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Abstract. When a heterogeneous material is strained, its
evolution toward breaking is characterized by the nucleation
and the coalescence of micro-cracks before the final break-
up. Electromagnetic (EM) emission in a wide frequency
spectrum ranging from very low frequencies (VLF) to very
high frequencies (VHF) is produced by micro-cracks, which
can be considered as the so-called precursors of general frac-
ture. Herein we consider earthquakes (EQs) as large-scale
fracture phenomena. We study the capability of nonlinear
time series analysis to extract features from pre-seismic elec-
tromagnetic (EM) activity possibly indicating the nucleation
of the impending EQ. In particular, we want to quantify and
to visualize temporal changes of the complexity into con-
secutive time-windows of the time series. In this direction
the original continuous time EM data is projected to a lin-
guistic symbolic sequence and then we calculate the block
entropies of the optimal partition. This analysis reveals a
significant reduction of complexity of the underlying fracto-
electromagnetic mechanism as the catastrophic events is ap-
proaching. We verify this result in terms of correlation di-
mension analysis. We point out that these findings are com-
patible with results from an independent linear method which
uses a wavelet based approach for the estimation of fractal
spectral characteristics. Field and laboratory experiments as-
sociate the epoch of low complexity in the tail of the pre-
cursory emission with the nucleation phase of the impending
earthquake.

1 Introduction

One of the basic problems of human existence is the predic-
tion of future events. A vital problem in material science and
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in geophysics is the identification of precursors of macro-
scopic defects or shocks. In physics, the degree to which we
can predict a phenomenon is often measured by how well we
understand it. Despite the large amount of experimental data
and the considerable effort that has been undertaken by the
material scientists, many questions about the fracture remain
standing. Herein, by combining nonlinear and linear meth-
ods of analysis, we hope to uncover more information hid-
den in the pre-seismic EM time series, and thus, to achieve
a deeper understanding of the physics of the EQ nucleation
process.

When a heterogeneous material is strained, its evolution
toward breaking is characterized by the nucleation and the
coalescence of micro-cracks before the final break-up. EM
emission in a wide frequency spectrum ranging from very
low frequencies (VLF) to very high frequencies (VHF) is
produced by opening micro-cracks, which can be considered
as the so-called precursors of general fracture. These pre-
cursors are detectable both at a laboratory and a geological
scale. It is by now recognized that the pre-fracture VLF-VHF
EM time-series contain valuable information about the frac-
ture/EQ preparation process.

In this paper, we are studying in terms of nonlinear and
linear techniques, whether precursory signatures emerged in-
dicating the transition to the last phase of the EQ preparation
process. More precisely, first the temporal evolution of non-
linear characteristics is studied by applying a recently pro-
posed technique: the original continuous time EM data is
projected to a symbolic sequence and a block entropy anal-
ysis by lumping follows. This analysis suggests as main re-
sult that as the last phase of EQ preparation process (nucle-
ation phase) evolves there is a clear transition from higher
to lower complexity. We verify this result in terms of a dif-
ferent nonlinear technique, namely, “correlation dimension
analysis”. As it will be shown in the sequel, the results of the
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afore-mentioned two nonlinear methods are compatible. It
would be highly desirable to confirm the above-mentioned
conclusion based on an independent linear fractal spectral
analysis. By monitoring the temporal evolution of the frac-
tal spectral characteristics on pre-seismic EM time series we
show that significant alterations in associated scaling param-
eters emerge as global failure is approaching. These alter-
ations also reveal that the significant reduction of complex-
ity, in the tail of the pre-seismic EM activity, is accompanied
by the transition from anti-persistent to persistent behavior.
This convergence between nonlinear and linear analysis pro-
vides a more reliable detection concerning the emergence of
the last (nucleation) phase of the EQ preparation process. Di-
rect laboratory and field experimental data support the con-
clusions of the present analysis. The identification of such a
transition state is of special interest for the understanding of
mechanisms generating EQs.

The paper is organized as follows. In Sect. 2 we refer
to some prerequisites. Firstly, we present some generalities
concerning EM emissions prior to fracture from the labo-
ratory to the geophysical scale and continue with data col-
lection information. In the next section, we have to recall
some basic facts about symbolic sequences and block en-
tropy. Section 4 will be devoted to the application of the
afore-mentioned concept to pre-seismic EM recordings. The
general formulation of the Correlation DimensionD2 anal-
ysis is laid down in Sect. 5, as well as, its application to
the data under study. In Sect. 6 the linear method of frac-
tal spectral analysis is presented and applied for the case of
the Athens EQ. Finally in the last section we draw the main
conclusions and discuss potential improvements of the anal-
ysis.

