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Abstract. Time-periodic shear flows can give rise to Para- can then transport anomalous properties into the ambient
metric Instability (PI), as in the case of the Mathieu equa-fluid. This process has been frequently observed and studied
tion (Stoker, 1950; Nayfeh and Mook, 1995). This mech- in both laboratory experiments as well as oceanic observa-
anism results from a resonance between the oscillatory bations (Griffiths et al, 1982.
sic state and waves that are superimposed on it. Farrell and One of the most famous ocean currents that is known to
loannou (19964, b) explain that Pl occurs because the snagyenerate vortices due to instability is the Gulf Stream. Many
shots of the velocity profile are subject to transient growth.of the analytical studies of the Gulf Stream assume the cur-
If the flows were purely steady the transient growth would rent is steady and then apply a linear stability analysis to pre-
subside and not have any long lasting effect. However, thedict the growth rates of the instability and also the length
coupling between transient growth and the time variation ofscale of the emerging vortices (or rings). Even though this
the basic state create PI. Mathematically, transient growthanalysis neglected many aspects of the Gulf Stream the sim-
and therefore PI, are due to the nonorthogonal eigenspace ifle model manages to capture the essential physics which is
the linearized system. evident by the close comparison between the theory and the
Poulin et al. (2003) studied a time-periodic barotropic observationsKlierl, 1977).
shear flow that exhibited PI, and thereby produced mixing at There are numerous other examples in which models of
the interface between Potential Vorticity (PV) fronts. The in- currents, and shear flows in general, assume the basic state to
stability led to the formation of vortices that were stretched. pe steady. Even though these models can capture the leading
A later study of an oscillatory current in the Cape Cod Bay order behaviour they neglect the fact that there is inherent
illustrated that PI can occur in realistic shear flows (Poulintime variation in any physical system. Sometimes the sta-
and Flierl, 2005Y. These studies assumed that the basic statgjlity of the time-dependent system will be quite similar to
was periodic with a constant frequency and amplitude. In thisthe stability of the time-averaged system. However there are
work we study a shear flow similar to that found in Poulin et other situations where time dependence can give very differ-
al. (2003), but now where the magnitude of vorticity is a ent results. Some prime examples of this are recent stud-
stochastic variable. We determine that in the case of stochases of time-periodic baroclinic and barotropic shear flows in
tic shear flows the transient growth of perturbations of thepediosky and Thomsof2003 andPoulin et al.(2003, re-
snapshots of the basic state still generate PI. spectively. These articles clearly indicate that the time av-
erage of a state can have very different stability properties
than that of the time-dependent state itself. In particular, in
Poulin et al.(2003 an example was given of a shear flow
where not only was the time-averaged flow stable, but every
nap shot in time was also stable (we use the word stable
fo indicate that there was no exponential growth). Regard-
less, the time varying state gives rise to exponential growth
fhat is referred to as parametric instability (PI) or parametric
resonance (PR). The simplest example of Pl is in the Math-
Correspondence tdr. J. Poulin ieu equation where the natural frequency of the pendulum is
(fpoulin@uwaterloo.ca) a time-periodic functiontoker 1950 Nayfeh and Mook
1poulin, F. and Flierl, G.: A Barotropic Mode of the Cape Cod 1999. In the case of barotropic shear flows we call this pro-
Bay, in preparation, 2005. cess PR since the instability process can be interpreted as a

1 Introduction

Currents and shear flows are a very important means b
which fluids mix physical, biological or chemical properties.
Particular velocity profiles with a large enough Reynolds
number may become unstable and generate vortices whic
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resonance between the temporally periodic basic state and/e have assumed that the time dependency is simple enough
two Rossby waves which exist at the interface between rethat we can write it asn(1)A1 wheree is a small parameter,
gions of constant vorticity. Our model of the Cape Cod Bay A; is a constant matrix that may depend on the basic state and
in Poulin and Flierl (2005)demonstrated that parametric in- 7(r) determines the nature of the time variations. The two
stability can occur in time-periodic shear flows as often ariseextreme examples are whef&) is periodic or stochastic.
in coastal waters. Unfortunately, the sparsity of the obser- In the special case wher®y and A; commute, we can
vations prevents us from validating these predictions at thisnrite down the exact solution for any matrices as
time.

