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Abstract. Through an idealized model of a partial differ- when the “on-off” switches in governing equations are prop-
ential equation with discontinuous “on-off” switches in the erly numerically treated, the validity of the adjoint approach
forcing term, we investigate the effect of the model error in VDA with discontinuous physical “on-off” processes can
generated by the traditional discretization of discontinuousstill be guaranteed.

physical “on-off” processes on the variational data assimila-
tion (VDA) in detail. Meanwhile, the validity of the adjoint
approach in the VDA with “on-off” switches is also exam- 4
ined. The theoretical analyses illustrate that in the analytic

case, the gradient of the associated cost function (CF) withrhe prediction of precipitation is one of the tough issues
respect to an initial condition (IC) exists provided that the jn poth numerical weather prediction and climate simula-
IC does not trigger the threshold condition. But in the dis- tion, There are considerable interests in improving the pre-
crete case, if the on switches (or off switches) in the forwardgiction skill of precipitation by using variational data assim-
model are straightforwardly assigned the nearest time levejjation (VDA) technique in operational applications (Fillion
after the threshold condition is (or is not) exceeded as theynd Mahfouf, 2000: Marecal and Mahfouf, 2000; Fillion and
usual treatment, the discrete CF gradients (even the one-sidegk|ajr, 2004). Since the moist processes are strongly nonlin-
gradient of CF) with respect to some ICs do not exist dueear and characterized by the existence of “on-off” switches,
to the mOde| error, Wh|Ch iS the diﬂ:erence betWeen the ana‘the researches on the treatment Of physica' “On_off” pro_
lytic and numerical solutions to the governing equation. Be-cesses have attracted quite a few authors (e.g. Zou et al.,
sides, the solution of the corresponding tangent linear mode{ 993; Verlinde and Cotton, 1993; Zupanski, 1993; Bao and
(TLM) obtained by the conventional approach would not bewarner, 1993: Zupanski and Mesinger, 1995; Zou, 1997;
a good first-order linear approximation to the nonlinear per-xy 1996, 1997, 1998, 1999: Mu and Wang, 2003; Mu
turbation solution of the governing equation. Consequently,and zheng, 2005). Due to the difficulties of the involved
the validity of the adjoint approach in VDA with parameter- proplems, attentions are mostly paid to simplified theoreti-
ized physical processes could not be guaranteed. ldenticga| “on-off” models: from an ordinary differential equation
twin numerical experiments are conducted to illustrate thegescribing the evolution of specific humidity on one grid
influences of these problems on VDA when using adjointpoint to a partial differential equation describing the evo-
method. The results show that the VDA outcome is quite|ytion of specific humidity on a vertical or horizontal in-
sensitive to the first guess of the IC, and the minimizationteryal (Xu, 1996, 1997, 1998; Zou, 1997; Mu and Wang,
processes in the optimization algorithm often fail to converge20p3; Mu and Zheng, 2005). The researches on the ide-
and poor optimization retrievals would be generated as wellgjized simple models demonstrate that when discontinuous
Furthermore, the intermediate interpolation treatment at thegn-off" switches occur in the governing equation, the ef-
switch times of the forward model, which reduces greatly thefects of the VDA depend upon two facts: one is the simple
model error brought by the traditional discretization of “on- gjscretization at the switches of the forward model, which
off” processes, is employed in this study to demonstrate thaisyally induces the associated discrete cost function (CF)
to depend discontinuously on the initial condition (IC) and
Correspondence taQ. Zheng the numerical solution of the forward model to contain the
(ginzheng@mail.iap.ac.cn) zigzag oscillations (Xu, 1997; Mu and Zheng, 2005). This
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310 Q. Zheng and M. Mu: The effects of the model errors on VDA

zigzag oscillation represents a model error between the anazesses.
lytic and numerical solutions to the governing equation. An-  Our paper is organized as follows. In Sect. 2, the analytical
other is the valid application of adjoint method. In the oper- model used in this paper is described and the properties of its
ation of VDA, the forecast model is taken as a constraint andsolution are discussed. The existence of the gradient of the
the CF gradient, which determines the linear decent directioranalytical cost function with respect to an initial condition is
toward minimum in an iterative procedure (LeDimet and Ta- presented in Sect. 3, which provides the benchmarks for the
lagrand, 1986; Courtier and Talagrand, 1987), is computedliscrete results in the later section. Section 4 is devoted to
by integrating backward the associated adjoint model. Butdiscuss the problems caused by simple discretization at the
when forecast models involve discontinuous physical paramswitches and the possibility of solving these problems. In
eterization processes, whether the adjoint approaches can Ileis section, linearization errors and the validity of the ad-
safely and effectively used or not remains questionable dugoint method are analyzed and numerically examined for the
to the nonexistence of the classic tangent linear model (TLM)case in which the “on-off” processes in the governing equa-
in this situation. tion are discretized in the traditional way. Then the same

In most cases on the VDA studies which use a complexnumerical examinations are performed for the case in which
forecast model with physical “on-off” processes, the TLM the “on-off” switches in the forward model being treated
and the associated adjoint model are derived by the converthrough intermediate interpolation approach. In Sect. 5, The
tional approach, that is, to linearize the nonlinear forward VDA numerical experiments are performed, and the impacts
model around the basic state at every time step while keepef the model errors generated by the simple discretization at
ing the “on-off” switches the same as in the nonlinear for- the switches on the VDA are presented. Final section is the
ward model (Zou et al., 1993; Zupanski, 1993; \aduic summary and discussion.
and Errico, 1993; Zupanski and Mesinger, 1995; Kuo et
al., 1996; Zou, 1997). However, when the discontinuous
“on-off” switches in the governing equation are simply dis-
cretized (such as the traditional numerical treatment), we d
not know whether the solution of TLM obtained in such way
is still an effective first-order linear approximation to the
perturbation solution of the nonlinear forward model? This 3 1% = F—GHy(q—g)0<I<Li0<(<T
problem is significant for that it will impact the validity ofthe | /(; /)|,_o = go), 0<i<1L; 9D | 5 =0,0<t<T @)
associated adjoint model in the computation of CF gradient.
Vukicevic and Bao (1998) discussed the linearization errorwhere ¢(¢,/)>0 denotes specific humidity;. the critical
induced by the conventional method. They illustrated that arstate (called threshold),the time variable/ stands for ei-
error was introduced in the computation of the CF gradientther horizontal variable (or y) or vertical variable, the ve-
when one uses the adjoint integration and the quality of localocity a(z, I) in the! direction is a given continuous function
VDA results was correlated with the linearization errors. with first-order continuous partial derivatives and, /)>0

