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Abstract. The limits of a recently proposed universal scaling
law for the probability distributions of earthquake recurrence
times are explored. The scaling properties allow to improve
the statistics of occurrence of large earthquakes over small
areas by mixing rescaled recurrence times for different ar-
eas. In this way, the scaling law still holds for events with
M≥5.5 at scales of about 20 km, and forM≥7.5 at 600 km.
A Bayesian analysis supports the temporal clustering of seis-
micity against a description based on nearly-periodic events.
The results are valid for stationary seismicity as well as for
the nonstationary case, illustrated by the seismicity of South-
ern California after the Landers earthquake.

1 Introduction

The statistical properties of seismicity have received consid-
erable interest for many years, in particular the Omori law
for aftershocks, which quantifies the temporal decay of the
number of aftershocks after a mainshock, and the Gutenberg-
Richter law for the number of earthquakes of a given magni-
tude (Gutenberg and Richter, 1965; Reasenberg and Jones,
1989; Kagan, 1994; Utsu et al., 1995; Turcotte, 1997; Tur-
cotte and Malamud, 2002; Utsu, 2002), see also Knopoff
(1997). However, less attention has been paid to the statistics
of the time between consecutive earthquakes, despite that the
potentiality of such quantity in the context of risk assessment
and forecasting is beyond any doubt.

The outcome of the relatively scarce number of studies on
the distribution of recurrence times, which is how we will re-
fer to the time between consecutive earthquakes, has been
miscellaneous. The standard practice consist on studying
separately mainshocks and aftershocks (and foreshocks), for
which it is necessary an algorithm to unambiguously classify
each event; however, such an algorithm does not exist. In
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consequence, many recurrence-time distributions for main-
shocks have been proposed: exponential (Poisson), lognor-
mal, Weibull, gamma, etc. (Knopoff and Gardner, 1974;
Ud́ıas and Rice, 1975, Smalley et al., 1987; Koyama et
al., 1995; Wang and Lee, 1995; Wang and Kuo, 1998),
see also the reference list by Sornette and Knopoff (1997)
and Ellsworth et al. (1999). Nevertheless, it is widely be-
lieved that large events tend to repeat periodically or nearly-
periodically in particular fault segments (Utsu, 1984; Stein,
1995; Kagan and Jackson, 1995; Sieh, 1996; Kagan 1997;
Stein 2002; Murray and Segall, 2002; Kerr, 2004). On the
other hand, for aftershock sequences following the Omori
law it seems clear that the recurrence-time distribution is a
power law, although there is some degree of confusion be-
tween the Omori exponent, that appears in the relation be-
tween the rate of seismic activity and the time since the main-
shock, and the exponent of the recurrence-time distribution.
It turns out that both exponents are different, although close
to one (Utsu et al., 1995; Utsu, 2002).

Fortunately, the picture has changed after the pioneering
work of Bak, Christensen, Danon, and Scanlon, where ele-
ments of scaling analysis have revealed fundamental to ex-
plore the structure of seismicity in space, time, and magni-
tude, and where an integrated perspective was taken, putting
all events on the same footing (no distinction between main-
shocks and aftershocks), therefore considering seismicity
as a unique process (Bak et al., 2002; Christensen et al.,
2002; Corral, 2003, 2004b). In their original paper, Bak
et al. (2002) divided Southern California into arbitrary areas
(with no relation with seismo-tectonic provinces) and per-
formed a mixture of distributions of recurrence times from
different zones to obtain their unified scaling law for earth-
quakes (that is, recurrence times coming from different ar-
eas were counted together in a single distribution). However,
Bak et al. did not study the important issue of the distribution
of recurrence times for a single zone.
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2 Scaling law for single-zone recurrence-time distribu-
tions

In this case, a different scaling law has been found if the rate
of seismic activity is stationary, or if the time sequence is
transformed into a stationary process (Corral, 2004a). Let us
consider an arbitrary spatial region, labeled by some coor-
dinatesxy; after intensive data analysis for several seismic
catalogs, we concluded that, in the stationary case, the prob-
ability density of the recurrence times there can be written
as

Dxy(τ ) = Rxyf (Rxyτ), (1)

whereτ denotes the time between consecutive earthquakes
above a certain minimum magnitudeMc in the regionxy un-
der consideration (withMc larger than the threshold of com-
pleteness of the data considered). The calculation of the re-
currence timesτ is straightforward, as each datai is obtained
as

τi = ti − ti−1, (2)

where ti is the time of occurrence of thei−th event,
i=1, 2, . . . N . Let us stress that, following Bak et al. (2002),
the catalogs were not declustered: all events in the selected
space-time-magnitude window were considered, indepen-
dently of the fact that they could be considered mainshocks,
aftershocks, or foreshocks.

The scaling factorRxy is the rate of seismic activity, which
counts the mean number of earthquakes in the region with
magnitudeM larger than (or equal to)Mc per unit time. As
it is well known,Rxy usually fulfills the Gutenberg-Richter
law (Gutenberg and Richter, 1965; Kagan, 1994; Turcotte,
1997),

Rxy = Axy(L)10−bMc , (3)

with the b-value close to 1, andAxy(L) the rate of events
with M≥0 in the region of sizeL centered atxy (as a re-
sult of an extrapolation of the law).Axy has a very complex
spatial dependence; a simple assumption is to consider that it
follows a fractal distribution (evenb seems to show a depen-
dence withxy and the size of the region, though much less
abrupt thanAxy). The fulfillment of the Gutenberg-Richter
relation for a given catalog is a strong support for its com-
pleteness. Notice that bothRxy andDxy(τ ) must depend (in
addition to the region coordinatesxy) onMc and on the size
of the region; however, these variables do not appear in the
notation just for simplicity, although obviously this depen-
dence is important.