2 Prerequisites

2.1 EM emissions from fracture

Crack propagation is the basic mechanism of material’s fail-
ure. The motion of a crack in dynamics fracture has been
shown to be governed by a dynamical instability causing os-
cillations in its velocity and structure on the fracture sur-
face. Experimental evidence indicates that the instability
mechanism is that of local branching (Sharon et al., 1995;
Sharon and Fineberg, 1996): a multi-crack state is formed
by repetitive, frustrated micro-fracturing events (Sharon and
Fineberg, 1999).

In many materials, emission of photons, electrons, ions
and neutral particles are observed during the formation of
new surface features in fracturing, deformation, wearing,
peeling, and so on. Collectively, we refer to these emissions
as fracto-emission (Langford et al., 1987; Dickinson et al.,
1988; Gonzales and Pantano, 1990; Miura and Nakayama,
2000; Bahat et al., 2002). It is worth mentioning that labo-
ratory experiments show that more intense fracto-emissions
are observed during the unstable crack growth (Gonzales and
Pantano, 1990). The rupture of inter-atomic (ionic) bonds

also leads to intense charge separation that is the origin of the
electric charge between the micro-crack faces. On the faces
of a newly created micro-crack the electric charges consti-
tute an electric dipole or a more complicated system. Due
to the crack strong wall vibration in the stage of the micro-
branching instability, it behaves as an efficient EM emitter.
These EM precursors are detectable both at a laboratory (Frid
et al., 1999; Rabinovitch et al., 2002, Mavromatou et al.,
2004; Eftaxias et al., 2004 and references therein) and ge-
ological scale (Hayakawa, 1999; Hayakawa and Molchanov,
2002; Gershenzon and Bambakidis, 2001; Contoyiannis et
al., 2005). Our main tool is the monitoring of the micro-
fractures, which possibly occur in the pre-focal area before
the final break-up, by recording their EM emissions. A mul-
tidisciplinary analysis in terms of fault modelling (Eftaxias
et al., 2001), laboratory experiments (Eftaxias et al., 2002),
scaling similarities of multiple fracturing of solid materials
(Kapiris et al., 2004a), fractal electrodynamics (Eftaxias et
al., 2004), criticality (Kapiris et al., 2004b, Contoyiannis et
al., 2005), and complexity (Kapiris et al., 2005a), seems to
validate the association of the detected pre-seismic EM emis-
sions with the fracturing process in the pre-focal area of the
impending EQ.

2.2 Data collection

Aiming at recording electromagnetic precursors, since 1994
a station was installed at a mountainous site of Zante island
(37.76◦ N–20.76◦ E) in western Greece. An important EQ
(Ms=5.9) occurred on 7 September 1999 at 11:56 GMT at a
distance of about 20 km from the center of the city of Athens,
the capital of Greece. Very clear EM anomalies have been
detected in the VLF band, i.e. by the six loop antennas de-
tecting the three components (East-West, North-South, and
vertical) of the variation of the magnetic field at 3 kHz and
10 kHz, before the Athens EQ (Eftaxias et al., 2001; Kapiris
et al., 2005b), before the Athens EQ. In Fig. 1 we present the
EM time series at 10 kHz from 4 July 1999 up to 12 Septem-
ber 1999. In Fig. 2, we show the same EM time series on 28
August 1999 and from 4–7 September 1999. The whole EM
precursors were emerged a few days prior to the event. They
are characterized by an accelerated emission rate, while, this
radiation is embedded in a long duration quiescence period.
These emissions have a rather unanticipated long duration, (a
few days) while the sampling rate was 1 sample/sec, and thus
they provide sufficient data for statistical analysis. The seis-
mogenic origin of this EM activity has been supported by a
series of previous papers (Eftaxias et al., 2001, 2004; Kapiris
et al., 2004a, 2005a, b; Contoyiannis et al., 2005).

3 Dynamical characteristics of pre-seismic EM activity
in terms of block entropies by lumping

A way to examine transient phenomena is to analyze the pre-
seismic EM time series into a sequence of distinct time win-
dows. The aim is to discover a clear difference of dynamical
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Fig. 1. Time-series of the 10 kHz (East-West) magnetic field
strength between 4 July 1999 and 11 September 1999 in arbitrary
units. The star indicates the time of the Athens earthquake occur-
rence.

characteristic as the catastrophic event is approaching. In this
section, we apply ideas from symbolic dynamics. In partic-
ular, block entropies by lumping analysis is applied. Within
each time window, the block entropy serves as a measure of
“complexity” of the signal: the lower the value of entropy,
the more “ordered” it is. Our results suggest that an impor-
tant principle, i.e. substantial complexity decrease prior to a
significant EQ, can be confirmed. In the following we will
shortly review the concepts of symbolic dynamics and block
entropy.