It is natural to ask whether this instability mechanism ¥ = ¢

is dependent upon the basic state being purely periodigyherex is the initial condition. If moreover we assume that
or whether this can also arise from a non-periodic time-, ) is periodic with zero mean then the stability of the above
dependent basic state. If it does require that the shear ﬂo"gystem is determined entirely By. This is because we can

is periodic the results are very limited since it is rare, if not gpp1y Floquet analysis to this solution, and this dictates that
impossible, to get a perfectly periodic oscillation. The main o only need to determine how the system has grown after
point of this article is to consider the other extreme of time- 53¢ period. Since we assume thdt) has zero mean, the
dependency, where the shear flow has stochastic variation, ; matrix makes no contribution. This scenario describes a
Can a stochastic shear flow with stable time-averaged meagoaq range of problems where the stability of the average
give rise to instability in the time-dependent system? Thisjs precisely the same as the stability of the time-dependent
question is much harder to answer since we can no longegiate. Even though this may occur this is by no means neces-
use Floquet analysis to analyse the growth rates of the baS|§ary as we shall soon see.

state due to the loss of periodicity. Moreover, stochastic dif- \\e can conclude that if(t) is periodic with zero mean,
ferential equations are notoriously difficult to to solve. By \ynich we can take without lose of generality by simply re-

using certain approximations we will illustrate how stochas- defining the two matrices, it is necessary that the two matri-
tic shear flows can give rise to an instability and we call this ;a5 do not commute in order to get PR.

phenomenon stochastic parametric resonance. We are un-
aware of any applications of this theory to shear flows which
is the novel aspect of the problem. 3 Stability of stochastic systems

Aot+eA1 fé n(s)dsxo )

Consider the non-autonomous system from the previous sec-
2 Generalised stability analysis tion wheren(z) still has zero mean but now where it is a
Gaussian stochastic variable. It has been statédiirell and

For the case of a steady shear flow (or in general a steadPannou(1996l that for Pl to occur it is necessary that the
basic state) one can perturb the basic state and linearise ¥W0 matrices do not commute. However, in this section we
we assume that the perturbations are small. This allows u¥/ill illustrate why this is not the case and that PI can occur
to write the governing equations as a linear system of differ-in Stochastic systems even if the matrices commute.

ential equations, in some cases a linear system of ordinary The argument thakarrell and loanno1996h put for-
differential equations (ODESs). The general form of this is Ward is that the noise term is smaller than time, in particular
written below where the perturbation vector is denoted by '

and the matriXAo contains information about the basic state. /o n(s)ds ~ /1.

dx = Aox A statement which relies on fact that the noise is white. Since
dt ) exponential growth needs to @(¢) they deduce that the
To determine the stability of a basic state we must computeStOChaStiC no_ise cannot_ c_ontribute_ exponer_ltial beha_lviour.

; . . S To determine the validity of their deduction consider the
the eigenvalues and eigenvectors of the maigx This will non-autonomous equation from the previous section with the

capture any g.rowth or decay that is € xponential. If we Wamadded properties that the noise is Gaussian, red, and has the
to determine if there is any algebraic growth, as can occur,

. . o following statistics
in transient growth, it is necessary to look at a non-normal 9

analysis. The largest singular values:6f correspondtothe (n(r)) =0 and (n(t)n(t — 1)) = ae 171/ 2)
largest transient growth, albeit only temporariBafrell and . . . . .
Iosnnou 19963. 9 y P hat where,. is the correlation time for the noise aadis the

; . .variance. We can recover the white noise limit by taking
Let us consider a more complex scenario where the basu% .0 while keepinawr. constant. The white noise limit is
state is nearly steady but has some slight time variation added eepingxz, ¢ ’ ; .
ontoit. If we assume that the perturbations are small we card mathematical idealisation that cannot be physically realis-

. e ! . able since all random physical situations will have a nonzero
obtain the following linearized system of equations S :
correlation time, no matter how small. Nevertheless, white

dx noise is a useful concept which is why we consider the limit

< = [Roten®Ax. (1) of vanishing correlation time.
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Multiplying the non-autonomous Edl)by the integrating  Van Kampen2001, Chapter 16 page 400 for further details).
factor e~ and definingg=e "% x, allows the governing Finally, the resulting equation is what is referred to as the

equation to be rewritten as Bourret Integral Equation
dq - d
— =en(e A1) g = en(t)M(1)gq . —(x) = {Ao+
dt dt
The solution to this equation can be written as 00
t € / (n(®)n(t — r)>A1eA°’A1e—A°fdr}<x> :
q(t) =qo+e / n("HM ") g (t"dt", 0
0 The effect of the noise is very small since the effect of the

where we have introduced the following notation stochasticity in the above equation is second order How-

A A ever, this still gives us a quantitative measure of the effect of
M(1) = e "' A", stochastic variation.