As we have mentioned, this approach is valid in the simple
case of stationary seismicity, in whichRxy does not signif-
icantly change for a moving time window (more rigorously
we should talk about a stochastic process homogeneous in
time); this implies that a plot of the accumulated number of
earthquakes versus time is essentially a straight line. Note
that such stationarity does not prevent the existence of after-
shock sequences in the data, rather, the seismicity is com-
posed by many small sequences at different places that are

added together to give a stationary rate. As no sequence
predominates over the rest, we might refer to this regime as
background seismicity as well. Nevertheless, the procedure
can be generalized to the case of non-stationary seismicity,
just transforming the whole time sequence into a stationary
process, as we will see (Corral, 2004a).

It is convenient to remember that the probability density is
defined as usual as

Dxy(τ ) =
Prob[τ ≤ τ ′ < τ + dτ ]

dτ
, (4)

which allows an easy estimation ofDxy directly from data. In
principle, the size of the intervaldτ should tend to zero, but
in practice it is necessary a compromise to reach some sta-
tistical significance for each interval, as the number of data
is not infinite. Moreover, when there are multiple scales in-
volved in the process (in our case recurrence times from sec-
onds to years) it is much more convenient to consider a vari-
abledτ , with the appropriate size for each scale. An easy
prescription is to consider the different intervals (in seconds)
growing as[1, c), [c, c2), [c2, c3), etc., where the minimum
recurrence time is 1 second andc>1. This is somehow equiv-
alent to look at the recurrence times in logarithmic scale, and
for this reason sometimes this binning procedure is referred
to as logarithmic binning, although the length of a bin in-
creases geometrically with respect to the previous one and
depends linearly on the recurrence time.

As a consequence of Eq. (1), a plot of the dimension-
less probability densityDxy(τ )/Rxy versus the dimension-
less timeθ≡Rxyτ for different regions and values ofMc

makes all the different distributions collapse onto a single
curve, showing very clearly the shape of the scaling function
f . It is worth mentioning that this approach does not involve
the assumption of any model of seismic occurrence, we are
only characterizing the process. Sometimes it is mistakenly
assumed that the study of the distribution of recurrence times
implies an underlying renewal model, (where the recurrence
times are independent and identically distributed). On the
contrary, any kind of process may be characterized (but not
fully) by the probability density, which is in any case the
most fundamental quantity of the process (but, we insist, not
the only quantity defining the process).

The scaling law given by Eq. (1) is very remarkable, as it
reflects the self-similarity of the temporal structure of earth-
quake occurrence and therefore the fractal nature of seismic-
ity. Indeed, Eq. (1) states that there is a unique shape for the
probability density of the recurrence time, independently of
the tectonic properties of the region, its size, or the minimum
magnitude selected; the only difference is the scale of the
distribution: highMc or small areas have low ratesRxy and
therefore long recurrence times, which stretches the distribu-
tions, whereas for lowMc or large regions the distributions
are contracted. The rescaling of these distributions withRxy

makes all the corresponding curves collapse onto a single
one. But the data collapse holds even for distributions com-
ing from different catalogs, corresponding to regions with
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disparate tectonic properties, and in this sense we may state
that Eq. (1) constitutes a universal scaling law.

It is noticeable that when we consider the seismicity of
a given area and we raise the magnitude thresholdMc and
then rescale the recurrence time by a factorRxy , we are per-
forming a transformation analogous to those of the real-space
renormalization group (Corral, 2004c). (A similar thing oc-
curs when we change the size of the regionL.) There-
fore, the scaling functionf constitutes a fixed-point of a
renormalization-group transformation. A trivial solution to
this transformation is provided by the exponential distribu-
tion, which moreover seems to have a wide basin of attrac-
tion. In fact, Molchan (2005) has shown, imposing the in-
dependence of the seismicity between any two regions, that
the only possible scaling function is an exponential. Nev-
ertheless, our analysis of the data demands the existence of
other fixed-point attractors for the renormalization transfor-
mation, related with the presence of strong correlations be-
tween events.

In order to model the behavior of the scaling func-
tion f , and only to provide a simple approximation to it, we
parametrizef as a (truncated) generalized gamma distribu-
tion,

f (θ) =
C|δ|

a0(γ /δ)

(
θ

a

)γ−1

e−(θ/a)δ , for θ > θmin≥0, (5)

(where0(γ /δ) is the gamma function, see below). This
parametrization allows a very general shape for the scaling
function, controlled by its two shape parameters,γ and δ

(which have to have the same sign). For instance, forδ=1 we
obtain the gamma distribution (which tends to a Gaussian for
γ→∞); for γ=1, the stretched exponential (or “contracted”
if δ>1, which yields the semi-Gaussian ifδ=2); γ=δ gives
the Weibull distribution (forγ=δ=2 it is the Rayleigh dis-
tribution); γ=3 and δ=2 yields the Maxwell distribution;
γ=−1/2 andδ=−1, the random-walk first-return-time dis-
tribution, etc. Whenγ /δ→∞ the distribution tends to a log-
normal, and of course,γ=δ=1 leads to the usual exponential
distribution, characteristic of the well-known Poisson pro-
cess. In general, if both parameters are positive we have a
power law for short times and a stretched (or “contracted”)
exponential decay for long times, whereas if they are nega-
tive, the power law turns out to govern long times. The con-
stantC is a correction to normalization due to the fact that the
model is not supposed to hold forθ→0, but only forθ>θmin,
whereas the parametera is a scale parameter (but dimension-
less), and could be obtained by using that the mean value of
θ , θ̄ , is enforced by scaling to be 1; for example, ifθmin=0,

θ̄ = a
0

(
1+γ

δ

)
0

( γ
δ

) , (6)

for γ>0 andδ>0, or forγ<−1 andδ<0 (outside this range
of γ the mean is infinite). In fact, the fact of beingθ̄=1 is not
fully exact, asDxy(θ) (and alsoRxy) is always calculated for
all values ofθ , whereas the scaling function only fits the data
which verifyθ>θmin. This yieldsθ̄=1 for the whole data set

but θ̄>1 for the data for which the fit by the scaling function
holds.