We note that Schwarz et al. (1993) have used the methods
of Symbolic Dynamics in a very similar way in the analysis
of solar spike events.

3.1 Symbolic dynamics

The discovery that simple deterministic systems can show a
vast richness of behaviors in response to variations of ini-
tial conditions and /or control parameters, has been at the
origin of an intense interdisciplinary research activity during
the last two decades (Khinchin, 1957; Nicolis, 1991, 1995).
One of the outcomes of this work has been the realization that
for an appropriate description of such complex systems, one
needs to resort to a probabilistic approach (Nicolis and Gas-
pard, 1994). Now, once one leaves the description in terms
of trajectories, a basic question that must be dealt with con-
cerns the amount of information one may have access to on
the evolution of the system in the course of time. One of
the approaches developed in this context is coarse-graining,
whereby a complex system is viewed as an information gen-
erator producing messages constituted of a discrete set of
symbols defined by partitioning the full continuous phase
space into a finite number of cells. We refer to such a de-
scription as “symbolic dynamics” (Nicolis et al., 1989; Nico-
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Fig. 2. View of segments of the time-series of the 10 kHz (East-
West) magnetic field strength depicted in Fig. 1. The vertical line
indicates the time of the Athens earthquake occurrence. We note the
emergence of two strong impulsive signals in the tail of the precur-
sory emission. These anomalies are embedded in a long duration
quiescence period concerning the detection of EM disturbances at
the VLF frequency band.

lis, 1991, 1995; Nicolis and Gaspard 1994). One of its merits
is to provide a link between dynamical systems, information
theory, and cognitive sciences (Nicolis, 1991; Ebeling and
Nicolis, 1992).

There exist some canonical ways for generating symbolic
dynamics out of a given dynamical system (Nicolis, 1991,
1995, 1988, 1989; Ebeling and Nicolis, 1992). Our objective
in the present work is to analyze preseismic EM emissions.
Block entropies are subsequently calculated, clearly reflect-
ing the subtle interlay of the transfer of information between
the “syntactic” and the “grammatical” levels (Nicolis, 1991).

To produce symbolic dynamics out of the evolution of a
given system, we set up a coarse-grained description incor-
porating from the very beginning the idea that a physically
accessible state corresponds to a finite region rather than to a
single point of phase space. LetCi (i=1,2, ... K) be the set
of cells in phase space constituted by these regions, assumed
to be connected and non-overlapping. As time goes on,
the phase space trajectory performs transitions between cells
thereby generating sequences ofK-symbols, which may be
regarded as the letters of an alphabet. We shall require that, in
the course of these transitions, each element of the partition
is mapped by the law of evolution on a union of elements.

We restrict ourselves to the simplest possible coarse grain-
ing of the preseismic signal. This is given by choosing a
thresholdC and assigning the symbols “1” and “0” to the sig-
nal, depending on whether it is above or below the threshold
(binary partition). In this way, each stationary time window
of the original EM time-series for a given threshold is trans-
formed into symbolic sequences, which contains “linguistic”
or “symbolic dynamics’” characteristics.
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3.2 The dynamical (Shannon-like) block entropy

Block entropies, depending on the word-frequency distribu-
tion, are of special interest, extending Shannon’s classical
definition of the entropy of a single state to the entropy of a
succession of states (Nicolis and Gaspard, 1994; Karamanos
and Nicolis, 1999). Each entropy takes a large (small) value
if there are many (few) kinds of patterns, therefore, it de-
creases while the organization of patterns is increasing. In
this way, the block entropy can measure the complexity of a
stationary signal.

In particular, we estimate the block entropies by lumping.
Lumping is the reading of the symbolic sequence by “taking
portions”, as opposed to gliding where one has essentially a
“moving frame”. In general, the basic novelty of the entropy
analysis by lumping is that, unlike the Fourier transform or
the conventional entropy by gliding, it gives results that can
be related to algorithmic aspects of the sequences.