Considering the case whefg andA1 commute, the ex-

This solution is stochastic since it is defined in terms of thepression simplifies to

random functiom(¢). Solving this equation is difficult and -

may not be of general interest. While this gquatlon is difficult i<x) _ {Ao +62A§/ ()t — T))dt} (x)

to solve, solutions for the mean, the variance, and furtherdt 0

higher order statistics can be found by defining the ensemble _ [A n ezAzar'} (x)

mean over different solutions to the equations, denoted)by 0 1= ’

as already used in ER) where we have used the autocorrelation of coloured noise,
The solution forg is implicit since the solution appears Eq. (2), in the integral. The white noise limit is

under the integral sign. One way to obtain an approximate ;

solution is to iteratively substitute the equation into itself, —(x) = HAO + EZAEG} (x)

. . . dt
take the mean of the resulting equation to obtain the follow- . .
ing integral equation Observe that both white and coloured noise can affect the

solution since in general the second term in the parentheses

(q) = qo+ need not be zero. Therefore, everAi§ andA; commute,
PR the stability of a stochastic system need not be the same as
62/ / MEM &Y n"Hg@'")dt"dt’ . (3) the stability of its time averaged mean. We will consider a
0 Jo

special case in a subsequent section to illustrate this point.
An exact solution is generally not possible as it requires com-
pL_ltlng the expectatlon_ of a cubic quantity yvhlch in turr_1 CON- 4 siochastic harmonic oscillator
tains the sought solution. As an alternative, we decided to

approximate the equation based upon two physical asSUMberhaps the simplest model to test the Bourret approximation

tions. First, observe from the ODE governipghat the solu- s the simple harmonic oscillator. The extension we consider

tion varies on a time scale proportional teeJwhichislong s 4 modification of the Mathieu equation where the natural

sincee < <1, by assumption. In addition, we assume that thege o ,ency of the pendulum is not a periodic function of time

correlation time is short compared to this time scale so that  \+ instead a stochastic function of time. This problem can
also be found in/an Kampen(2001).

Te<< - The equation, in nondimensional form, is

As a resglt, the correlation function va}/rle.s on a short t|me_2 +(L+en)y=0. 4)
scale and is nearly zero whenevémnd:” differ by more dt
thant.. Since the solution varies on a time scale longer thanThee in front of the stochastic variablgz) indicates that the
this we can replace the appearanceg@f’) by (¢) in the  variation from the mean frequency is slight. This equation

expectation of the cubic can rather straightforwardly be written as a system of ODEs.
NN o Instead of doing so we will instead keep the equation in the
@ )n@E™)q@™)) = (ne)n"))(q) . above form since it is easier to interpret. By applying the

Bourret approximation we deduce that to first orderinthe
governing equation for the mean of the stochastic solution

(y)is

Next we differentiate (EgB) with respect to time to obtain,

d t
L= /0 MOME) (0" di"(q)

di d? 2620(1:5’ d

We can rewrite the integral equation with respect to the vari-ﬁm + 1+ 472 dt y)

able (x) and then approximate the integral to go to infinity. .

The error introduced is on the order of the approximation (1 € aT, ) (y) =0 (5)

we have already made (the interested reader is directed to 1+ 472
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Fig. 1. Comparison of the Bourret solution (solid line) with the Fig. 2. Comparison of the Bourret solution (solid line) with the
Monte Carlo solution (crosses) of 500 ensemble members for theMonte Carlo solution (crosses) of 2000 ensemble members for the
stochastic harmonic oscillator with=0.5 andz.=0.5. stochastic harmonic oscillator with=0.5 andr.=0.75.

Note that even though the influence of the stochastic
coloured noise is slight, the effect is two-fold. Firstit mod-  The result that the ensemble mean of the harmonic oscil-
ifies the natural frequency of the mean solution, where thdator with random frequency decays in time is true but must
frequency is necessarily reduced. The second impact is t&e carefully interpreted. This does not imply that typically
introduce a damping term into the equation. Even thougheach member of the ensemble decays since it does not, as is
the damping is slight, the decay time scale is on the order ofeadily observed from the fact that the governing equation
(1—|—47,'02)/(2620[‘L’5’)_ To take the white noise limit we write for the stochastic variable does not have a damping term.
a=a/t., and then take the limit ag.—0 (Van Kampen  Each solution is initialised with the same initial conditions
2007). In doing this the damping term tends to zero as doesbut they grow out of phase as time evolves due to the differ-
the modification to the frequency. This demonstrates thaing frequencies. Averaging over these out of phase solutions
white noise does not alter the behaviour of the mean. For thés what is responsible for the decay in the ensemble mean.
noise to alter the mean we must have a nonzero correlatioff his is why asymptotic stability in the ensemble mean does
time. As stated before, physical problems inherently have &not imply asymptotic stability in each stochastic realisation,
nonzero correlation time so the coloured noise is the case ogven in an averaged sense. However, if the ensemble mean
greater interest. However, the fact that we are restricted tds unstable that does necessarily imply that on average, each
short correlation times is limiting. To explore the case of or- member of the ensemble is unstable.
der one correlation times it is necessary to consider Monte
Carlo simulations.

