following, the Ĝateaux derivative (Bergur, 1977) is
employed to demonstrate that the gradient of CF with respect
to IC q0 exists whenq0 satisfiesq0(l) 6=qc for eachl∈[0, L].
The related basic concepts and formulae are recalled first.
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3.1 The Ĝateaux derivative

The Ĝateaux derivativeD′(q0, h) of J (q0) in the directionh
atq0 is defined as

lim
t→0

J (q0 + th)− J (q0)

t
= D′(q0, h)

or equivalently

J (q0 + th)− J (q0) = tD′(q0, h)+ o(t)

whereh=h(l), 0≤l≤L is a differentiable function ando(t)
satisfies

lim
t→0

o(t)

t
= 0.

3.2 The gradient ofJ (q0) atq0

According to nonlinear functional analysis theory (Bergur,
1977, 2.1.13 and 2.5.1; Deimling, 1985, Page 46),
gradJ (q0), the gradient of functionalJ (q0) at q0, exists and
satisfies<gradJ (q0), h>=D′(q0, h) for eachh if Gâteaux
derivativeD′(q0, h) is a bounded linear functional ofh.
Hence, in order to prove the existence of the gradient of CF,
it is sufficient to prove that there exists the Gâteaux derivative
D′(q0, h) such thatD′(q0, h) is a bounded linear functional
of h.

Indeed, for an arbitrary real numberε and any differen-
tiable functionh=h(l),0≤l≤L, when the perturbationεh is
added to the ICq0 of Eq. (1), the perturbed solutionqε(t, l)
has the same form as the reference solutionq(t, l) in Eqs. (3)
and (5), except thatq0(r) is replaced byq0(r)+εh(r) and
τ(r) is replaced byτε(r)=

qc−q0(r)−εh(r)
F

.
Therefore, along the characteristics of Eq. (1) issuing from

l axis: l=l(t, r), 0≤r≤L, 0≤t≤T , the differenceδq(t, l) be-
tween the perturbed and the reference solutions is

δq(t, l(t, r)) =

 εh(r), 0 ≤ t < τ(r)

εh(r)+G(t − τ(r)), τ (r) ≤ t < τε(r)

εh(r)+G(τε(r)− τ(r)), τε(r) ≤ t ≤ T ,

(10a)

whenεh(r)≤0 for a givenr:0≤r≤L and

δq(t, l(t, r)) =

 εh(r), 0 ≤ t < τε(r)

εh(r)+G(t − τε(r)), τε(r) ≤ t < τ(r)

εh(r)+G(τ(r)− τε(r)), τ (r) ≤ t ≤ T ,

(10b)

whenεh(r)>0 for a givenr:0≤r≤L

Along the characteristics of Eq. (1) issuing fromt axis:
l=l0(t, ζ ), 0≤ζ≤t≤T , the differenceδq(t, l) is

δq(t, l0(t, ζ )) =

 εh(0), 0 ≤ t < τ(0), ζ ≤ t

εh(0)+G(t − τ(0)), τ (0) ≤ t < τε(0), ζ ≤ t

εh(0)+G(τε(0)− τ(0)), τε(0) ≤ t ≤ T , ζ ≤ t,

(11a)

whenεh(0)≤0 and

δq(t, l0(t, ζ )) =

 εh(0), 0 ≤ t < τε(0), ζ ≤ t

εh(0)+G(t − τε(0)), τε(0) ≤ t < τ(0), ζ ≤ t

εh(0)+G(τ(0)− τε(0)), τ (0) ≤ t ≤ T , ζ ≤ t,

(11b)

whenεh(0)>0.
From the definition of CF, we have

J (q0(l)+εh(l))−J (q0(l))

=

∫∫
�

δq(t, l)(q(t, l)−qobs(t, l))dldt+
1

2

∫∫
�

(δq(t, l))2dldt

= I + II, (12)

where

I =

∫∫
�1

δq(t, l)(q(t, l)− qobs(t, l))dldt +
1

2

∫∫
�1

(δq(t, l))2dldt

II =

∫∫
�2

δq(t, l)(q(t, l)− qobs(t, l))dldt +
1

2

∫∫
�2

(δq(t, l))2dldt.