3.3 Entropy analysis by lumping

It is useful to transform the initial raw data of the EM signal
into symbolic sequences taking values in the alphabet{0,1},
according to the rulesAi=1 if A(ti)>E[A(ti)] andAi=0, if
A(ti)<E[A(ti)], whereA(ti) are the values of the measured
field at timeti andE[A(ti)]=<A(ti)> is the mean value in
the particular stationary time windows, as it is nicely stated
in Schwarz et al. (1993).

Consider a subsequence of lengthN selected out of a very
long (theoretically infinite) symbolic sequence. We stipu-
late that this subsequence is to be read in terms of distinct
“blocks” of lengthn,

... A1...An︸ ︷︷ ︸
B1

An+1...A2n︸ ︷︷ ︸
B2

... Ajn+1...A(j+1)n︸ ︷︷ ︸
Bj+1

... (1)

We call this reading procedure “lumping”. We shall follow
lumping in the sequel.

The following quantities characterize the information con-
tent of the sequence (Khinchin, 1957; Ebeling and Nicolis,
1992):

1. The dynamical (Shannon-like) block-entropy for blocks
of lengthn

H(n)=−

∑
(A1,...,An)

p(n)(A1, ..., An) · ln p(n)(A1, ..., An) (2)

where the probability of occurrence of a blockA1...An,
denotedp(n)(A1, ..., An), is defined by the fraction
(when it exists) in the statistical limit as

No. of blocks, A1...An, encountered when lumping

total No. of blocks
(3)

starting from the beginning of the sequence, and the as-
sociate entropy per letter.

h(n)
=

H(n)

n
. (4)

2. The conditional entropy or entropy excess associated
with the addition of a symbol to the right of ann-block

h(n) = H(n + 1) − H(n). (5)

3. The entropy of the source (a topological invariant), de-
fined as the limit (if it exists)

h = lim
n→∞

h(n) = lim
n→∞

h(n) (6)

which is the discrete analog of metric or Kolmogorov
entropy.

We now turn to the selection problem that is to the
possibility of emergence of some preferred configurations
(blocks) out of the complete set of different possibilities. The
number of all possible symbolic sequences of lengthn (com-
plexions in the sense of Boltzmann) in aK-letter alphabet
is

NK = Kn. (7)

Yet not all of these configurations are necessarily realized by
the dynamics, nor are they equiprobable. A remarkable theo-
rem due to McMillan (Khinchin, 1957; Nicolis and Gaspard,
1994), gives a partial answer to the selection problem assert-
ing that for stationary and ergodic sources the probability of
occurrence of a block(A1, ..., An) is

pn(A1, ..., An) ∼ e−H(n) (8)

for almost all blocks(A1, ..., An). In order to determine the
abundance of long blocks one is thus led to examine the scal-
ing properties ofH(n) as a function ofn.

As we have already mentioned, the Fourier spectrum or
the standard convention of the entropy analysis by gliding,
do not help us to distinguish between symbolic sequences
with completely different levels of complexity and spectra
(Karamanos, 2001). Unlike the previous methods, the nov-
elty of the entropy analysis by lumping gives results, which
can be connected with algorithmic aspects of the sequences,
in particular with the property of the sequence to be gen-
erated by deterministic or stochastic automata (see Kara-
manos, 2001). Also, the entropy analysis by lumping of
some weakly chaotic systems, gives a rather characteristic
entropy spectrum, as explained in (Karamanos, 2001). This
shows that the entropy analysis by lumping is much more
sensitive in algorithmic and ergodic properties of (weakly)
chaotic systems than the classical conventional entropy anal-
ysis by gliding, or the correlation functions.

4 Results in terms of symbolic dynamics

4.1 Stationarity of the mean value

We recall that the block entropy can measure the complex-
ity of a stationary signal. Thus, starting from the raw data,
we first isolate stationary windows, if they exist, in different
distinct epochs of the pre-seismic EM-series.
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First, we search for locally stationary and long enough
time windows of the pre-seismic EM time series as the main
event is approaching. As the test of stationarity we have run
the following algorithm. Starting from the middle of the win-
dow, we consider some sub-windows around the center with
an increasing radius. We consider that a window is stationary
when the variation of the mean values of the sub-windows is
not very important(less than 5%). In Fig. 2 we isolate 25
windows which present a very good stationary behavior ac-
cording to the previous test. To be concrete, in Fig. 3 we
characteristically depict the aforementioned check for three
time windows.

We emphasize that large amounts of data ensure the con-
vergence to the statistical limit, and so, higher precision of
the results. Especially in non-linear methods, the amount of
data is a crucial issue. In our study the length of the ob-
servation windows is of 4000 samples. This ensures a good
statistical precision.