There are two reasons that explain why Eq. (1) usually
does not hold for smallθ ; one is the incompleteness of the
catalogs in the short time scale (there is a loss of information
after a big earthquake, due to the saturation of the seismomet-
ric network), whereas the second reason is the breaking of
stationarity in the short time scale (it may be difficult to find
a fully stationary process, rather, small aftershock sequences
appear). But let us remark that with the consideration of
θmin > 0 we are not disregarding events withθ<θmin, rather,
we take into account all the events, but due to the change of
behavior of the distributions at aboutθ=0.05, we restrict the
fit of the relatively simple scaling function toθ>θmin.

Finally, note that the scaling functionf turns out to be the
probability density of the dimensionless timeθ , provided that
the scaling relation (1) holds. Be aware that, in order to keep
the notation at minimum, we will refer to two different things
with the same namef (θ); these are the probability density of
θ and the scaling function that fits it. If the fit were perfect,
there would be no distinction between both. We believe this
leads to no ambiguities in the text.

Using a least-square fit off (θ) to the rescaled probability
densities obtained from data from the NEIC worldwide earth-
quake catalog as well as from regional catalogs for Southern
California, Japan, Spain, and the British Islands, an estima-
tion of the parameters off was accomplished. We stress
again that all events in the region aboveMc were used, inde-
pendently of the hypothetical consideration of them as fore-
shocks, mainshocks, or aftershocks (Corral, 2004a). It turned
out to be thatδ was significantly close to 1, implying that the
gamma distribution is a good model forDxy . Moreover, as a
value ofγ about 0.7 was obtained, the distribution turned out
to be monotonously decreasing for allτ , slowly decreasing
for shortθ (power law) and more rapidly for longθ (expo-
nential factor). The corresponding coefficient of variation
wascv'1.2.

This type of behavior shows a tendency of earthquakes
to cluster in time, which was well known for aftershock se-
quences, but not for the stationary case, which is the subject
of our research. In fact, as our data is a mixture of many
small aftershock sequences, it is likely that the power-law
part of Dxy(τ ) is due to these sequences (although the ex-
ponent, 1−γ'0.3, is much smaller than the usual values for
aftershock sequences, which is around 1), whereas the ex-
ponential decay for long times is due to uncorrelated events.
Nevertheless, it is highly surprising to obtain such a regular-
ity in the superposition of the disparate sequences that con-
stitute what we see as stationary seismicity.

A paradoxical consequence of this temporal distribution is
that the hazard of earthquake occurrence decreases as time
since the last one increases, increasing sharply when a new
earthquake takes place, whereas the time one has to wait to
the next earthquake does not decrease as time evolves, but
just the contrary, it increases with time (Corral, 2005). Note
that this is trivial for individual aftershock sequences, where
the number of events decreases with time, but it is highly
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nontrivial for stationary seismicity. These properties are in
sharp contrast with the assumption that background seismic-
ity is a Poisson process.

The validity of the scaling law for the recurrence time dis-
tributions, with the universality of the clustering behavior
represented by the value ofγ was later extended to other cat-
alogs: New Zealand, New Madrid (Corral, 2005), and North-
ern California (Corral, 2004b). Overall, the law was found to
be valid from regions as small as 20 km in linear size, with
M≥2, to the whole globe, withMc from 5 to 7.5. It is the
main purpose of this paper to try to push further the limits of
the scaling law given by Eq. (1), for which we will combine
maximum-likelihood and Bayesian methods with the scaling
properties of the recurrence time distribution. Also, we will
test up to which degree the universal description is valid, or
it is necessary to introduce different descriptions depending
onMc, the size of the regionL or its coordinatesxy.

3 Procedure for the data analysis

The goodness-of-fit method described above turns out to be
very data consuming (a minimum of about 4 or 5 hundreds
events are necessary to plot a nice recurrence-time distri-
bution). In contrast, maximum-likelihood methods perform
better with less number of data, and are more appropriate
for seismic occurrence, where statistics of large earthquakes
over small areas is always very poor.

The likelihood function is simply the probability that a
given data set corresponds to a particular set of parameters of
a (a priori) given probability distribution, but with the vari-
ables reversed: instead of being a function of the random
variables (recurrence times in our case), the likelihood is con-
sidered to depend on the parameters (Mood et al., 1974). In
the case of continuous variables the probability is replaced
by the joint probability density, and therefore, we can write
for the likelihood function ofN recurrence times,

`xy(γ, a)=Dxy(τ1, τ2, · · · , τN |γ, a)=

N∏
i=1

Dxy(τi |γ, a), (7)

where we have made explicit the dependence of the density
on the parametersγ anda, whereasθmin is considered fixed.
In fact, this result would seem to be valid only if the recur-
rence timesτi are independent of each other (i.e. for a re-
newal process). Nevertheless, if the number of data is much
larger than the typical range of the correlations, the previ-
ous formula still holds, as we can be sure of having a com-
plete sampling of the values of the random variable (Cox and
Oakes, 1984). Caution must be exerted then when the num-
ber of data is low. (An easy test for this effect is just to com-
pute the likelihood for every, let us say, second or third data,
and to compare with the full data set.)