For I , we take the variable transformation

T1 :

{
l = l(t, r), 0 ≤ t ≤ T ,0 ≤ r ≤ L

t = t
,

where l=l(t, r) is the characteristics of Eq. (1) issuing
from l axis. Since the determinant of Jacobi’s matrix of

T1, P(t, r)=
∣∣∣( ∂(l,t)∂(r,t)

)∣∣∣ = exp(
t∫

0

∂a
∂l
(r, l(s, r))ds is positive

for eacht and eachr:0≤t≤T ,0≤r≤L, therefore the trans-
formation

T1 : �3 = {(t, r) |0 ≤ t ≤ T , 0 ≤ r ≤ L} → �1,

is a differentiable homeomorphism.
Substituting Eqs. (10a) or (10b) intoI and using

τε(r)−τ(r)=−
εh(r)
F

, we obtain by the integral mean value
theorem that

I = ε
L∫
0
h(r)[

T∫
0
(q − qobs)(t, l(t, r))P (t, r)

(1 −
G
F
χ[τ(r),T ](t))dt]dr + O(ε2)

= ε < A, h > +O(ε2),

(13)

where

A(r) =

T∫
0
(q − qobs)(t, l(t, r))P (t, r)(1 −

G
F
χ[τ (r),T ](t))dt,

χ[τ(r),T ](t) is the characteristic function of the interval
[τ(r), T ] which is defined as

χ[τ(r),T ] =

{
0 0 ≤ t < τ(r)

1 τ(r) ≤ t ≤ T
,

and<·, ·> denotes the inner product determined by the inte-
gral.

Similarly, for II , we take the variable transform

T2 :

{
l = l0(t, ζ ), 0 ≤ ζ ≤ t ≤ T

t = t
,
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wherel=l0(t, ζ ) is the characteristics issuing from thet axis.
Since the determinant of Jacobi’s matrix ofT2,

Q(t, ζ ) =

∣∣∣∣( ∂(l, t)∂(ζ, t)

)∣∣∣∣ = −a(ζ,0) exp(

t∫
ζ

∂a

∂l
(s, l0(s, ζ ))ds

does not vanish, the transformation

T2 : �4 = {(t, ζ ) |0 ≤ ζ ≤ T , ζ ≤ t} → �2

is also a differentiable homeomorphism.
Substituting Eq. (11) intoII and using the integral mean

value theorem, we get

II = εCh(0)+ O(ε2) (14)

whereC is a constant determined by the following integral

C =

T∫
0

T∫
ζ

(q − qobs)(t, l0(t, ζ )) |Q(t, ζ )|dtdζ

−
G
F

τ(0)∫
0

T∫
τ(0)

(q − qobs)(t, l0(t, ζ )) |Q(t, ζ )|dtdζ

−
G
F

T∫
τ(0)

T∫
ζ

(q − qobs)(t, l0(t, ζ )) |Q(t, ζ )|dtdζ

ReplacingI andII in Eq. (12) with Eqs. (13) and (14), re-
spectively, we obtain,

J (q0(l)+εh(l))−J (q0(l)) = ε(< A, h > +Ch(0))+O(ε2)

= εD′(h)+O(ε2),

where D′(h)=<A, h>+Ch(0). Obviously, D′(h) is a
bounded linear functional onh, which indicates that the
gradient ofJ at q0, gradJ (q0(l)), exists whenq0 satisfies
q0(l)6=qc for eachl∈[0, L]. This analytical result will be
used as a benchmark for the sequent numerical analyses.

4 The problems caused by simple numerical treatment
at the switches

When Eqs. (1) are discretized, the usual numerical treat-
ment of the parameterization “on” switches is: at each space
grid point, the corresponding switch time level is assigned
to the nearest time level when the threshold condition is ex-
ceeded. So by using Euler upwind scheme, the discrete form
of Eq. (1), which is referred as NLM hereafter, is as follows.

qi0=q0(li), i=0, 1, . . . ,M
q0
k=q

0
k−1+F1t k=1, 2, . . . , n(0)

q0
k=q

0
k−1+F1t−G1t k=n(0)+1, n(0)+2, . . . , N

qik=q
i
k−1−

1t
1l
a(tk−1, li)(q

i
k−1−q

i−1
k−1)+F1t i=1, 2, . . . ,M; k=1, 2, . . . , n(i)

qik=q
i
k−1−

1t
1l
a(tk−1, li)(q

i
k−1−q

i−1
k−1)+F1t−G1t;

i=1,2, . . . ,M; k=n(i)+1, n(i)+2, . . . , N (15)

where1t is the time step;tk=k1t ; 1l the spatial mesh;
li=i1l; k the time level;i the space grid point;n(i) is the
switch time level at theith space grid point and determined

by q in(i)≥qc>q
i
n(i)−1. M=L/1l is the total number of space

meshes;N=T/1t the total time levels in integration.
The associated discrete CF is taken as following:

Jd(q0) =
1

2

N−1∑
k=0

M−1∑
i=0

(Dik)
21l1t (16)

whereDik=q
i
k−(q

obs)ik. q
i
k and (qobs)ik are the approxima-

tion of q(tk, li) andqobs(tk, li), respectively.
In developing an adjoint model with moist physical pro-

cesses in real numerical weather prediction, the usual way
adopted is linearizing the original nonlinear scheme around
the basic state while keeping the “on-off” switches the same
as in the nonlinear model and then transposing the TLM. Us-
ing this method, the corresponding TLM of Eq. (15) and as-
sociated adjoint model can be written into the following vec-
tor forms:

δqk = M k−1(q0)δqk−1 1 ≤ k ≤ N, (17)

with a given initial perturbation vector
δq0=(δq0(l0), δq0(l1), . . . , δq0(lM−1))

T and

dqk−1 = MT
k−1(q0)dqk+1tDk−1 k = 1, 2, . . . , N, (18)

satisfying dqN = 0, respectively. Hereδqk =

(δq0
k , δq

1
k , . . . , δq

M−1
k )T, dqk=(dq

0
k ,dq

1
k , . . . , dq

M−1
k )T

andDk=(D0
k ,D

1
k , . . . , D

M−1
k )T, 0≤k≤N . The superscript

T denotes transpose. Matrix Mk(q0) is the tangent linear
propagator given by

Mk(q0) =


1 0 0 · · · · · · · · · · · · · · · 0 0 0
ra1
k 1−ra1

k 0 · · · · · · · · · · · · · · · 0 0 0
0 ra2

k 1−ra2
k · · · · · · · · · · · · · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · · · · · · · · · · · · · 0 raM−1
k 1−raM−1

k


and its transposition MTk (q0) is the adjoint opera-
tor, where r=1t

1l
and aik=a(tk, li). Replacing δqk in

δJd=1t1l
N−1∑
k=0

<Dk, δqk> with

δqk = Mk−1(q0)Mk−2(q0) . . .M1(q0)M0(q0)δq0

we get

δJd =1t1l<D0, δq0>+1t1l
N−1∑
k=1

<Dk,Mk−1(q0)Mk−2(q0) . . .M1(q0)M0(q0)δq0>

=1t1l<D0, δq0>+1t1l
N−1∑
k=1

<MT
0 (q0)MT

1 (q0) . . .MT
k−2(q0)MT

k−1(q0)Dk, δq0>

where<·, ·> is the inner product inM-dimensional Eu-
clidean space. When the gradient of the discrete CF,
gradJd(q0), exists, it holds that

gradJ d(q0) = 1t[D0 +

N−1∑
k=1

MT
0 (q0)MT

1 (q0) . . .MT
k−2(q0)MT

k−1(q0)Dk]

(19)
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Figure 2 
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Fig. 2. At the ninth space grid point, the time evolutions of the
NLM perturbation solution (dash line) vs. the TLM solution (solid
line) with perturbation amplitude parameterα=0.01.

Note that the right side of Eq. (19) is exactly the initial value
of the solution vector to the adjoint model (18), so we have

gradJ d(q0) = dq0 (20)

But using Eq. (20) to provide the gradient information for
VDA with “on-off” switches, there are two issues should
firstly be addressed, one is whether the solution of TLM
(Eq. 17) is a valid first-order linear approximation to the
nonlinear perturbation solution to NLM (Eq. 15), the other
is whether gradJd(q0) exists when the discrete CF is con-
strained by Eq. (15), for that they are the preconditions for
the formula (20) holding. In the following, both of our
theoretic analyses and the results of the numerical experi-
ments show that these preconditions are not guaranteed due
to the simple numerical treatment of the “on–off” switches
in Eq. (15). More precisely, when the physical “on-off” pro-
cesses in NLM are discretized by using the traditional ap-
proach, and there exists a space grid pointi, 0≤i≤M, such
thatq in(i)=qc for a given initial conditionq0, then the solution
of the TLM (Eq. 17) is not a valid first-order approximation
for the nonlinear perturbation solution of Eq. (15), and the
gradient of the discrete CF with respect toq0 does not also
exist.

(a) The accuracy of the TLM

In the following, we test the linear approximation accuracy
by comparing, at a fixed space grid point, the time evolutions
of both the NLM perturbation solutionq ′ and the TLM so-
lutions δq that start from the same initial perturbation field
δq0(l)=α(0.15−0.15l2), whereα is a perturbation ampli-
tude parameter. The NLM perturbation solutionq ′ is con-
structed by taking the difference between the reference so-
lution and the perturbed solution to Eq. (15) with the ini-
tial conditionsq0(l)=0.15−0.15l2 andq0(l)+δq0(l), respec-

Figure 3 
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Fig. 3. Same as Fig. 2 exceptα=0.0000001.

tively. The other relevant parameters are taken asqc=0.35,
a(t, l)=(1 + t)(1 − l), F=8, G=7,1l=0.05, L=1.0 (i.e.,
M=20) and1t = 0.005, T=1.0 (i.e.,N=200). The test
results are shown in the following Figs. 2 and 3.