4.2 Optimal partition

It is well known that the real block entropy corresponds to
the optimal partition. The corresponding entropy-like quan-
tities for the other partitions are pseudo-block entropies. The
optimal partition is that which maximizes the block entropy
(Steuer, 2001).

For this purpose, the thresholdC is initially fixed to the
mean value of the data in the particular time window. The
stationary character of the EM segments under study justifies
this choice. For the corresponding symbolic sequence we es-
timate the associated “pseudo-block entropy”. The threshold
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Fig. 4. The choice of the optimal partition. First, the quantity
H(n)/n is computed, for various word lengths and for different
partitions. The partitioning is performed for different thresholdsCi ,
starting from the mean valueCo. Indexi, represents the % deviation
from the mean value. The block entropy corresponds to the optimal
partition, which is obtained by the maximization ofH(n)/n. Thus,
for the window W1(a) the maximization ofH(n)/n is done by
the partitionCo (that is, the mean value). It is concluded thatCo

corresponds to the optimal partition for the window W1. For the
window W19(b), it seems that the quantityH(n)/n is maximized
for C+20. However, the differences with the quantityH(n)/n for
Co andC+20 is very small, in particular in the regimen≤6 which
is interesting for us, see Sect. 4.4.

C is shifted around the mean value. In order to find the real
block entropy, which corresponds to the optimal partition,
we repeat the above procedure by changing the thresholdC

around the mean value.
Our analysis indicates that the optimal partition corre-

spond always to a threshold not far from the mean value of
the stationary segment. This is depicted in Fig. 4.

Within each stationary time window, the block entropy for
the optimal partition serves as a measure of “regularity” of
the signal: the lower the value of entropy, the more “or-
dered” it is. We recall that we follow this procedure in order
to show, in a firm mathematical basis, that the complexity
of the preseismic signal is significantly reduced as the main
catastrophic event is approaching.
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the tail of the precursory EM time-series (windows W17–W19 and
W21–W23). One can interpret the observed reduction of the block
entropy per letter, as a sign of complexity reduction of the signal’s
underlying fracto-electromagnetic mechanism.

4.3 The estimated block entropies by lumping

We then calculate the block entropies by lumping for the op-
timal partitions of these time windows. In Fig. 5 we depict
the block entropy by lumping per letter as a function of the
word length for the time windows that we present in Fig. 2.
We focus on the time-windows W1–W16 (Fig. 2), namely,
from 10 days up to approximately 2 days far from the EQ
origin time. The associated group of curves of the block en-
tropy per letter lies in the region of high block entropy values
(Fig. 5). The high block entropy values indicate an underly-
ing strong complexity. We note that a complete absence of
structure in the signal, would lead to an horizontal line in the
block entropy diagram. This is not the present case.

We finally concentrate on the red windows W17, W18,
W19 W21, W22, and W23 (Fig. 2). These windows cor-
respond to the two strong impulsive EM bursts in the tail of
the precursory emission. We stress that the last impulsive
EM emission stopped a few hours before the catastrophic
event. The estimated entropies drop to significantly lower
values during the emergence of the two strong EM bursts.
This behavior witnesses a significant reduction of complex-
ity of the underlying fracto-electromagnetic mechanism: the
reduction is of the order of 30% or more. This evidence may
indicate the appearance of a new phase in the tail of the EQ
preparation process, which is characterized by a high order
of organization.

4.4 The scaling of block entropies by lumping

First of all, notice the overall resemblance between Eq. (8)
and Einstein’s formulation of Boltzmann’s formula for the
probability of the fluctuation of a macrovariableA in an
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Fig. 6. The observed scaling of the Block EntropyH(n) (Eq. 2),
as a function of the word lengthn. The experimental values show
a linear best fit for small word lengths with a very good precision.
The slope of the line gives the Kolmogorov-Sinai entropy which in
1D coincides with the Lyapunov exponent. This scaling is consis-
tent with the corresponding theoretical predictions, see Nicolis and
Gaspard, (1994).

isolated systemP(A)∼e1S(A)/k, where1S is the entropy
change due to the fluctuation.

McMillan’s theorem (see Sect. 3.4) gives us a direct way
to speak about the scaling properties of the block entropies.
Indeed, the penalization of long words, so important for the
preparation of meaningful texts, depends directly on the scal-
ing of the block entropies.

One important conjecture, due essentially to Ebeling and
Nicolis (1992) states that the most general (asymptotic) scal-
ing of the block entropies takes the form

H(n) = e + nh + gnµ0(ln n)µ1 (9)

wheree, h andg are constants andµ0 andµ1 are constant
exponents.