As a model of the recurrence time distribution, we will use
the truncated gamma distribution,

f (θ) =
1

a0(γ, θmin/a)

(
θ

a

)γ−1

e−θ/a, for θ > θmin, (8)

obtained from Eq. (5) withδ=1 and using the complement of
the incomplete gamma function (unnormalized) to determine
the value ofC,

0(γ, u) =

∫
∞

u

zγ−1e−zdz (9)

with 0(γ, 0)≡0(γ ), the usual (complete) gamma function.
In addition to a good description of the data, the gamma

distribution provides an easy parametrization to test the op-
posite concepts of clustering and nearly-periodicity; indeed,
γ<1 implies an excess of events separated by short times
(with respect to a Poisson process with the same mean), and
a consequent deficit for long times, whereas whenγ>1, the
situation is reversed: there is a deficit of events with short
recurrence times, and an excess in the long times.

The likelihood for the gamma distribution (8) turns out to
be (Gross and Clark, 1975), using the dimensionless recur-
rence times,θi .

`xy(γ, a) =

(
θG

a

)Nγ
e−Nθ̄/a

0N (γ, θmin/a)
(10)

disregarding factors independent on the variablesγ anda,
which are irrelevant, as we will see.̄θ andθG are the arith-
metic mean and the geometric mean, respectively (and they
would be independent onMc, L, andxy, if the scaling law
(1) were exact). To be concrete,

θ̄ =
1

N

N∑
i=1

θi, (11)

logθG =
1

N

N∑
i=1

logθi, (12)

constituting the only way in which the dataθi enter into the
likelihood (obviously, the base of the logarithm does not mat-
ter). With this machinery we would be able to estimate the
parametersγ anda, just by maximizing the likelihood func-
tion with the help of any numerical routine (Gross and Clark,
1975). Note also that there is no problem to calculate the in-
complete gamma function by using some numerical recipes
(Press et al., 1992).

A refinement that allows to use more information about
the data is to consider the time between the last earthquake
and the end of the record,τb=T −tN (the subscriptb comes
from backward,T is the time at which the record ends and
tN is the time of the last event in the catalog). Therefore, the
likelihood function in Eqs. (7) and (10) may be modified by
an extra factor

Sxy(τb|γ, a) =
0(γ, Rxyτb/a)

0(γ, θmin/a)
, (13)

where Sxy(τ ) is the survivor function, defined as
Sxy(τ )≡Prob[τ ′>τ ]=

∫
∞

τ
Dxy(τ

′)dτ ′. It may be im-
portant to stress thatτb may be a continuously changing
variable in some cases: if we want to evaluate the present
hazard in a given area, the corresponding catalog is not
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“closed”, and T is the present time, which obviously
increases linearly as time evolves (Davies et al., 1989).
Nevertheless, this is not our case, and when the number
of events is large the contribution of this factor can be
disregarded. This is what we will do, for simplicity.

The procedure just described, based on the likelihood
function, has a disadvantage: it does not allow to know how
accurate the estimated parameters are. Bayesian methods go
one step forward; the key point is to consider the unknown
parameters as “random variables”, or more precisely, uncer-
tain quantities, with their own probability distributions, and
to use some a priori information to propose the a priori dis-
tribution of the parameters,D0(γ, a) (Loredo, 1990). Then,
the Bayes theorem provides the distribution of the parame-
ters conditioned to the observational data,D(γ, a| data), in
the following way,

D(γ, a| data) =

CDxy(· · · τi · · · |γ, a)D0(γ, a) = C`xy(γ, a)D0(γ, a), (14)

where the probability density that the data take the observed
values conditioned to a particular value of the parameters is
given just by the likelihood, andC is simply a normalization
constant. If the a priori distribution is uniform (over the do-
main for which the likelihood is significantly different from
zero) we can identify the likelihood with the (unnormalized)
a posteriori distribution of the parameters.

In fact, we are mainly interested in the shape parameterγ ,
which determines the clustering properties of the time series;
the scale parametera is much less important, as it only sets
the scale of the dimensionless time [technically,a may be
considered as a nuisance or incidental parameter (Loredo,
1990)]. Therefore, we can integrate the joint distribution
D(γ, a| data) overa to get the (a posteriori) marginal prob-
ability density ofγ ,D(γ | data), i.e.,

D(γ | data) =

∫
∞

0
D(γ, a| data)da. (15)

This integration can be easily performed for the gamma
distribution if θmin=0, yielding

D(γ | data) = C
0(Nγ ± 1)

0N (γ )

(
θG

Nθ̄

)Nγ

=

C
0(Nγ ± 1)

0N (γ )
e− ln(Nθ̄/θG)Nγ , (16)

where the normalization constantC has been redefined, and
different a priori distributions have been used. The term−1
corresponds to a uniform a priori distribution fora whereas
the term+1 holds when what is uniform is the distribution
of the inverse ofa, 1/a. In the case of a uniform distribu-
tion for loga, which corresponds to a 1/a−distribution for
a, the±1 term has to be replaced by zero. This constitutes
the Jeffreys priori (Loredo, 1990; Jaynes, 2003), and proba-
bly it is the most reasonable a priori distribution for a scale
parameter, as it is invariant under inversion: ifa is a scale
parameter, 1/a is a scale parameter as well (in the same way
that time and frequency set each one a scale) and ifa has

a hyperbolic distribution (power law with exponent−1), so
does its inverse, 1/a. On the other hand, the a priori dis-
tribution of γ is always chosen as uniform (notice that if a
1/γ−priori were selected, this would favor smaller values of
γ and therefore the results might be slightly biased towards
the clustering case). To put it clear,

D0(γ, a) ∝
1

a
; (17)

nevertheless, the results do not depend strongly on the a pri-
ori distributions. In case that we cannot approximateθmin

to zero the integration overa can be done numerically, but
with care, to avoid overflows. A possible trick is to integrate
D(γ, a| data) divided by its maximum value.