From the above two figures, it can be clearly seen that
no matter how small the perturbation amplitude parameterα

is, the TLM solution is not a valid first-order approximation
for the nonlinear perturbation solution because the numer-
ical solution of Eq. (15) with ICq0(l)=0.15−0.15l2 satis-
fiesq in(i)=qc=0.35 for somei, 0≤i≤M. But for the ICs that
the corresponding NLM solutions do not trigger the thresh-
old condition at any discrete time level, the numerical ex-
periment results show that the associated TLM solution has
a quite high accuracy (as a first-order approximation of the
nonlinear perturbation solution), provided the initial pertur-
bation amplitude, which is characterized by the parameterα

in our numerical experiments, is not too large (e.g.α less
than 0.001).

(b) The existence on the discrete CF gradient

In Sect. 3 of this study, we have proven that in the analytic
case, the gradient of the associated CF with respect to an
IC exists provided that the IC does not trigger the thresh-
old condition. However, using Eq. (15) as the constraining
equation, the gradients of the associated discrete CF with
respect to some ICs would not exist even if the ICs do not
trigger the threshold condition. More precisely, for a given
IC q0=(q

0
0, q

1
0, . . . , q

M−1
0 )T , if the corresponding numerical

solution to Eq. (15) satisfiesqi0n(i0)=qc at some space grid
point i0, 0≤i0≤M−1, then the associated CF gradient would
not exist, which will be proven through the perturbation anal-
ysis method as follows.

Superposing a perturbation εE(i0) =

ε(0, . . .0, 1, 0, . . . , 0)T onto q0, where E(i0) is a M-
dimensional vector with all components vanishing except
the (i0+1)th one, which is unit, andε is an arbitrary small
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real number. We denoteqik(ε); i, 0≤i≤M; k, 0≤k≤N the
corresponding perturbed solution of Eq. (15). Next, it will
be proven that the partial derivative of the CF with respect to
the(i0+1)th componentqi00 of the ICq0 does not exist.

The following expression can firstly be recursively derived
from Eq. (15):

q ik =

i∑
j=0

q
j

0ω(k, j, i)+ kF1t − C(k, i)G1t,

0 ≤ i ≤ M; 1 ≤ k ≤ N (21)

where ω(k, j, i)≥0 (0≤j≤i) only depend on1t
1l
a(tr , ls)

(0≤s≤i, 0≤r≤k−1) and satisfy
i∑

j=0
ω(k, j, i) = 1.

C(k, i) ≥ 0 is determined by1t
1l
a(tr , ls) (0 ≤ s ≤ i,

0 ≤ r ≤ k−1) and satisfy 1≤ C(k, i) ≤ k−n(i) as
n(i) < k ≤ N , C(k, i) = 0 when 0 ≤ k ≤ n(i). Fur-
thermore,C(k, i) ≤ C(n(i)+ 1, i).

If we let ω(0, j, i)=0 as 0≤j<i andω(0, i, i)=1, then
Eq. (21) holds for all 0≤i≤M and 0≤k≤N . In particular,

q in(i)−1=

i∑
j=0

q
j

0ω(n(i)−1, j, i)+[n(i)−1]F1t<qc (22)

q in(i) =

i∑
j=0

q
j

0ω(n(i), j, i)+ n(i)F1t ≥ qc (23)

Substitutingq0 with q0+εE(i0) in Eq. (22) yields

i∑
j=0

q
j

0ω(n(i)−1, j, i)+[n(i)− 1]F1t+εω(n(i0)−1, i0, i)H(i−i0)<qc

provided that |ε| is small enough, which indicates
nε(i)−1≥n(i)−1, i.e., nε(i)≥n(i) for eachi, 0≤i≤M ac-
cording to the definition of switch time level.