We attempt to examine the behavior of Eq. (9) for each of
the 25 stationary windows under study, depicted in Fig. 2.

In Fig. 6 we present the typical variation of the block en-
tropy by lumping H(n) as a function of the word lengthn for
two representative windows W2 (green) and W19 (red). If
we are restricted to the first sixH(n)-values, a linear scaling
is observed with a great precision. We then perform a least
square method for this region and we estimate the slopeh.
Note, that the associated correlation coefficients (r) are close
to 1 with a precision better than 10−4. Working similarly for
the rest of the 25 time windows, we conclude that forn≤6
the same behavior is observed i.e. the equation for the scal-
ing of the block entropy by lumping, is transformed to the
simple linear relation

H(n) = e + nh (10)

This means thatg=0 for n≤6.
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the precursory EM time series.

We note that wheng=0 and h≥0, long words are pe-
nalized exponentially (Nicolis and Gaspard, 1994). We fo-
cus on the quantityh, namely the Kolmogorov-Sinai en-
tropy defined by the slope of Eq. (10). We notice that for a
one-dimensional process the Kolmogorov-Sinai entropy co-
incides with its Lyapunov exponent. The Lyapunov exponent
gives a measure of the chaoticity of the signal. For a two let-
ter alphabet, the Kolmogorov-Sinai entropyh takes values
from zero to ln 2 (see the discussion in Sect. 7), so that one
can normalize dividing by ln 2 and obtain a percentage.

We remark that in Fig. 6 there is a clear-cut distinction of
the values of the slopesh, that suggest a significant difference
in the corresponding processes that generate the sequences
W2 (green) and W19 (red) respectively.

In Table 1 we observe that all green blocks have a
rather substantial Kolmogorov-Sinai entropyh taking val-
ues around 80%. In the opposite, all red blocks take values
around 30% which are significantly lower (see also Fig. 7).
This means a high degree of organization for the underlying
fracto - electromagnetic emission during the last stage of the
precursory EM time-series, possibly related with the nucle-
ation phase of the earthquake (see Sect. 7).

Hence, it is important to note that the linear part of the
scaling helps us to the classification of the precursory signals.
The question which arises is whether this is an independent
algorithmic law of nature. This seems to be an open problem,
see the discussion in Sect. 7. However, our results strongly
support this hypothesis.

Remark: We restrict ourselves to the regionn≤6, because
the maximum statistical accuracy for the block entropies by
lumping is of the order of lnR, whereR is the total number
of points (the length of the window). In our caseR is of the
order of 4000, so thatn≤8 and due to the underestimation of

Table 1. The Kolmogorov-Sinai (KS) entropyh, the estimated error
δh and the corresponding percentageh/ ln 2 (see Fig. 7) in respect
to the maximum value of the KS entropy for the different stationary
time windows depicted in Fig. 2.

Window No. h δh h/ln2(%)

W1 0.546 0.005 78.8

W2 0.582 0.003 83.9

W3 0.611 0.004 88.1

W4 0.595 0.003 85.8

W5 0.555 0.004 80.1

W6 0.544 0.004 78.5

W7 0.521 0.009 75.2

W8 0.511 0.005 73.7

W9 0.471 0.005 67.9

W10 0.543 0.003 78.3

W11 0.536 0.004 77.3

W12 0.432 0.007 62.3

W13 0.490 0.005 70.7

W14 0.370 0.007 53.4

W15 0.464 0.006 66.9

W16 0.470 0.010 67.8

W17 0.123 0.006 17.7

W18 0.116 0.008 16.7

W19 0.086 0.003 12.4

W20 0.553 0.005 79.7

W21 0.210 0.006 30.3

W22 0.119 0.003 17.2

W23 0.168 0.006 24.2

W24 0.479 0.007 69.1

W25 0.556 0.009 80.2

the higher entropies we have enough statistical precision for
n≤6.

4.5 Estimated conditional entropies by lumping

In Fig. 8 we show the conditional entropies by lumping into
some characteristic green and red time windows. In particu-
lar for the green windows, which are relatively far from the
earthquake origin, the associated conditional entropies are
much higher than the corresponding conditional entropies in
the red windows, which are near the earthquake occurrence.
This behavior may serve as an independent indicator that
confirms a significant increase of organization of the under-
lying fracto-electromagnetic process during the emergence
of two strong impulsive signals in the tail of the precursory
EM phenomenon.
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Fig. 8. Conditional entropyH(n + 1)−H(n) as a function of the
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a significant loss of complexity in the red time windows that corre-
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(see Fig. 2).