Using practical diabatic assimilation models including pa- for /L. G and F are the source terms induced in the pa-
rameterization physics, researchers have revealed that “orrameterized process and the other physical processes respec-
off” switches can create numerical noises in the time solu-tively. For simplicity, ¥ and G are assumed to be positive
tion due to the “on-off” switches reoccurring (Zou, 1997; constants satisfying'—G >0, which combines with the as-
Vukicevic and Bao, 1998). In Mu and Zheng (2005), an ide- sumptiongo(l) <g. ensures that only “on” switches may be
alized model of a partial differential equation with discon- triggered during the assimilation window (-) is the Heav-
tinuous “on-off” switches in the forcing term is adopted to iside unit step function defined as
demonstrate that the improper numerical treatment of “on-
off” processes in the forward model can also give rise to 7, (x) = {1 x20 ,
noises in the numerical solution. But these noises are dif- 0 %<0

ferent from the ones caused by “on-off” switches reoccur-mimicking the “on-off” switch in the parameterization pro-

ring, for that in their idealized model, the “on-switch” at each .agg dqua) <0 for O<I<L and% =0 :w li—o.
space grid point can only be triggered once during the assim- sing the characteristics method, it can be proved under

ilation window. the above assumptions that there exists a unique continuous

This study, by using the simple idealized model presented, 14 piecewise differentiable solutiarr, /) to Eq. (1) in the
in Mu and Zheng (2005), is aimed to investigate the impaCtSrectanguIar domain

of the model error generated by the traditional discretization

of discontinuous “on-off” switches on the accuracy of the @ = {(t,1),0<t <T,0<1[ < L},

TLM, to clarify the reason for and the mechanism of the lin- L ,

earization error formation and examine the validity of the ad-and along the chqracterlstlcs ISsuing frlbmxs:' l?l(” ),
joint approach in the VDA with discontinuous “on-off” pro- O=7 =L, 0=t=T with /(0, r)=r, the solution satisfies:

2 Idealized model and the properties to its solution

%s in Mu and Zheng (2005), the analytical model is de-
scribed by the following partial differential equation,
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q(t,1(t,r) =qo(r) + Ft =G —t(rDH({ —1(r)), (2) ! a

wherer (r)=4=90") 0<r<L.
By the inverse function theorem, Eq. (2) can be rewritten
as

qt,1) =qo(y(t, D)+ Ft — G[H( — ta()) ] — 12 (D), (3)

for t,H)e21 = {(t,D)|0<t<T,I1t, 0 <l <L} here
r=v(t,1) is the inverse function decided hyz, r)=l in
the domair2y, the curve=t1(/):l(z (0), 0)<I<L represents
the switch time to the solution i, and is determined by
qo(¥ (¢, D)+ Ft=q.

Along the characteristics issuing fromaxis: [=Iy(t, ¢),
0<¢ <t<T with [g(¢, £)=0, the solution can be written as:

Fig. 1. The dot curve denotes the switch time curve, thin curve the

characteristics issuing fromaxis and thick ones frorhraxis.
q(t,10(, ) = qo(0) + Ft = GIH(t = 10)l(t —70), 0<¢ <1 =T (4)

where to=1(0)=%=2@ " Similarly, using the variable

transformation =¢(t, ), which is the inverse function of 3 Tha existence of the gradient of the CF with respect

lo(t, &)=l in Qo={(t,])|0<t<T, 0<I<I(t,0)}, it follows toIC
Eq. (4) that
q(t,1) = qo(0) + Ft — G[H (t — 10)1(t — 70), (®)  The CFis taken as

for (z,1)eQ22. Especially,r=t1q, 0<I<ly(t9, 0) is the corre-
sponding switch time curve to the solution in dom&in

We set
J(go) =

NI =

T L

/ / (q(t.1) — g™, ) 2dlds, )
. . 71(l), (t,1) € Q1

t_d)(l)_{ro, t.1) e’ 00

thenr=¢ (1), the switch time curve of the solution, is contin-

wheregq(z, 1) is the state variable to model (1) anPS(z, I
uous in the rectangle domafnand satisfies: q(.D) (1) and™, 1)

the observation of (z, [). The formula (9) measures the mis-
fit between the forecast variable and the observation.

¢(l1) < ¢(l), forly <Ip, (6)
In VDA, the CF gradient with respect to the control vari-
g@), ) =g, forO<I <L, able plays a key role, which provides the descent direction
for the optimization algorithm during the minimization pro-
gt 1) < ge, for0<I<L,0<t<g¢(), 7) cess. But whether discontinuous “on-off” switches impact
the existence of the CF gradient has been investigated only
gt,1) > qe, forO<i<L,¢p() <t <T. (8)  in the case of single grid point model characterized by an

ordinary differential equation (Xu, 1996, 1997; Zou, 1997,

Besides, according to the existence and the uniqueness thMu and Wang, 2003). In the case of partial differential

orem of the initial problem to the ordinary differential equa- €duations, the numerical experiments performed by Mu and
tion, the characteristick=/(r, 0) superposes with the char- Zheng (2005) show that traditional numerical treatment at
acteristics/=lo(r, 0). Obviously, 2=1 U Q2 and € N the SW|tch_es vyou_ld result in terrible (?F zigzags (see F|g. 1
Qo= {(t, 1) |I=I(z, 0) =lo(z, 0)}. there), which indicates that the gradients of the associated
giscrete CF with respect to some IC do not exist. Therefore,
zigzag phenomenon in the numerical solution of the nonlin_the existence of the CF gradient deserves to be investigated

ear forward model, which is shown in Mu and Zheng (2005)'further in order. to prqvide a benchmark for the numerical

is not the inherent character of the parameterization “on-offrtreatment at switches in VDA.

processes. In the following, the Gaiteaux derivative (Bergur, 1977) is
The two kinds of the characteristics, as well as the switchemployed to demonstrate that the gradient of CF with respect

time curve of the solution to Eq. (1), are illustrated intuitively to IC go exists whenyg satisfiesgo(l) #q. for eachi€[0, L].

in the following Fig. 1. The related basic concepts and formulae are recalled first.