In addition, the Bayesian approach allows the estimation
of the probability density of the recurrence time not by sim-
ply substitution of the single values of the parameters which
maximize the likelihood but by using all the information
about them coming from the a posteriori distribution. Indeed,
we can write

Dxy(τ | data)=

∫
∞

0

∫
∞

0
Dxy(τ |γ, a)D(γ, a| data) da dγ. (18)

Whenθmin=0 we get, using the 1/a−priori and rescaling the
distribution,

f (θ | data) ≡ Dxy(θ | data)/Rxy =

C′

θ

∫
∞

0
dγ

(θN
G θ)γ

(Nθ̄ + θ)(N+1)γ

0[(N + 1)γ ]

0N+1(γ )
. (19)

Nevertheless, if the peak ofD(γ, a| data) (or that of the like-
lihood) is sharp enough,Dxy(τ | data) is practically identical
to Dxy(τ |γ, a).

Finally, we can take advantage that for every region and
Mc−value the rescaled recurrence timesθ should follow the
same distribution, if the scaling law (1) holds. As in this pa-
per we are mainly interested on extending that scaling rela-
tion to small spatial regions, we may group different regions
of the same size and with the sameMc into a unique data set.
In other words, we just paste all the rescaled timesθ com-
ing from different regions of sizeL. The size of the region,
L, is measured in degrees, and refers to the span of the re-
gion both in latitude and longitude. Note that, as we consider
square regions in a naive projection in which both coordi-
nates are translated into a rectangular system, the real shape
of the regions is not squared and their areas are not equal.
Nevertheless, this has no importance at all in our results, due
to the fact that the size of the regionL does not enter into the
evaluation of the scaling factorsRxy . Our procedure would
be valid even for regions with disparate values ofL, due to
the existence of the scaling law (1).

With this mixing procedure, the likelihood function can be
written as

`(γ, a) =

∏
∀xy

`xy(γ, a), (20)

and it is trivial to show that Eqs. (10), (16), and (19) are still
perfectly valid. We will restrict this procedure to regionsxy
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Fig. 1. Probability density of the magnitude of worldwide earth-
quakes, using the USGS/NEIC PDE catalog, from 1973 to 2002 (in-
cluded). The size of the bins is fixed atdM=0.4. The straight line
in the log-linear plot corresponds to an exponential decay, charac-
teristic of the Gutenberg-Richter relation, with ab−value 0.99. The
deviations for the smaller values ofM are due to the incompleteness
of the catalog.
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Fig. 2. Accumulated number of worldwide earthquakes withM≥6
in the USGS/NEIC PDE catalog as a function of time. The linear
increase shows the stationarity of the process, with a mean rate of
0.35 earthquakes per day.

for which there are 10 or more recurrences in the period un-
der study, to reduce the error in the calculation of the mean
rate,Rxy .

The same can be done for the probability density of the
rescaled recurrence timeθ , which in any case should be given
by f (θ), provided that the scaling law (1) holds. This proce-
dure may be considered as an intermediate point between the
one described in the previous section (Corral, 2004a) and the
one of Bak et al. (2002). Summarizing, previously we were
studying the recurrence times in a single region, and then
comparing different regions after rescaling the distributions;
in contrast, Bak et al. performed a mixture of recurrence
times for different regions. Now we propose a mixture of
recurrence times after rescaling the times, however, as the
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Fig. 3. Probability densitiesf (θ) of the rescaled recurrence
time θ , mixing regions with different coordinatesxy but using
the same system sizesL and threshold magnitudesMc for each
distribution. DifferentL andMc are also analyzed to obtain the
different curves. The upper sets of curves correspond toMc=5,
whereas the rest of curves have been shifted, for clarity sake, a fac-
tor 10−3, 10−6, 10−9, and 10−12 for Mc=5.5, 6, 6.5, and 7.5, re-
spectively. The largest system size denoted byL=360◦ corresponds
to a 360◦×180◦ region which obviously covers the whole Earth.
The smallest system sizes areL=0.175◦ for Mc=5 and 5.5, and
L=0.703◦, 1.406◦, 5.625◦ for Mc=6, 6.5, 7.5 respectively. The re-
sults forMc=7.5 are provided by the catalog of Significant World-
wide Earthquakes from NOAA; the rest of the results come from
the USGS/NEIC PDE catalog. The continuous lines represent the
proposed gamma distribution, Eq. (8), with γ=0.78 anda=1.38,
obtained as the maximum ofD(γ, a| data) mixing all the regions
of any size and takingM≥6.

rescaled recurrence times should be identically distributed
for any region, this allows to improve the statistics for the
determination off (θ).

In the next sections we present the results of this approach
applied to several seismic catalogs, and extended to the case
of nonstationary seismicity.

4 Results for worldwide seismicity

We start our analysis with global seismicity, as it appears
as stationary for any time window. Two catalogs will be
used, the USGS/NEIC PDE (Preliminary Determinations of
Epicenters) and the catalog of Significant Worldwide Earth-
quakes from NOAA. Both are available athttp://wwwneic.cr.
usgs.gov/neis/epic/epicglobal.html.

For the USGS/NEIC PDE, we study the period 1973–
2002. A plot of the probability density of the earthquake
magnitude (defined in the same way as in Eq.4) shows an
exponential behavior for aboutM≥4.75, see Fig.1, imply-
ing that the Gutenberg-Richter relation is fulfilled above that
magnitude (an exponential probability density implies an ex-
ponential survivor function, which is the normalized num-
ber of earthquakes with magnitude equal or larger than a
given value). Therefore, the catalog may be considered as

http://wwwneic.cr.usgs.gov/neis/epic/epic_global.html
http://wwwneic.cr.usgs.gov/neis/epic/epic_global.html
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Fig. 4. A posteriori probability densities of the parameterγ , using
data for the USGS/NEIC PDE catalog withM≥6. The probability
that the process is not described byγ<1 is negligible.

reasonably complete for events with magnitude larger than 5.
Further, the linear behavior at Fig.2 shows clearly how earth-
quakes take place at an acceptable steady rate, in this case for
magnitudes larger than (or equal to) 6. The corresponding
mean rate is 3859 earthquakes in 30 years≈0.35 day−1 .