5 Correlation dimension

The correlation dimensionD2 is commonly used to quantify
the chaotic structure of time series. The delay-times method
is an important tool in non-linear analysis and gives both a
qualitative and quantitative measure of the complexity of the
time series under examination. It was first established by
Grassberger and Procaccia (1983) and is based on the Tak-
ens Theorem (Takens, 1981). A time series is constructed
from a set of successive and experimentally derived values.
From the original time series we then construct a new se-
ries, which in this case is composed of delay vectors. For
the construction of each of the vectors the estimation of two
parameters, the embedding dimension,m, and the time-lag,
τ , is required. The time-lag represents the window that is
used for the computation of the coordinates of these vec-
tors. It is estimated from the decorrelation time, which is the
window beyond which the signal ceases to present periodici-
ties. The decorrelation time is calculated either from the first
zero-value of the autocorrelation function, or from the first
value of the mutual information function (Farmer and Swin-
ney, 1986) that is close to zero. The parameter m is assigned
increasing integer values, in a range that satisfies both the
Takens criterion (Takens, 1981) and the maximum admitted
window length, according to basic non-linear dynamics the-
ory.

Once the above is completed, the correlation integral (or
correlation sum),C(r) is computed for increasing values of
r. This integral basically computes how many of the delay
vectors have a distance between them less thanr, wherer

is a ray in the vector space. We are then able to plot ln(C)

vs. ln(r), where ln is the natural logarithm function. From
this plot we select a scaling region and compute the slope
of the curve in that region. This process is repeated for in-
creasing values of the embedding dimension, m, and if the
values of the slopes converge, then we have found the cor-

relation dimensionD2 of the time series. The convergence
value of the slope is an estimation of the correlation dimen-
sion. A time series that results from a complex non-linear
dynamic system yields a larger value for the correlation di-
mension, as opposed to a time series which results from a
regular and linear dynamic system, lower correlation dimen-
sion values. Generally, the correlation dimension represents
the independent degrees of freedom that are required for the
proper description of a system or for the construction of its
model. When the under estimation time series comes from a
stochastic or random process the correlation dimension can-
not be estimated as no convergence of the correlation integral
slopes can be yielded at all.

5.1 Correlation dimension estimations

We calculate the correlation dimension,D2, associated with
successive segments of 3000 samples each and study the dis-
tributions of correlation dimensionD2 in four consecutive
time intervals (Fig. 9). Notice that the third time interval
includes the two strong impulsive bursts in the tail of the
precursory emission. We concentrate on the fundamental
question whether distinguished alterations in associatedD2-
values emerge as Earth’s crust failure is approached.

We underline the almost common distributions of theD2-
values in the first, second and fourth time intervals (Fig. 9).
The associated predominanceD2-values, from 7 up to 10,
indicates a strong complexity. However, we observe a signif-
icant decrease of theD2-values as we move to the third time
window. The observed significant decrease of theD2-values
signals a strong loss of complexity in the underlying fracto-
electromagnetic mechanism during the launching of the two
strong EM bursts in the tail of the precursory emission.

We conclude that the analysis in terms of the correlation
dimension corroborates the appearance of a new phase in the
tail of the EQ preparation process, which is characterized by
a higher order of organization.

Remark: In a strict sense, well known problems in esti-
matingD2, as well as other measures from short and noisy
data segments, would exclude the use of these measure for a
characterization of earthquake preparation dynamics. How-
ever, one can use the “correlation dimensionD2” in an in-
formal sense as an operational measure of complexity of the
preseismic electromagnetic time series (Lehnertz and Elger,
1998). Absolute values ofD2 are not considered and pre-
sumably do not agree with trueD2 (if it exists). Indeed, only
differences with respect to time are assumed reliable and are
used to characterize the complex dynamics of the seismo-
genic electromagnetic activity. In this sense, the values of the
correlation dimension estimated here could have the meaning
of an “apparent correlation dimension”.