But when replacingq0 by q0+εE(i0) in Eq. (23), we
would get different results depending on the sign ofε.
More precisely, ifε>0, it follows from ω(k, j, i)≥0 for
0≤j≤i≤M andk, 0≤k≤N that

i∑
j=0

q
j

0ω(n(i), j, i)+n(i)F1t + εω(n(i0), i0, i)H(i−i0)≥qc

This inequality impliesnε(i)≤n(i), which together with
nε(i)≥n(i) indicatesnε(i)=n(i) for eachi,0≤i≤M. With
this relationship,q ik(ε) has the same expression asqik in
Eq. (21) exceptq0 is replaced byq0+εE(i0). Hence in the
case ofε>0, we have:

q ik(ε)− q ik = εω(k, i0, i)H(i − i0) (24)

for all i andk with 0≤i≤M and 1≤k≤N .
Whenε<0, the following inequality holds,

nε(i0) > n(i0) (25)

In fact, sinceq i0n(i0) =

i0∑
j=0

q
j

0ω(n(i0), j, i0) + n(i0)F1t =

qc andω(n(i0), i0, i0) ≥ 0, then we arrive atqi0n(i0)(ε) =

i0∑
j=0

q
j

0ω(n(i0), j, i0) + n(i0)F1t + εω(n(i0), i0, i0) < qc,

which demonstrates that Eq. (25) is true.
Furthermore, whennε(i)>n(i), it is

nε(i) = n(i)+ 1 (26)

provided|ε| is small enough. If it is not, i.e.,nε(i)>n(i)+1,
then the following two inequalities hold simultaneously ac-
cording to Eq. (21):

q in(i)+1 =

i∑
j=0

q
j

0ω(n(i)+1, j, i)+[n(i)+1]F1t−C(n(i)+1, i)G1t>qc,

q in(i)+1(ε) =

i∑
j=0

q
j

0ω(n(i)+1, j, i)+εω(n(i)+1, i0, i)+[n(i)+1]F1t

= q in(i)+1+εω(n(i)+1, i0, i)+C(n(i)+1, i)G1t<qc,

they contradict each other when|ε| is small enough due to
C(n(i)+1, i)G1t>0.

Thus, we have

nε(i0) = n(i0)+ 1

Using Eqs. (26) and (21) as well as (15), it can be recursively
derived in the case ofε<0 that

qik(ε)− q ik = B(k, i)G1t + εω(k, i0, i)H(i − i0),

0 ≤ i ≤ M, 0 ≤ k ≤ N (27)

where B(0, i)=0 for 0≤i≤M and when k≥1,
0≤B(k, i)≤C(k, i) and B(k, i)only depend on
1t
1l
a(tr , ls) for 0≤s≤i and 0≤r≤k−1. Moreover,

1≤B(n(i)+1, i)≤C(n(i)+1, i) holds as nε(i)6=n(i).
Especially, one has

q
i0
n(i0)+1(ε)−q

i0
n(i0)+1=εω(n(i0)+1, i0, i0)+C(n(i0)+1, i0)G1t

B(n(i0)+ 1, i0) = C(n(i0)+ 1, i0) ≥ 1

Next, we can demonstrate that the partial derivative∂Jd (q0)

∂q
i0
0

does not exist.
When ε>0, by substituting Eq. (24) into

Jd(q0−εE(i0))−Jd(q0), we get

Jd(q0 − εE(i0))− Jd(q0)

= O(ε2)+ ε

N−1∑
k=0

M−1∑
i=i0

ω(k, i0, i)(q
i
k − qobs(tk, li))1t1l,

therefore

lim
ε→0+

Jd(q0 + εE)− Jd(q0)

ε

=

N−1∑
k=0

M−1∑
i=i0

ω(k, i0, i)(q
i
k − qobs(tk, li))1t1l (28)
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Figure 4 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Plots ofφ(β) (right panel) andφ(−β) (left panel), which show the testing results of the one-sided gradient.

But when ε<0, substituting Eq. (27) into
Jd(q0−εE(i0))−Jd(q0) yields

Jd(q0 − εE(i0))− Jd(q0)

= O(ε2)+ ε1t1l

{
N−1∑
k=0

M−1∑
i=i0

ω(k, i0, i)[q
i
k − qobs(tk, li)+ B(k, i)G1t]

}

+

{
1

2

M−1∑
i=0

N−1∑
k=0

[B(k, i)G1t]2 +

M−1∑
i=0

N−1∑
k=01

B(k, i)G1t((qik−q
obs(tk, li))

}
1t1l

If the value in the second brace does not vanish, then the left
limit

lim
ε→0−

Jd(q0 + εE(i0))− Jd(q0)

ε

does not exist, and if this value vanishes, then we have

lim
ε→0−

Jd(q0 + εE(i0))− Jd(q0)

ε

= 1t1l

{
N−1∑
k=0

M−1∑
i=i0

ω(k, i0, i)[q
i
k − qobs(tk, li)+ B(k, i)G1t]

}
(29)

Since B(k, i)≥0(0≤i≤M; 0≤k≤N), ω(k, i0, i)≥0 and
B(n(i0)+1, i0)≥1, comparing Eq. (28) with Eq. (29) derives

lim
ε→0+

Jd(q0 + εE(i0))− Jd(q0)

ε
6= lim

ε→0−

Jd(q0 + εE(i0))− Jd(q0)

ε

For all cases, we have proved that∂Jd (q0)

∂q
i0
0

does not exist.