The solution of Eq.¥§) yields approximately the same an- 5 Stochastic barotropic instability
swer as Monte Carlo solutions to E¢)(To obtain the latter
we simulate many solutions to the stochastic ODE Bjj. ( The next problem we study is a natural extension of the
using an Euler method and Gaussian random numbers dime-periodic barotropic shear flow discussed Roulin
the specified mean and variance. Then we ensemble aveet al. (2003. The model we are considering is the two-
age over all of these solutions to obtdi¥}. As the number dimensional vorticity equation (also equivalent to the quasi-
of members in the ensemble increases the error between o@eostrophic equation) for a homogeneous inviscid fluid with
two solutions must decrease. Figure 1 plots the two solutionsi flat bottom and a rigid lidedlosky 1987). The horizon-
for the special case of=0.5 andr.=0.5. We readily observe tal shear flow is divided into three strips of spatially uniform
that there is a close correspondence between the Bourret sworticity. The two strips at each end are semi-infinite and
lution, denoted by the solid line, and the Monte Carlo solu- have fixed vorticity but the center strip has a vorticity that
tion, denoted by the crosses. Observe also that the solutiopan vary in time. The velocity fields are chosen so that the
decays as is predicted by the theory. velocity is continuous at the interfaces. This problem is simi-

Figure 2 compares the Bourret solution with the Monte lar to those studied using contour dynamics and consequently
Carlo solution for the same choice of parameters exceptve need only determine how the two interfaces between the
where the correlation time is larget,=0.75, and hence the three regions evolve intime. The interested reader is directed
damping is stronger. There is also a greater discrepancy witto Poulin et al.(2003 for further details of the model.
the frequency, though this is more difficult to observe from If we denote the vorticity at the interface by the 2-vegtor
the figure. then the linearised equation for the perturbation vorticity can
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Fig. 3. Growth rate against wave number for the stochastic

barotropic shear flow with zero mean vorticity obtained from

Eq. ©).

be written as

d
L~ [Ag+enAlg.
where the two matrices are defined by
i -10
AO = EQO[ 0 1] s
_ i (k—1) —exp(—k)
Al—z““”[wn—m —@—1)}

The variables that appear are

k - wavenumber in the direction of flow

go - mean vorticity of the shear
en(t) - difference from the mean vorticity

€ - square root of the variance of the stochasticity
n(t) - stochastic variable

The Bourret approximation can be applied to obtain the
following governing equation for the mean of the stochastic
solution

d
dt

where the constant matri; arising from the fluctuations is
_ 2
Al = ( ) AT, 5

with
—2k
— (k= 1),

(q) =[Ao+A1](g).

€
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Fig. 4. Growth rate against time for wave numbe£0.8 for the
stochastic barotropic shear flow with zero mean vorticity obtained
from Monte Carlo simulation with 2000 members.
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- 2
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Since the above expression is linear in the correlation time
we observe that, unlike in the stochastic harmonic oscilla-
tor, both coloured and white noise alter the behaviour of a
barotropic shear flow.

The solution to the averaged equation can be readily ob-
tained and then compared with the result of a Monte Carlo
simulation of the original stochastic differential equation.
The solution to the Bourret integral equation is illustrated in
Fig. 3 for the special case gh=0; where the mean flow is
zero and the average at the flow is stable. Even though the
growth rates are very small we notice that there is a range
of wavenumbers in which the growth rates are nonzero and
hence the system is unstable. There is a high wavenumber
cut off, but no low wavenumber cut off. The most unstable
wavenumber is close tb=0.8 and corresponds to a growth
rate of approximately 2x10~4.

We have also computed a Monte Carlo simulation for
k=0.8 for a case of one thousand members in the ensemble.
The results are illustrated in Fig. 4. The growth rate for this
wavenumber is Ax 10~* which is comparable to the theory
predicted from the Bourret approximation. By comparing
this to another simulation with five hundred members we ap-
proximate the error to be smaller thax 20>, There is a
small difference between the two growth rates which arises
from the fact that the analytical solution we obtain is only
an approximate solution. In the limit as the variance of the
random variable approaches zero we expect this error to also
approach zero.
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