First of all, we may calculate the probability densities of
the dimensionless recurrence timeθ . Mixing the values ofθ
from regions with different coordinatesxy but with the same
L andMc we get the results displayed in Fig.3. The spatial
range of validity of the scaling law (1) turns out to be very
broad, from the whole globe to very smallL; for instance, for
M≥5 and 5.5, the smallerL is L=0.175◦ (about 20 km) and
for M≥6.5, L=1.406◦ (150 km) (see the figure caption for
details). With regard the values ofθ , the scaling law seems
to hold very well forθ>0.01, whereas the form of the scal-
ing function proposed in Eq. (8) is restricted toθ>0.05 for
highMc, for which the statistics is poorer. The deviations for
smallθ are due to the nonstationarity of the process for very
short times: small aftershock sequences have little effect in
the linear relation between the accumulated number of earth-
quakes and time, but they yield an excess of events separated
by short recurrence times. In this case, asL decreases, the
distributions tend to a decreasing power law with exponent
very close to 1.

The resulting a posteriori probability densities of the pa-
rameterγ are shown in Fig.4 for data withM≥6, and dif-
ferent values ofL. The parameterθmin has been set to 0.05.
From the plot, it is clear that it is very unlikely that the data
is generated by a gamma distribution withγ>1, as the ar-
eas below the curves are negligible forγ>1; therefore, we
may rule out a nearly-periodic behavior. In general, the most
probableγ is in between 0.75 and 0.82 for all system sizes
except for the two smallest ones (practically the same val-
ues are obtained from the mean value ofγ ). Nevertheless,
the most probableγ is not the only one possible, as its value
can be scattered from 0.65 to 0.9 for the sharpest distribu-
tions (for which there are more data). For smaller system
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Fig. 5. A posteriori probability densities of the parameterγ , using
data for the Significant Worldwide Earthquake catalog from NOAA
with M≥7.5. The probability that the process is not described by
γ<1 is negligible for largeL and very small for smallerL.

sizes the distributions become much broader, due to the de-
crease in the statistics. For instance, forL=1.406◦ there are
57 regions with 10 or more events to give a total number of
recurrences of 675; in contrast, forL=0.351◦ there are only
6 of such regions, yielding about 70 recurrence times.

The analysis of the catalog of Significant Worldwide
Earthquakes from NOAA leads to similar results. The period
of analysis is 1897–1994, for which events withM≥7.5 are
recorded at a stationary rate (in fact, there is a little change
of the rate at about 1920, but we have not taken it into ac-
count). There are 599 of such earthquakes in the period,
which corresponds to a rate of 6.1 per year. The fact that
the occurrence appears as stationary for a period of about
100 years supports the assumption that the catalog can be
considered as complete forM≥7.5 (if we accept that the last
years of the record are indeed complete). On the other hand,
the analysis of the magnitude probability density does not
provide clear answers, as the range of magnitudes for which
the Gutenberg-Richer law could hold is short; nevertheless
we will takeMc=7.5 as the threshold of completeness of the
catalog.

The rescaled recurrence time distributions (mixing dif-
ferent xy) for M≥7.5 are shown in Fig.3, bottom curve.
The system sizes range from the whole planet toL=5.625◦

(600 km). The flat part of the densities belowθ=0.3 could be
an indication of exponential behavior; however, our Bayesian
analysis clearly rejects that possibility for the cases where
more data are available (large regions,L≥45◦). Indeed, the
a posteriori distributions for the parameterγ for θmin=0.05
appear in Fig.5, where for largeL the worst situation cor-
responds toL=360◦, which yields a probability ofγ<1 of
about 98%. For the smallest system sizes less data are avail-
able: from 20 to 10 regions with a maximum number of
events from about 40 to about 10 (the minimum is kept not
below 10). In all these cases the probability of clustering is
always above 80%.
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Fig. 6. Accumulated number of earthquakes in Southern California
with M≥2 during the period 1984–2001, using the SCSN catalog.
The seismicity consists on stationary periods “punctuated” by sud-
den increases of the activity, provoked by large earthquakes. The
vertical line marks the occurrence of the Landers earthquake.

5 Results for regional seismicity: Southern California

As an illustration of the validity of the scaling law (1) for
regional catalogs, we analyze the Southern California Seis-
mic Network (SCSN) catalog, available athttp://www.data.
scec.org/catalogsearch/index.html/. We will concentrate on
the period 1984–2001, and on a spatial window of size 10◦,
located at(−123◦, −113◦)×(30◦, 40◦); further, from the ful-
fillment of the Gutenberg-Richter relation, the catalog can be
considered practically complete forM≥2, all this yields a to-
tal of 84 772 events. Figure6 shows the accumulated number
of earthquakes versus time, being apparent that the behav-
ior consists of linear increases alternated with more abrupt
changes. These sudden changes correspond to aftershock se-
quences generated by large earthquakes, and they seem to be
present at all scales, from very large bursts to much smaller
disturbances of the constant rate. The largest of these bursts
corresponds to the Landers earthquake, analyzed in detail in
the next section and marked by a vertical line in the figure.

The most important periods of stationarity in the whole
area of Southern California are, roughly, 1984–1985, 1988–
1991, 1994–1999, and 2001. Calculating the rescaled recur-
rence times for these periods, for regions of different coordi-
natesxy, and defining one single distribution for eachL and
Mc (that is, we mix data not only for differentxy but also for
different time periods, but not for differentL andMc), we get
the results of Fig.7 (upper set of curves), where the values of
L range fromL=10◦ (1100 km) toL=0.009◦ (10 km). Un-
fortunately, from the figure we see that the scaling law (1) is
not verified for largeθ .