The simple analysis presented above indicates that th
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312 Q. Zheng and M. Mu: The effects of the model errors on VDA

3.1 The Gateaux derivative whenegh (0)>0.

From the definition of CF, we have
The Gateaux derivative)’(go, h) of J(go) in the directions

atqo is defined as J(qo(D)+eh))—J (qo())
1
- = [ 8q@t, (g, )—q°%t,1 d1d+—/ 8q(t,1))dld
im J(go +th) — J(qo) — D'(qo.h) // qt, D(q@, D—q ¢, D)dldt > (8q(t, 1)) dldt
t—0 t Q Q
or equivalently =141 (12)
where

J(qo+ th) — J(q0) = tD'(qo, h) + o(1)

1
whereh=h(l), 0<I<L is a differentiable function and(z) = /_/ 3q(t. (g, 1) = ¢°°Xe, D)dldr + 5// (8q (e, ))*dld1
satisfies

im 2 —o oS . ’
lim —==0. 11 =// 8q(t, Dt 1) — g (t,l))dldt—f—E/ (8q(t, 1))%dldr.
Q Q2

3.2 The gradient of (go) atqo
For I, we take the variable transformation

According to nonlinear functional analysis theory (Bergur,
1977, 2.1.13 and 2.5.1; Deimling, 1985, Page 46),7, . {l =I(t,r),0<tr<T,0<r=<L ’
grad/ (qo), the gradient of functional (go) at go, exists and r=t
satisfies<grad/ (qo), h>=D'(qo, h) for eachh if Gateaux
derivative D’(go, k) is a bounded linear functional of.
Hence, in order to prove the existence of the gradient of CF,
itis sufficient to prove that there exists thé®aux derivative 71, P(t,r)=‘(gzl ;;)‘ exp(f 31 (r (s, r))ds is positive
D'(go, h) such thatD’(qo, k) is a bounded linear functional
of h.

Indeed, for an arbitrary real numberand any differen-
tiable functionh=h(l), 0</<L, when the perturbatiosr is 7, . Qs — ((r,r)|0<t<T, 0<r < L} — Q1,
added to the 1@y of Eq. (1), the perturbed solutiap (¢, 1)
has the same form as the reference soluign!) in Egs. (3) is a differentiable homeomorphism.
and (5), except thago(r) is replaced byyo(r)+eh(r) and Substituting Eqs (10a) or (10b) intd and using
T(r) is replaced by, (r)=4=400=ch") (1) —t(r)=—2 we obtain by the integral mean value

Therefore, along the characteristics of Eq. (1) issuing fromtheorem that
l axis:l=I(t,r), 0<r<L, 0<t<T, the differencéq (¢, I) be-

where [=I(t,r) is the characteristics of Eq. (1) issuing
from [ axis. Since the determlnant of Jacobi’'s matrix of

for eachr and eachr:0<r<T, OSrSL, therefore the trans-
formation

tween the perturbed and the reference solutions is I = th(r)[f (g — g, 1(t, 1) P(t,r)
13)
eh(r), 0<t<t(r) 1_ o 71(0)dtldr 4+ O(e? (
Sqt, 1, ) = [sh(r)+G(t —t(r), ) <1 <) (10a) _i _ AF);l[;( )jLT(])((z)) ldr + 0%
eh(r) + G(re(r) — t(r)), 7o (r) <t < T,
wheneh(r)<0 for a givenr:0<r<L and where
enn), 0=r=r) A(r) = f (@ = g% 1. )P, 1) (A= G xXper. 11 (D),

8q(t,1t,1) = | eh(r) + G(t = 7e(), 7o) <t < 7(r) (10D)
eh(r)+ G (r) —1(r), t(r) <t <T,
Xz, 71(®) is the characteristic function of the interval

wheneh(r)>0 for a givenr:0<r<L [z(r). T] which is defined as

Along the characteristics of Eq. (1) issuing franaxis:
I=lo(t, ), 0<¢ <t<T, the differencéq(z, 1) is 0 O<t<rt@)

Xr). 11 = {1 t(r)<t<T"

eh(0), 0<t<1(0),¢ =<t
8q(t.1 =1 &h(0) + G(t — 7(0)), 0 <(0), 11a . . .
q(t,lo(t,£)) zhéoﬁc&(og(—)z(on, ;F(S)S;Z?T(’;éft (112) and|<-, .> denotes the inner product determined by the inte-
gral.
wheneh (0)<0 and Similarly, for 11, we take the variable transform
eh(0), O0<t<7w(0,¢=<t _
Sq(t 1o, 0) = | eh@ + Gt — 7 0), w© =t<tO.c=r(11b) p,. ) L= 0. 0= =r=T
eh(0) + G(1(0) — 7:(0), t(0) <t < T,¢ <1, t=t ’
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wherel=lp(t, ¢) is the characteristics issuing from thaxis.
Since the determinant of Jacobi’'s matrixmf

by ¢}y =4c>4} ;)1 M=L/Al s the total number of space
meshesN=T/Ar the total time levels in integration.
The associated discrete CF is taken as following:

Z Z (DH2AIAL

where Di=qi —(g°P%i. 4i and(¢°P%): are the approxima-
tion of g (¢, ;) andg®S(z, I;), respectively.