The nonexistence of the CF gradient is also verified by the
numerical experiments testing one-sided gradient (Fig. 4), in
whichφ(−β) andφ(β) are computed by

φ(−β) = [Jd(q0 − β
dq0

||dq0||
)− Jd(q0)]/(−β||dq0||),

and

φ(β) = [Jd(q0 + β
dq0

||dq0||
)− Jd(q0)]/[β||dq0||], (30)

respectively, where||·|| represents al2 Euclidean norm,
β>0 is a scalar anddq0 the initial value of the solu-
tion vector to the adjoint model (18), the discrete CF is

taken as Eq. (16) with a free error observation(qobs)ik,
0≤i≤M; 0≤k≤N , that is, the observation is generated
through integrating forward Eq. (15) from a given initial data
qobs

0 (l)=0.25+0.05 cos(πl), the ICq0 and other relevant pa-
rameters used in the experiments are the same as the ones in
Fig. 2. Typically, the accuracy of the gradient computed by
adjoint integration can be checked by the following formula
(Navon et al., 1992, page 1437)

φ(β) = [Jd(q0 + βh)− Jd(q0)]/[β(gradJd(q0))
Th] (31)

whereh=gradJd(q0)/||gradJd(q0)||. When the gradient of
the cost function with respect to the ICq0 exists and can
be computed by using formula (20), equality (31) becomes
(30) provided gradJd(q0) in (31) are replaced bydq0, and
when |β| is small enough, one should haveφ(β)=1+O(β)
according to Taylor series expansion. However, the test result
shown in the right panel of Fig. 4 indicates that there is no
such property for the ICq0 that the corresponding numerical
solution to Eq. (15) triggers the threshold condition exactly
at some time levels. Our numerical result also demonstrate
that the adjoint integration cannot provide the one-sided gra-
dients of the cost function with respect to some ICs if the
discontinuous “on-off” processes in the governing equation
are improperly treated.

(c) The improvement of the accuracy of the tangent linear
approximation

The accuracy of the TLM solution as the first-order ap-
proximation to the nonlinear perturbation can be improved
through a proper discretization of the discontinuous “on-off”
processes in the forecast model. In the following, we use
the intermediate interpolation treatment of “on-off” switches
presented in Mu and Zheng (2005) to illustrate it.

All q ik are the same as in Eq. (15) exceptqin(i):0≤i≤M,
which are given by

q in(i)=q
i
n(i)−1−

1t

1l
a(tn(i)−1, li)(q

i
n(i)−1−q

i−1
n(i)−1)+F1t−G(1t−1σ(i)),

i = 1, . . . ,M
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Figure 5 
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Fig. 5. As in Fig. 2 except the NLM and TLM are defined by for-
mula (32) and (33) respectively.

q0
n(0) = q0

n(0)−1 + F1t −G(1t −1σ(0))

where

1σ(0) = (qc − q0
n(0)−1)/F

1σ(i) = (qc − q in(i)−1)/[F − a(tn(i)−1, li)(q
i
n(i)−1 − q i−1

n(i)−1)/1l]

i = 1, . . . ,M (32)

It should be pointed out that1σ(i):0≤i≤M make the
switch times in the discrete forward model match more
closely the switch times in the analytic model (1), so the
model errors caused by the switch times assigned in the for-
ward model (32) are smaller than the ones simply assigned
in the discrete model (15).

By linearizing the nonlinear forward model (32) in the nor-
mal way, we obtain the TLM as follows.

δq0
k = δq0

k−1 k 6= n(0)

δq0
n(0) = δq0

n(0)−1(1 −
G

F
)

δqik = δqik−1 −
1t

1l
a(tk−1, li)(δq

i
k−1 − δqi−1

k−1), k 6= n(i)

δqin(i) = δqin(i)−1 −
1t

1l
a(tn(i)−1, li)(δq

i
n(i)−1 − δqi−1

n(i)−1)+Gδ1σ(i)

i = 1, 2, . . . ,M

where

δ1σ(i) = −
δqin(i)−1

F − a(tn(i)−1, li)(q
i
n(i)−1 − q i−1

n(i)−1)/1l

+
(qc − q in(i)−1)a(tn(i)−1, li)(δq

i
n(i)−1 − δqi−1

n(i)−1)/1l

[F − a(tn(i)−1, li)(q
i
n(i)−1 − q i−1

n(i)−1)/1l]
2
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Fig. 6. As in Fig. 3 except the NLM and the TLM are defined by
formula (32) and (33), respectively.