At least we know the reason of this failure, which is that
stationarity does not hold when we decreaseL, at variance
with the worldwide case studied in the previous section. In-
deed, although the rate appears as stationary in the whole
region of sizeL=10◦, at smaller scales the fluctuations of
the rate become important and invalidate our approach. So,
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Fig. 7. Top curves: Probability densities of the rescaled recurrence
times from the SCSN catalog, mixing data for different stationary
time periods and different areas of the same size. In this case the
scaling law (1) does not hold, as the stationarity of the process is
not maintained at smaller length scales. Bottom curves: Probability
densities ofθ , shifted a factor 10−2, now for single regions with
stationary seismicity (no mixing). For eachL, the regions are la-
beled by the discrete coordinateskx , ky , which take values from
0 to 10◦/L−1, and increase with longitude and latitude, respec-
tively. For both sets of curves, the continuous lines represent the
same function as in Fig.3, with the same parameters.

the problem is that we are mixing regions that the majority of
them are nonstationary. It would be necessary to look at each
small region in detail to separate the stationary behavior from
the nonstationary. However, although stationary regions are
difficult to find, some of them appear in Fig.7 (bottom set).
In this case, the agreement with the scaling law (1) is total.

The a posteriori probability densities ofγ for the station-
ary regions, which are shown in Fig.8, support these conclu-
sions, as the maximum of the distributions range from 0.63
to 0.72, and the probability ofγ>1 is practically 0. So, we
conclude that the scaling law (1) works very well for station-
ary seismicity, and in the incoming section we will see how
to overcome the difficulty of a nonstationary seismic rate.

6 Results for nonstationary seismic rate: seismicity af-
ter the Landers earthquake

The Landers earthquake, with magnitudeM=7.3 at the
SCSN catalog, is the largest event in Southern California for
several decades. It took place on 28 June 1992 at 34.12◦ N,
116.26◦ W. We will analyze the seismicity in Southern Cal-
ifornia after the Landers earthquake, which shows the usual
behavior of seismicity after large shallow events: a sudden
enormous increase in the number of earthquakes and a con-
sequent slow decay with time. In our procedure, as in previ-
ous sections, we will not distinguish mainshocks from after-
shocks, on the contrary, we will look at the complete seismic-
ity in the region under study after the Landers “mainshock”.

http://www.data.scec.org/catalog_search/index.html/
http://www.data.scec.org/catalog_search/index.html/
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Fig. 8. A posteriori probability densities for the stationary periods
and single regions corresponding to the bottom curves in the previ-
ous figure (note that there is no mixing of regions). In this case the
agreement with the scaling law (1) is very good.
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Fig. 9. Seismic raterxy(t) after the Landers earthquake for differ-
ent regions of sizeL including that event, using the SCSN catalog.
Only events withM≥2 are considered. The straight lines corre-
spond to power-law decays, compatible with the modified Omori
formula. The values ofp andKxy (in sp−1) appear in the legend;
in all cases the exponentp is around 1.

Figure9 shows the temporal decay of the “instantaneous”
seismic rate,rxy(t), defined as the number of earthquakes
per unit time for relatively short time windows. Regions of
different sizeL are considered, all of them including the Lan-
ders earthquake; therefore, in this section we study a unique
region for each system size, and in this way no mixing of data
between regions of different coordinates is performed. When
the logarithm of the rate versus the logarithm of the elapsed
time since the mainshock1t is plotted, a straight line appears
for a certain period, corresponding to a power-law decay:

rxy(t) =
Kxy

1tp
, (21)

with 1t≡t−tLanders , tLanders'1992.49 years. This power
law is of course the essence of the modified Omori law (Utsu
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Fig. 10. (a)Accumulated number of earthquakes in Southern Cal-
ifornia during the power-law regime of the rate after the Landers
event, using the SCSN catalog withM≥2. Note that, in years, the
Landers earthquake took place attLanders'1992.49. The continu-
ous line is the integral of the power-law rate corresponding to the
modified Omori law, withp=0.91, Kxy=842 sp−1 (see previous
figure) and an integration constant=−32519. (b) Same data as in
previous case, but transforming thex−axis to obtain a stationary
process. The straight line is a linear relation with unity slope.

et al., 1995). Clearly, in this case the seismicity is not station-
ary; nevertheless, the approach explained in previous sec-
tions (Corral, 2004a) can be easily generalized. We only need
to rescale the recurrence time as

θ≡rxy(t)τ, (22)

with rxy(t) given by the previous power law, in order to ob-
tain the rescaled, dimensionless recurrence timeθ .

The accumulated number of earthquakes, which is just the
integral of rxy(t), is shown if Fig.10a, only for the time
period of power-law decay of the rate. The nonstationarity
of the process is apparent; in contrast, Fig.10b shows the
accumulated number of earthquakes versus the accumulated
rescaled recurrence time2, defined as2i=θ1+θ2+ · · · +θi .
The clear straight line shows how we have accomplished the
transformation of the process into a stationary one. The anal-
ysis of these data is now identical to the previous stationary
cases. Moreover, the fact the we consider only the period of
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Fig. 11. Probability densitiesf (θ) of the rescaled recurrence time
θ≡rxy(t)τ , for different areas in Southern California after the Lan-
ders earthquake, using several magnitude thresholdsMc. The data
comes from the SCSN catalog. The continuous curve is the same
function as in Figs.3 and7. The results are in agreement with a
secondary clustering structure inside the primary clustering.
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Fig. 12. A posteriori probability densities of the parameterγ for
the same rescaled data after the Landers event as in the previous
figure. The fact thatγ is clearly distributed below 1 is unveils the
secondary clustering structure inside the primary clustering.

power-law decay of the rate guarantees reasonably the com-
pleteness of the data; indeed, the deviations from the power
law at small time intervals1t are believed to be caused by
the incompleteness of the record short after the mainshock.