In developing an adjoint model with moist physical pro-
cesses in real numerical weather prediction, the usual way
adopted is linearizing the original nonlinear scheme around
the basic state while keeping the “on-off” switches the same
as in the nonlinear model and then transposing the TLM. Us-
ing this method, the corresponding TLM of Eq. (15) and as-
sociated adjoint model can be written into the following vec-

a(l, 1)

SEO= ‘(a@,r)

(16)

t
0
)' — —a(¢, 0) exp( / a—‘l’(s,lo(s,;»ds (o) —
¢

does not vanish, the transformation
To:Q={t0010<¢<T, t<t}]—>Q

is also a differentiable homeomorphism.
Substituting Eq. (11) intd I and using the integral mean

value theorem, we get
11 = sCh(0) + O(£?) (14)

whereC is a constant determined by the following integral

tor forms:
TT
Sqr = My— 8qk— 1<k=<N, 17
C =[] (g - a9 lo(t, )10, O)ldrde 9% =Mi-1g0)dge-1  1=k= )
0 §<0) , with a given initial perturbation vector
T _ T
S [ [ (g =4 Do, )10, O)ldrde 8q0=(3q0(l0), 8qo(l1), - .., 8qo(lm-1)) " and
OT f;0> dgi—1=M! | (qo)dgr+AtDr—1  k=1,2,...,N,(18)
—S [ [(q =g lot,0)) 0, ¢)|drde satisfying dgy = 0, respectively.  Heredgx =
0 _
*O¢ g0, 8qL, ....8q" O, dgi=(dql. dg?, ..., dg"HT

Replacingl and /1 in Eq. (12) with Egs. (13) and (14), re-

and Dk=(D°, Di, ..., D,’C”‘l)T, 0<k<N. The superscript
spectively, we obtain,

T denotes transpose. Matrix o) is the tangent linear

Jgo)+eh(1)—J (qol)) = s(< A, h > +Ch(0)+O(2) ~ Propagatorgivenby

=D/ (h)+0(e?), 1 0 0 e 0 o0 0
(O ra,}l ra,% [0 0 0 0
where D'(h)=<A, h>+Ch(0). Obviously, D'(h) is @ M) =] 0 raf L1-raf--c--oooooomen 0 o 0
bounded linear functional oh, which indicates that the | "7 G o
0 0 [0 D 0ra) 1—ra

gradient of J at go, grad/ (gqo(l)), exists whergg satisfies

qo()#q. for eachle[0, L]. This analytical result will be
used as a benchmark for the sequent numerical analyses.

4 The problems caused by simple numerical treatment
at the switches

and its transposition &I(qo) is the adjoint opera-

tor, where r:% and a,i:a(tk,li). Replacing 8¢ in

N-1
8Ja=AtAl Y <Dy, Sqr> with
k=0

8qr = Mi-1(g0)Mx—2(qo) . . - M1(g0)Mo(g0)390
When Egs. (1) are discretized, the usual numerical treatwe get
ment of the parameterization “on” switches is: at each space N1

grid point, the corresponding SWItCh time level is assigned §J; =AtAl<Dy, §qo>+AtAl >
to the nearest time level when the threshold condition is ex- k=1

ceeded. So by using Euler upwind scheme, the discrete form
of Eq. (1), which is referred as NLM hereatfter, is as follows.

q"zqo(h-), i=0,1,.... M
qk_qk 1 TFAt k=1,2,...,n(0)

a=a;- 1+FAI GAr k=n(0)+1,n(0)+2, ..., N

ql\ qk 1~ A]“(’I\ 1 l)(qk 1 qk 1)+FAI i=1,2,...,M;k=1,2,...,n()

=1~ A]a(tl\ 1, l)(qk 1 qk 1)+FAT GAt;

i=1,2,..., M; k=n()+1,n(i)+2, ..., N (15)

where At is the time stepy=kAr; Al the spatial mesh;

l;=i Al; k the time level;i the space grid point;(i) is the
switch time level at theérh space grid point and determined

www.nonlin-processes-geophys.net/13/309/2006/

<Dy, Mg_1(g0)Mi—2(qo0) . . .

N-1
=AtAl<Dg, 8go>+AtAl Y
k=1

<M @oMT(q0) ... M]_,qoM]_, (qo) Dk, 890>

where <-, -> is the inner product inM-dimensional Eu-
clidean space. When the gradient of the discrete CF,
grad/;(go), exists, it holds that

N-1

ADo+ Y M (gM (qo) ...
k=1

M1(g0)Mo(q0)dqo>

grad/ s (qo) = M ,(goM[ 1 (g0) Di]

(19)
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0.00 0.00
-0.01 -0.01-
q(3a) -0.02 q(59) -0.02
-0.03 -0.03
0044 T -0.04 T
T T T T T T T T T 1 T T T T T T T T T
0 50 100 150 200 0 50 100 150 200

t t

Fig. 2. At the ninth space grid point, the time evolutions of the Fig. 3. Same as Fig. 2 except=0.0000001.
NLM perturbation solution (dash line) vs. the TLM solution (solid
line) with perturbation amplitude paramete£0.01.
tively. The other relevant parameters are takegas0.35,
ait, D=1+ 1A -1), F=8, G=7, Al=0.05, L=1.0 (i.e.,
Note that the right side of Eq. (19) is exactly the initial value M=20) andAt = 0.005 T=10 (i.e., N=200. The test
of the solution vector to the adjOint model (18), so we have results are shown in the f0||owing F|g3 2 and 3.