i = 1, 2, . . . ,M. (33)

Now how good the solution of Eq. (33) approximates the
nonlinear perturbation obtained from Eq. (32) is examined in
the same way as that in a). The relevant parameters used in
the experiments are also the same as the ones used there. But
the NLM and TLM are defined by Eqs. (32) and (33) rather
than Eqs. (15) and (17), respectively. Figures 5 and 6 show
the test results. Comparing these results with those shown in
Figs. 2 and 3, we can see that as a first-order linear approx-
imation to the nonlinear perturbation solution, the accuracy
of the solution of TLM (Eq. 33) is significantly improved.

When the CF is constrained by Eq. (32) and the associated
CF gradient is computed through the adjoint formula (20),
i.e., integrating backward the adjoint model of TLM (Eq. 33)
to calculate the discrete CF gradient, the accuracy of the one-
sided CF gradient is also examined with various ICs and all
test results are satisfied. Figure 7 shows the examined re-
sults of the two one-sided gradients for the IC used in Fig. 4,
which indicates that only when the discontinuous “on-off”
processes in the governing equation are properly discretized,
could the adjoint integration provide the one-sided gradients
for the CF defined by parameterization physics.

5 The VDA numerical experiments

In Sect. 4, theoretical analyses and numerical experiments
demonstrate following fact: if the “on-off” processes in
the governing equation are discretized improperly, such as
the traditional time discretization at the switches used in
Eq. (15), then the validity of using the adjoint formula (20)
to compute the discrete CF gradient is not ensured in the
VDA. To better understand what effects this problem may
bring to VDA, 201 numerical experiments of VDA with
the first guessesq0(l)=

1
2(0.15−0.05l2)×(1+ cos( j

200π)),
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Figure 7 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. As in Fig. 4 except the CF is computed by Eq. (32) and the CF gradient is computed by the adjoint of the TLM (Eq. 33).
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Fig. 8. The optimization retrievals (solid lines) vs. the initial obser-
vation (dash line), the thin line corresponds to the first guess with
j=143 and the thick one toj=2.

j=0, 1, . . . , 200 are conducted in this section. In the experi-
ments, the optimization algorithm BFGS (version 2.0, 1989)
is adopted to search for the minimum of the CF. The CF is
taken as Eq. (16) and the CF gradient is computed by us-
ing the formula (20), i.e., integrating backward the adjoint
models (18) to provide the CF gradient for the optimization
algorithm. The observation data(qobs)ik (0≤i≤M−1) is gen-
erated through integrating forward model (15) from a given
initial dataqobs

0 (l)=0.25+0.05 cos(πl), 0≤l≤1. Other rele-
vant parameters in the experiments are the same as in Figs. 2
and 3.

The following two tables demonstrate the descent degree
of both the cost functions and the CF gradient in the mini-
mization processes of VDA. The first presents five bad cases
and the second demonstrates five good cases in the 201 VDA
experiments. In both tables, the first column denote the val-
ues of the parametersj in the given 201 first guessesq0(l),
the second named Orig. CF is the value of CF before opti-
mization and the third called Min. CF is the minimum value
of CF obtained through the VDA, the fourth and the last col-

Table 1. The descent degrees of CF and CF gradient in the VDA –
five bad cases.

J Ori. CF Min. CF Ori. Proj-G Min. Proj-G

2 2.217×10−4 1.871×10−4 9.356×10−2 4.233×10−2

10 2.317×10−4 2.266×10−4 1.019×10−1 9.406×10−2

16 2.495×10−4 2.351×10−4 1.153×10−1 9.534×10−2

72 4.680×10−4 1.621×10−4 1.696×10−1 1.602×10−2

166 1.601×10−3 7.484×10−4 4.202×10−1 3.078×10−2

Table 2. The descent degrees of CF and CF gradient in the VDA –
five good cases.

J Ori. CF Min. CF Ori. Proj-G Min. Proj-G

25 2.878×10−4 5.994×10−6 1.466×10−1 4.138×10−7

114 9.311×10−4 6.112×10−6 2.952×10−1 1.246×10−7

132 1.640×10−3 3.785×10−6 4.802×10−1 4.974×10−7

143 9.854×10−4 5.603×10−6 2.549×10−1 4.682×10−7

171 1.725×10−3 6.162×10−6 4.464×10−1 6.452×10−7

umn are same as the second and the third column but for the
maximum norm of CF gradient.