The probability densities of the rescaled recurrence times
appear in Fig.11 in surprising agreement with the results
for stationary seismicity. Therefore, note that this implies
the existence of a secondary clustering structure inside the
main sequence, due to the fact that any large aftershock may
generate its own aftershocks (Ogata, 1999; Helmstetter and
Sornette, 2002). What is remarkable is that this structure
seems to be identical to the one corresponding to stationary
seismicity (studied in the previous sections). The deviations
from the scaling law at short rescaled times are a manifesta-
tion of the same phenomenon but on a different scale: also

Historic seismicity in Tokyo area, 11 events in 1615-1923
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Fig. 13. A posteriori probability density of the parameterγ for
the historic seismicity around Tokyo (Utsu, 1984). The clustering
option is clearly the more likely (78% in front of 22% for nearly-
periodicity).

in this case there are relatively important sequences of after-
shocks, which our homogenization (performed by a simple
power-law decay of the rate) has not taken into account.

The a posteriori distribution of the parameterγ also sup-
ports this conclusion, see Fig.12. As a consequence of this,
the assumption about the validity of the modified Omori law
(in the limiting case of a power law) leads to the fact that
aftershock sequences cannot be described as a nonhomoge-
neous Poisson process, as in that case one should obtain an
exponential distribution forf (θ).

7 Results for historical earthquakes in the Tokyo area

In this last section of results, as a corollary, we work with a
different kind of data. We use the list of strong earthquakes
in the Tokyo area provided by Utsu (1984), consisting on 11
events, from 1615 to 1923. Our analysis differs from the one
by Utsu in that, following our approach, we will consider the
full data set. (Utsu considered that 3 events occurring within
about 2 years constituted a correlated sequence, represented
only by the largest event. Remember that from our point of
view the correlations between events extend beyond the usual
aftershock range.)

The a posteriori distribution forγ is shown in Fig.13,
where we have takenθmin=0. It is clear that the parame-
ter γ may take any value in a broad range, but the proba-
bility of γ<1, representing clustering, is significantly larger
than the probability ofγ>1, which would be the signature
of a nearly-periodic process (78% versus 22%). Of course,
it is obvious that the inclusion of two recurrence times much
smaller then the rest makesγ decrease, but it is remarkable
that it decreases (in the most likely situation) below the lim-
iting valueγ=1, while the uncertainty ofγ is not extremely
large. The maximum value of the probability density, which
would correspond with the maximum-likelihood estimation
of γ if the priori were uniform, isγ=0.68; for comparison,
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the mean value ofγ turns out to bēγ=0.79; this difference is
due to the asymmetry ofD(γ | data), in fact, we observe that
the shape ofD(γ | data) is much more asymmetric than the
shape obtained in the previous sections. In any case, the esti-
mated value ofγ is in surprising agreement with the previous
cases.

8 Conclusions

We have taken advantage of the scaling properties of the re-
currence time distribution to improve the statistics of occur-
rence of large earthquakes over small regions. In this way,
we have found evidence of clustering for earthquakes with
M≥7.5 in areas of size about 600 km, and for earthquakes
with M≥5.5 in areas of about 20 km. If we could improve
these results even further, they could be very relevant in the
debate of seismic-gap models versus clustering occurrence
(Kagan and Jackson, 1999).

It is remarkable that small earthquakes (let us sayM≥2),
in small areas lead to identical results than large events, if
the seismicity is stationary. The difference is, however, that
in the first case stationarity is much difficult to fulfill. Nev-
ertheless, we provide a procedure to analyze cases in which
the process is not stationary, if the seismic rate follows the
Omori law. When seismicity is transformed into a stationary
process we get the astonishing result that the properties of
seismicity turn out to be the same as in the stationary case.
Therefore, one may conclude that the behavior of seismicity
is fully determined by the seismic rate,rxy(t), which is the
only parameter of the process (Corral, 2004a).

This equivalence between big and small earthquakes, in
large or reduced areas, and for stationary seismicity or se-
quences decaying as the Omori law has induced us to use the
term universality. In fact, our plots of the a posteriori distri-
butions of the parameterγ (the most important parameter of
the distribution, measuring the degree of clustering or nearly-
periodicity) show a certain scattering in its more likely value,
as different values ofγ are more appropriate for each set of
values ofMc, L, andxy. Nevertheless, the a posteriori distri-
butions overlap in most of the cases, or are close to overlap,
and the distinction between different values ofγ in the fit
of the scaling function to the rescaled probability density is
negligible. Therefore, we consider very useful to have a uni-
fied description of the earthquake occurrence phenomenon in
terms of the universality concept, and, in order to reach some
progress in the understanding of this complex problem, we
take as a first step this unifying global picture, postponing the
details for future works, when the important implications of
these ideas have become clear. So, we have assumed the fol-
lowing philosophy: first consider the “physics of the 90%”,
and only when the fundamentals have been grasped, under-
take the study of the remaining 10%.

The scale-invariant properties of seismicity , exemplified
by the scaling relation (1), supports the view of the seismic
processes operating at a critical point (Bak, 1996; Jensen,
1998; Turcotte, 1999; Hergarten, 2002). Further research

in this line will clarify the relation between seismology and
statistical physics, phase transitions, and critical phenomena.
Indeed, the seminal research of Bak et al. (2002) has led, di-
rectly or indirectly, to a renewed interest in the statistics of
time between earthquakes, which we hope will shed light on
the complexity of this problem (Corral, 2003, 2004a, 2004b,
2004c, 2005; Mega et al., 2003; Baiesi and Paczuski, 2004;
Baiesi, 2004; Helmstetter and Sornette, 2004; Molchan,
2005; Molchan and Kronrod, 2004; Scafetta and West, 2004;
Davidsen and Goltz, 2004).
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