From the above two figures, it can be clearly seen that
grad/.a(qo) = dqo (20) no matter how small the perturbation amplitude parameter
But using Eq. (20) to provide the gradient information for is, the TLM solution is not a valid first-order approximation
VDA with “on-off” switches, there are two issues should for the nonlinear perturbation solution because the numer-
firstly be addressed, one is whether the solution of TLMical solution of Eq. (15) with 1Cg0(/)=0.15-0.157 satis-
(Eq. 17) is a valid first-order linear approximation to the fiesg;;,=¢.=0.35 for somei, 0<i<M. But for the ICs that
nonlinear perturbation solution to NLM (Eq. 15), the other the corresponding NLM solutions do not trigger the thresh-
is whether grady,(qo) exists when the discrete CF is con- old condition at any discrete time level, the numerical ex-
strained by Eq. (15), for that they are the preconditions forPeriment results show that the associated TLM solution has
the formula (20) holding. In the following, both of our @ quite high accuracy (as a first-order approximation of the
theoretic analyses and the results of the numerical experinonlinear perturbation solution), provided the initial pertur-
ments show that these preconditions are not guaranteed di@tion amplitude, which is characterized by the parameter
to the simple numerical treatment of the “on—off” switches in our numerical experiments, is not too large (exgless
in Eq. (15). More precisely, when the physical “on-off” pro- than 0.001).
cesses in NLM are discretized by using the traditional ap-
proach, and there exists a space grid poifi <M, such
thatqj,(i)zqc for a given initial conditionyg, then the solution
of the TLM (Eq. 17) is not a valid first-order approximation
for the nonlinear perturbation solution of Eq. (15), and the
gradient of the discrete CF with respectgpdoes not also
exist.

(b) The existence on the discrete CF gradient

In Sect. 3 of this study, we have proven that in the analytic
case, the gradient of the associated CF with respect to an
IC exists provided that the IC does not trigger the thresh-
old condition. However, using Eqg. (15) as the constraining
equation, the gradients of the associated discrete CF with
respect to some ICs would not exist even if the ICs do not
trigger the threshold condition. More precisely, for a given

In the following, we test the linear approximation accuracy !C 40=(4g; 4 - - - g~ if the corresponding numerical
by comparing, at a fixed space grid point, the time evolutionssolution to Eq. (15) SﬂtleIG@ (ipy=dc at some space grid
of both the NLM perturbation solutiop’ and the TLM so-  pointig, 0<ig<M —1, then the associated CF gradient would
lutions 84 that start from the same initial perturbation field not exist, which will be proven through the perturbation anal-
8qo(l)=a(0.15—0.152), wherew is a perturbation ampli- ysis method as follows.

tude parameter. The NLM perturbation solutighis con- Superposing a perturbation ¢E(ip) =
structed by taking the difference between the reference soe(0,...0,1,0,...,07 onto go, where E(ig) is a M-
lution and the perturbed solution to Eq. (15) with the ini- dimensional vector with all components vanishing except
tial conditionsgo(/)=0.15—0.15/2 andgo(l)+3840(l), respec-  the (ip+1)th one, which is unit, and is an arbitrary small

(a) The accuracy of the TLM
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real number. We denot@’,;(e); i,0<i<M; k,0<k<N the

corresponding perturbed solution of Eq. (15). Next, it will
be proven that the partlal derivative of the CF with respect toq and o (n(io), io,

the (ip+1)th componen@ of the IC¢gg does not exist.

315

In fact, smceq Z qdw(n(lo) J,io) + n(ig) FAt

n(io) —

ig) > 0, then we arrive at]n(lo) (&) =

The following expression can firstly be recursively derived Z qoa)(n(lo) J,io) + n(ig) FAt 4+ ew(n(ip), io, i0) < qc,

from Eq. (15):

i .
= qyw(k, j.i) + kFAt — C(k, )G A,
j=0
0<i=<M,

1<k<N (21)

where w(k, j,i)>0 (0<j<i) only depend on a(t,,l)

(O<s<i, 0O<r<k-1) and sausfyZa)(k,],z) = 1
j=0

C(k,i) = 0 is determined by&ia(t,l) (0 < s < i,
0 < r < k-1) and satisfy 1< C(k,i) < k—n(i) as
n(i) <k < N,C(k,i) = Owhen0< k < n(i). Fur-
thermoreC(k,i) < C(n(i) + 1,i).

If we let w(0, j,i)=0 as G<j<i andw(0, i,i)=1, then
Eq. (21) holds for all &i<M and O<k<N. In particular,

i .
Thiy-1= Y _ ay@ (@)=L, j, )+[n(i)—1FAt<q,

(22)
j=0
iy = D ag@ (), j. i) + n() FAL > g. (23)

j=0

Substitutingge with go+¢ E (ip) in EqQ. (22) yields

Zqéa)(n(i)—l, J, D+nG) — LFAt+ew(n(io)—1, io, i) H (i—io)<qc
j=0

provided that |¢] is small enough, which indicates
ne(i)—1>n(i)—1, i.e., n.(i)>n(i) for eachi, 0<i<M ac-
cording to the definition of switch time level.

But when replacingzo by go+¢E(io) in Eq. (23), we
would get different results depending on the sign eof
More precisely, ife>0, it follows from w(k, j,i)>0 for
0<j<i<M andk, 0<k<N that

> ggo ). j, i) +n@)FAL + sw(nio). io. i) H (i—i0)>qe
=0

This inequality impliesn.(i)<n(i), which together with
ne(i)>n(i) indicatesn.(i)=n(i) for eachi, 0<i<M. With
this relationship,g! (¢) has the same expression gs in
Eq. (21) excepyy is replaced byjo+cE(io). Hence in the
case ofe>0, we have:

qi(e) — g = sw(k, io, i) H (i — io) (24)
for all i andk with 0<i<M and 1<k<N.