The great contrast has been demonstrated between the Ta-
bles 1 and 2. In Table 1, the minimum values of CFs and the
maximum norms of CF gradients after VDA drop scarcely
in comparison with the original ones, and in the 201 VDA
experiments, such cases are about 7.46%. In Table 2, the
minimum values of CFs descent about by the 2 or 3 order
of magnitude and the maximum norms of CF gradients drop
about by the 6 order of magnitude, but such cases in 201
VDA experiments take only about 51.24%. Therefore, it
should not be neglected that improper discretizations of the
physical “on-off” processes in the governing equation could
bring a considerable impact upon VDA when using the ad-
joint method.
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Figure 9 
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Fig. 9. The logarithm of the cost functions, log (Jd (q0)), vs. iter-
ation numbers in experiments shown in Fig. 8. The thin line with
j=143 and the thick withj=2.

Further, the optimization retrievals with the first guesses
corresponding toj=2 andj=143 are shown in the Fig. 8.
Figures 9 and 10 respectively demonstrate the descending
tendency of the logarithm of the cost function and the max-
imum norm of the gradient during the minimization process
of optimization retrievals shown in Fig. 8.

Obviously, for the first guesses corresponding toj=2,
VDA fails to work well when using adjoint method.

The VDA numerical experiments are also performed with
optimization algorithm N1QN3 (version 2.0, 1993), and the
experiment results demonstrate that the problems caused by
the improper discretization of the “on-off” processes in the
governing equation still exist.

Here we emphasize that the optimization retrievals in
VDA with discontinuous physical “on-off” processes when
using the adjoint method could be improved as long as the
“on-off” processes in the forward model are discretized prop-
erly, which had been shown by the results of VDA exper-
iments with the intermediate interpolation treatment in the
forward model in Mu and Zheng (2005), and readers are sug-
gested to refer that paper for details.

6 Conclusions and discussion

When a numerical model contains the discontinuities caused
by parameterized “on-off” switches and is integrated numer-
ically on discretized time levels, an on switch (or off switch)
is traditionally assigned to the nearest time level after the
threshold condition is (or is not) exceeded. Using an ide-
alized model of a partial differential equation with discon-
tinuous “on-off” switches in the forcing term, this study in-
vestigates the impacts of the model errors generated by tradi-
tional time discretization of discontinuous physical “on-off”
processes on the VDA. The analytic analyses are presented to
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Fig. 10. Same as Fig. 9, but for the logarithm of the maximum
norm of the gradient. Obviously, the poor optimization retrieval is
generated for the first guess.

provide a benchmark to check the model errors and the prob-
lems caused by them in the numerical computation. The con-
clusion is that discontinuous “on-off” switches neither cause
the zigzag oscillations in the analytic solution of the govern-
ing equation nor lead the nonexistence of the CF gradient
with respect to the IC, provided the IC does not trigger the
threshold. But in the discrete case, our theoretical analyses
and numerical experiment results demonstrate that the tradi-
tional time discretization at the switches can cause nonexis-
tence of the discrete CF gradient with respect to some ICs.
Besides, the solution of the tangent linear model obtained by
the conventional approach would not be a good first-order ap-
proximation to the nonlinear perturbation solution of the gov-
erning equation, and the associated adjoint integration cannot
provide even the one-sided gradients for the CF at some ICs.
Consequently, the validity of the adjoint approach in VDA
with parameterized physical processes could not be guaran-
teed. The influences of the model error on VDA when using
the adjoint method are further examined by the numerical
experiments. The results show that the VDA results are sen-
sitive to the first guess of the IC, and the minimization pro-
cesses in the optimization algorithm often fail to converge as
well as the poor optimization retrievals would be generated.

The intermediate interpolation treatment of “on-off”
switches presented in Mu and Zheng (2005) is employed to
demonstrate that all of the problems mentioned above are
merely caused by the simple discretization of the “on-off”
switches in the forward model, they can be avoided by proper
numerical treatment of the “on-off” switches.

In a practical NWP model with discontinuous parameter-
ization physical, “on-off” switches reoccuring in the fore-
cast model can cause noises, and when noises come about,
we cannot be sure that the noises are only due to the “on-
off” switches reoccurring. The theoretical analysis and the
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numerical experiments in this study show that improper
numerical treatment of “on-off” switches in the governing
equation is also another reason of generating noises, and this
kind of noises can make the TLM solution obtained by the
conventional method be a bad first-order approximation to
the NLM perturbation solution and the associated adjoint
integration lose the ability to provide the one-sided gradi-
ents for the CF at some ICs as well. Since the noises can
bring troubles in the VDA when using the adjoint integra-
tion, hence they deserve to investigate deeply and should be
controlled.
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