Whene <0, the following inequality holds,
ne(io) > n(ip) (25)

www.nonlin-processes-geophys.net/13/309/2006/

j=0
which demonstrates that Eq. (25) is true.
Furthermore, when, (i)>n(i), itis

ne(i) =n@i)+1 (26)

provided|e| is small enough. If itis not, i.en.(i)>n(i)+1,
then the following two inequalities hold simultaneously ac-
cording to Eq. (21):

) i
G = Zoqgw(n(i)H, 7, D+ +LUFA—C(n(i)+1, ) GAt>qe,
J=

By () = lz Qo m@)+1, j, D+ew®@)+1, io, ) +n)+1FAr
i=o

= qhipte@ )+, io, H+C(n(i)+1, )G At <qe,

they contradict each other whés| is small enough due to
C(n@i)+1,i)GAt>0.
Thus, we have

ne(ig) = n(ig) +1

Using Egs. (26) and (21) as well as (15), it can be recursively

derived in the case af<0 that

qi(e) — qi = Bk, i))GAt + ew(k, ig, i)H (i — io),

O<i=<M, O<k=<N (27)
where B(0,i/)=0 for O<i<M and when k>1,
O0<B(k,i)<C(k,i) and B(k,i)only depend on
%a(tr,ls) for O<s<i and O<r<k-—1. Moreover,

1<Bn(i)+1,i)<C(n(i)+1,i) holds

Especially, one has

as ng(i)#n().

400118V —4.% ) s1=ew (n(io)+1. o, o) +C (n(i0)+1. i) G At

B(n(io) +1,i0) = C(n(io) + 1,i0) = 1

Next, we can demonstrate that the partial derlvaﬁ#é"i
‘Io
does not exist.

When >0, by substituting
Ja(qo—eE(i0))—Ja(qo), we get

Ja(qo — €E(ig)) — Ja(qo0)

Eq. (24) into

N-1M-1
=0 +e Y > ok io. i) (g — ¢t 1) AL AL
k=0 i=ig
therefore
im Ja(go + eE) — Ja(qo)
e—>0+ &
—1M-1 ‘
=D > ok o, gy — q* N I)AIAL - (28)
k=0 i=ip
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Fig. 4. Plots of¢ (8) (right panel) andp (—B) (left panel), which show the testing results of the one-sided gradient.

But when <0, substituting Eq. (27) into taken as Eq. (16) with a free error observati(q?bs)j{,

Ji(go—€E (in))—J4(qo) yields 0<i<M;0<k<N, that is, the observation is generated
J EG 7 through integrating forward Eqg. (15) from a given initial data
a(qo — £E(i0)) — Ja(q0) qSP(1)=0.25+0.05 cogrl), the ICqo and other relevant pa-

— O(?) + eAIAl {Nlele(k io, Dlgl — e 1) + B(k i)GM} rameters used in the experiments are the same as the ones in
Fig. 2. Typically, the accuracy of the gradient computed by

k=0 i=ig
1 M=1N-1 2 Moin-1 — adjoint integration can be checked by the following formula
[ 2 D BhIGATE+ ) Y Bk NGAN(Gi—g Wz‘))] ArAL (Navon et al., 1992, page 1437)

I|f thte value in the second brace does not vanish, then the |ef(§)(/3) [Ja(go + Bh) — Jd(qo)]/[ﬂ(grad/d(qo))Th] (31)
imi
Ja(qo + E(i0)) — Ja(qo) whereh=grad/,;(qo)/||grad/;(go0)||. When the gradient of
the cost function with respect to the lfg exists and can
be computed by using formula (20), equality (31) becomes
does not exist, and if this value vanishes, then we have (30) provided grady,(qo) in (31) are replaced byqo, and
Ja(qo + €E(ig)) — Ja(qo) when|B]| is small enough, one should haw€s)=1+0(B)
according to Taylor series expansion. However, the test result
shown in the right panel of Fig. 4 indicates that there is no
= AtAl Z Z w(k, io, i)lgq) — q°" (1, ;) + B(k,i)G At] such property for the 1Gg that the corresponding numerical
k=0 i=ig solution to Eq. (15) triggers the threshold condition exactly
(29) at some time levels. Our numerical result also demonstrate
) ) ) o that the adjoint integration cannot provide the one-sided gra-
Since B(k, )>0(0=i<M; 0<k=N), w(k, io,i)>0 and  gients of the cost function with respect to some ICs if the
B(n(io)+1, io)=1, comparing Eq. (28) with Eq. (29) derives gjiscontinuous “on-off” processes in the governing equation
lim 72@0+eEGo) = Julqo) . JalgoteEGo) — Julqo)  are improperly treated.
e—>0+ & &—>0— &

lim

e—>0— &

lim

e—>0— &

Y (c) The improvement of the accuracy of the tangent linear
For all cases, we have proved tl'?e{iﬂ does not exist. approximation

The nonexistence of the CF gradlent is also verified by the

numerical experiments testing one-sided gradient (Fig. 4), inl "€ accuracy of the TLM solution as the first-order ap-

which ¢ (—8) and¢(/3) are computed by proximation to the nonlinear perturbation can be improved
through a proper discretization of the discontinuous “on-off”
- rocesses in the forecast model. In the following, we use
PP =Valao =P ||d ||) Ja(qo)l/ (=Blidgoll), fhe intermediate interpolation treatment of “on-off”g']switches
and presented in Mu and Zheng (2005) to illustrate it.
All g, are the same as in Eq. (15) excqmi):OSigM,
#(B) = [Ja(qo + ﬁm) — Ja(qo)1/[Blldqolll, (30)  which are given by

. . . . A . .
respectively, wherg|-|| represents d, Euclidean norm, q,ll(i)=q,ll(i)_1*Z;a(l‘n(i)—l, 1)(gh)1—4hi 1)+ FAI—=G (At —Ao (i),
B>0 is a scalar andigp the initial value of the solu-
tion vector to the adjoint model (18), the discrete CF isi=1,..., M

Nonlin. Processes Geophys., 13, 3826 2006 www.nonlin-processes-geophys.net/13/309/2006/



Q. Zheng and M. Mu: The effects of the model errors on VDA 317

0.0014 —
1.20E-008 | 1
0.0012 1 i
| 1.00E-008 |
0.0010
| 8.00E-009 |
|
0.0008 q'(5q) |
q'(3a) 1 | 6.00E-009 |
0.0006
4.00E-009 -
0.0004 L U
1 lceee-mmmmmmmmmmmmmmmmmmmmm s 2.00E-009 I
0.0002
0.00E+000 ; . ; . ; . . . .
0.0000 . . . ; ; 0 50 100 150 200
0 50 100 150 200 t

t

Fig. 6. As in Fig. 3 except the NLM and the TLM are defined by
Fig. 5. As in Fig. 2 except the NLM and TLM are defined by for- formula (32) and (33), respectively.
mula (32) and (33) respectively.

0 0 i=12....M. (33)
qn(o) = qn(o)_l + FAt — G(At - AO'(O))
Now how good the solution of Eq. (33) approximates the
nonlinear perturbation obtained from Eq. (32) is examined in
the same way as that in a). The relevant parameters used in
the experiments are also the same as the ones used there. But
the NLM and TLM are defined by Egs. (32) and (33) rather
than Egs. (15) and (17), respectively. Figures 5 and 6 show
the test results. Comparing these results with those shown in

It should be pointed out thaho (i):0<i<M make the . . .
. . : . Figs. 2 and 3, we can see that as a first-order linear approx-
switch times in the discrete forward model match more.

: . : . imation to the nonlinear perturbation solution, the accuracy
closely the switch times in the analytic model (1), so the : o ;
. : : ; of the solution of TLM (Eq. 33) is significantly improved.
model errors caused by the switch times assigned in the for- . ! .
. . When the CF is constrained by Eqg. (32) and the associated
ward model (32) are smaller than the ones simply asagne% . : .
| . F gradient is computed through the adjoint formula (20),
in the discrete model (15). s . -
. o . . i.e., integrating backward the adjoint model of TLM (Eq. 33)
By linearizing the nonlinear forward model (32) in the nor- ) :
: to calculate the discrete CF gradient, the accuracy of the one-
mal way, we obtain the TLM as follows. X e : : )
sided CF gradient is also examined with various ICs and all
5(],? = 541971 k # n(0) test results are satisfied. Figure 7 shows the examined re-
sults of the two one-sided gradients for the IC used in Fig. 4,
g0 =8q% (1 E) which indicates that only when the discontinuous “on-off”
In© = %n©-1 F processes in the governing equation are properly discretized,
could the adjoint integration provide the one-sided gradients
for the CF defined by parameterization physics.

where

Ao (0) = (qc — q50)-1)/ F

Ao (i) = (e — qhey-D/IF — altaiy-1, 1) (@hey -1 — dh—1)/ Al
i=1....M (32)

. . At ; i .
561;{ = 51];(_1 - Ea(fk—b li)(&]/l(_l - 551;(_1), k #n(i)

, , At , ,
i _ i X . i _ i—1 . . 3
8dnii) = 8niy-1 = 5 4 In)=1: 1) O i)—1 = 8dyy—1) + G3AT () 5 The VDA numerical experiments

i=12....M In Sect. 4, theoretical analyses and numerical experiments
demonstrate following fact: if the “on-off” processes in
where the governing equation are discretized improperly, such as
. ‘S‘If.(i)—l the traditional time discretization at the switches used in
SAo (i) = — Eq. (15), then the validity of using the adjoint formula (20)

F — a1, 100} 41 — 1)/ Al

n (QC - q,i(,')_l)a(tn(i)—lv li)((SC],il(i)_l - (SQZE:)I._l)/Al
[F — altaty-1, 1) (@} )1 — dngy-1)/ AL

www.nonlin-processes-geophys.net/13/309/2006/

to compute the discrete CF gradient is not ensured in the
VDA. To better understand what effects this problem may
bring to VDA, 201 numerical experiments of VDA with
the first guesseso(/)=3(0.15-0.052)x (1+ cos5557)),
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Fig. 7. As in Fig. 4 except the CF is computed by Eq. (32) and the CF gradient is computed by the adjoint of the TLM (Eq. 33).

0.30 4

Table 1. The descent degrees of CF and CF gradient in the VDA —
0.28- five bad cases.

0.26

0.24 4

J Ori. CF Min. CF Ori. Proj-G Min. Proj-G

0.2+ 2 2.21%1074 1.871x1074 9.356x1072 4.233 102

4.(q%) 0204 10 231%10°4 2.266<10°%4 1.019x10°1 9.406¢1072
018 16 2495104 2351x107% 1.153«10°1 9534102
016 72 4681074 1.621x107* 1.696<10°1 1.602x1072
ora ] 166 1.60k1073 7.484x107* 4.202<10°1 3.078x1072
0.12 4
0.10 4
0.08 S A A Table 2. The descent degrees of CF and CF gradient in the VDA —
| five good cases.
Fig. 8. The optimization retrievals (solid lines) vs. the initial obser- ~ J Ori. CF Min. CF Ori. Proj-G  Min. Proj-G
vation (dash line), the thin line corresponds to the first guess with 5 5878 1074 5994106 1466<10-1 4.138<10~7
Jj=143 and the thick one tp=2. 114 931k10°% 6112106 29521071 1.246<10°7
132 1.6410°3 3.785¢<10°6 4.80%10°1 4.974<10°7
143 9.85410°% 5.603x10°® 2.549<10°1 4.682<10°7
. . . . —3 —6 —1 — 7
j=0, 1, ..., 200 are conducted in this section. In the experi- 17+ 1725107 6.162<107> 4.464<10" 6.452<10

ments, the optimization algorithm BFGS (version 2.0, 1989)

is adopted to search for the minimum of the CF. The CF is

taken as Eq. (16) and the CF gradient is computed by us- i

ing the formula (20), i.e., integrating backward the adjoint umn are same as the second and the third column but for the

models (18) to provide the CF gradient for the optimization MaXimum norm of CF gradient.
algorithm. The observation da([@obs);'( (0<i<M—1) is gen- The great contrast has been demonstrated between the Ta-

erated through integrating forward model (15) from a givenPleS 1 and 2. In Table 1, the minimum values of CFs and the
initial datangs(l)=0.25+0.05 cogrl), 0</<1. Other rele- Maximum norms of CF gradients after VDA drop scarcely

vant parameters in the experiments are the same as in Figs.'8 comparison with the original ones, and in the 201 VDA
and 3. experiments, such cases are about 7.46%. In Table 2, the

minimum values of CFs descent about by the 2 or 3 order
f magnitude and the maximum norms of CF gradients drop
about by the 6 order of magnitude, but such cases in 201
DA experiments take only about 51.24%. Therefore, it
should not be neglected that improper discretizations of the
‘physical “on-off” processes in the governing equation could
bring a considerable impact upon VDA when using the ad-
Jjoint method.

The following two tables demonstrate the descent degre
of both the cost functions and the CF gradient in the mini-
mization processes of VDA. The first presents five bad case
and the second demonstrates five good cases in the 201 VD
experiments. In both tables, the first column denote the val
ues of the parametersin the given 201 first guesses(l),
the second named Orig. CF is the value of CF before opti
mization and the third called Min. CF is the minimum value
of CF obtained through the VDA, the fourth and the last col-
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Fig. 9. The logarithm of the cost functions, lod{(¢o)), Vs. iter-
ation numbers in experiments shown in Fig. 8. The thin line with
j=143 and the thick withy=2.

Fig. 10. Same as Fig. 9, but for the logarithm of the maximum
norm of the gradient. Obviously, the poor optimization retrieval is
generated for the first guess.

Further, the optimization retrievals with the first guesses
corresponding tgi=2 and j=143 are shown in the Fig. 8.
Figures 9 and 10 respectively demonstrate the descendin
tendency of the logarithm of the cost function and the max-
imum norm of the gradient during the minimization process
of optimization retrievals shown in Fig. 8.

Obviously, for the first guesses correspondingjte?,
VDA fails to work well when using adjoint method.

provide a benchmark to check the model errors and the prob-
ms caused by them in the numerical computation. The con-
usion is that discontinuous “on-off” switches neither cause
the zigzag oscillations in the analytic solution of the govern-
ing equation nor lead the nonexistence of the CF gradient
with respect to the IC, provided the IC does not trigger the
threshold. But in the discrete case, our theoretical analyses

The VDA numerical experiments are also performed with gnd nu-menc.al eXPe”r.“e“t results Qemonstrate that the traq -
tional time discretization at the switches can cause nonexis-

optimization algorithm N1QNS (version 2.0, 1993), and the tence of the discrete CF gradient with respect to some ICs.

experiment results demonstrate that the problems caused . . : .
the improper discretization of the “on-off’ processes in thebé(emdes, the solution of the tangent linear model obtained by

governing equation still exist. the c_onvgntlonal appro_ach would not t_)e a gooq first-order ap
. L . ._proximation to the nonlinear perturbation solution of the gov-
Here we emphasize that the optimization retrievals in* " : . S .
L . S N erning equation, and the associated adjoint integration cannot
VDA with discontinuous physical “on-off” processes when . ) .
. e : rovide even the one-sided gradients for the CF at some ICs.
using the adjoint method could be improved as long as th - - .
N ; . . . Consequently, the validity of the adjoint approach in VDA
on-off” processes in the forward model are discretized PTOP~\ith parameterized physical processes could not be guaran
erly, which had been shown by the results of VDA exper- P phy P 9

) . . . : . . teed. The influences of the model error on VDA when using
iments with the intermediate interpolation treatment in the - : .
forward model in Mu and Zheng (2005), and readers are su the aq10|nt method are further examined by the numerical
g g
gested to refer that paper for details. e.x.perlments.. The results show that the VDA r'es.ults. are sen-
sitive to the first guess of the IC, and the minimization pro-
cesses in the optimization algorithm often fail to converge as
6 Conclusions and discussion well as the poor optimization retrievals would be generated.
The intermediate interpolation treatment of “on-off”
When a numerical model contains the discontinuities cause@witches presented in Mu and Zheng (2005) is employed to
by parameterized “on-off” switches and is integrated numer-demonstrate that all of the problems mentioned above are
ically on discretized time levels, an on switch (or off switch) merely caused by the simple discretization of the “on-off”
is traditionally assigned to the nearest time level after theswitches in the forward model, they can be avoided by proper
threshold condition is (or is not) exceeded. Using an ide-numerical treatment of the “on-off” switches.
alized model of a partial differential equation with discon- In a practical NWP model with discontinuous parameter-
tinuous “on-off” switches in the forcing term, this study in- ization physical, “on-off” switches reoccuring in the fore-
vestigates the impacts of the model errors generated by tradeast model can cause noises, and when noises come about,
tional time discretization of discontinuous physical “on-off” we cannot be sure that the noises are only due to the “on-
processes on the VDA. The analytic analyses are presented wff” switches reoccurring. The theoretical analysis and the
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numerical experiments in this study show that improperKuo, Y. H., Zou, X., and Guo, Y. R.: Variational assimilation of pre-

numerical treatment of “on-off” switches in the governing cipitable water using nonhydrostatic mesoscale adjoint model.

equation is also another reason of generating noises, and this Part I: Moisture retrievals and sensitivity experiments, Mon.

kind of noises can make the TLM solution obtained by the \Wea.Rev., 124,122-147,1996. = .

conventional method be a bad first-order approximation toLeDlmet, F. X. and Talagrand, O.: Variational algorithms for analy-

the NLM perturbation solution and the associated adjoint sis and assimilation of meteorological observations: Theoretical

. . - . i . aspects, Tellus, 38A, 97-110, 1986.

mteg;atlo;]] Ioge the abl|ltthO prOVIle tgg onehS|deq gradi Marecal, V. and Mahfouf, J.-F.: Variational retrieval of temperature

Er!ts or tbel F athsome l Shas WQ : kl]ncedt_ ? ”9'393 can and humidity profiles from TRMM precipitation data, Mon. Wea.
ring troubles in the VDA when using the adjoint integra-  Rey. 128, 3853-3866, 2000.

tion, hence they deserve to investigate deeply and should bgiy, M. and Wang, J. F.: An adjoint method for variational data
controlled. assimilation with physical “on-off” processes, J. Atmos. Sci., 60,
2010-2018, 2003.
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