We note that, under the above-mentioned restrictions, au-
thors have attempted to evaluate the capability of nonlinear
analysis in terms of correlation dimensionD2 to extract sig-
natures from brain electrical activity predictive of epileptic
seizures or from Heat Rate Variability (HRV) data for dis-
tinguishing healthy subjects and Coronary Artery Disease
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Fig. 9. We first estimate the Correlation Dimension,D2, in consecutive segments of 3000 samples each. Then, we trace the distribution of
theseD2-values for four consecutive epochs. The four epochs are depicted in the upper part of the figure. The epochs 1 and 4 correspond to
a more or less EM quiescence that precedes and follows respectively the precursory activity. The almost similar distributions in the epochs
1 and 4 characterize the EM background (noise). In epoch 2, the little deformation of the distribution to the left side in respect to the
distribution of EM noise indicates that the initial part of the precursory emission is characterized by a little reduction of the complexity, in
respect to the high complexity of EM noise. The right lobe that appears in epoch 3 corresponds to the EM background, while the left red
lobe seems to correspond to the EM precursory activity. We observe a dramatic shift of the distribution of theD2-values in epoch 3. This
evidence indicates a strong reduction of complexity during the emergence of the two strong EM bursts in the tail of the precursory emission.

(CAD). Characteristically, the dynamic system of CAD pa-
tients seems to behave more normally represented by a mean
correlation dimensionD2=4.2, while, the healthy subject sig-
nals implies a dynamic system with mean correlationD2=8.4
(Karamanos et al., 2005). On the other hand, time-resolved
analysis of the EEG time series indicates a significant loss
of complexity prior to and during seizures (the related effec-
tive correlation dimension decrease up to 2), while, far away
from any seizure the associated effective correlation dimen-
sion varies around 9 (Lehnertz and Elger, 1998). We note
the here estimated values ofD2 are compatible with those
associated with HRV and EEG data.

In conclusion, what is really interesting here is not the rig-
orous mathematics but the changes of the “apparent corre-
lation” D2 when we have transitions from one state to an-
other. We applied a time-resolvedD2 analysis to pre-seismic
EM time series recorded during both intervals temporally
far away from the catastrophic event under study, as well as
in the tail of the earthquake preparation process (nucleation
phase): the nucleation phase data files provided less complex
statistics.

6 Precursory signatures in terms of a linear fractal
spectral analysis

The above mentioned results are also supported by a linear
fractal spectral analysis. Sufficient experimental and theoret-
ical evidence indicates that as the final failure in the disor-
dered media is approached the underlying complexity mani-
fests itself in linkages between space and time, generally pro-
ducing patterns on many scales and the emergence of fractal
structure close to irreversible phase transitions. Thus, a lot
of work on complexity focuses on statistical power laws that

describe the scaling properties of fractal processes and struc-
tures.

We focus on the statistics of the fluctuations in the pre-
seismic time-series with respect to their amplitude, let’s say
A(ti). If the time-seriesA(ti) is a temporal fractal that series
cannot have a characteristic frequency. The only possibility
is then that the power spectrumS(f ) has a scaling form:

S(f ) ∼ f −β (11)

wheref is the frequency of the Fourier Transform (FT). In a
logS(f )− logf representation the power spectrum is a line
with spectral slopeβ. The linear correlation coefficient,r, is
a measure of the goodness of fit to the power law (Eq. 11).

The “global wavelet spectrum” is used in order to provide
an unbiased and consistent estimation of the true power spec-
trum of the time-series. The continuous wavelet transform
based on the Morlet wavelet makes the calculation.

The analysis shows that all the EM segments under study
(Fig. 2) are fractals, that is, in a logS(f )− logf representa-
tion the power spectrum is a line with highr-value, i.e. from
0.953 to 0.999. In Fig. 10 we depict the logS(f )− logf

diagrams for two green and two red time windows.
The fact that the data follow the power-law (Eq. 11) sug-

gests that the pre-seismic EM emission could be ascribed to
a multi time-scale cooperative activity of numerous activated
cracks in which an individual unit’s activity is dominated by
its neighbors so that all units simultaneously alter their be-
havior to a common fractal pattern. In order to examine tran-
sient phenomena, we study how the exponentβ evolve as the
global failure is approached. The result is that into green time
windowsβ lies from 1.25 to 1.85, while, into red windows
we have thatβ is between 2.56 to 2.92.

The estimatedβ-values (1<β<3) corroborate to the pres-
ence of memory in the underlying fracto-EM process. The
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Fig. 10. A log-log representation of the relationS(f )=f −β for two typical green and two red windows. We observe that this equation fits
very well. The associatedβ-values inform that the green windows follow anti-persistent behavior, while the red ones are characterized by
persistent properties.

EM fluctuations show strong correlations with previous ones,
i.e. the system refers to its history in order to define its future
(non-Markovian behavior).

We note that Schwarz et al. (1998) have applied a relevant
method in a very similar way to classify signals of solar wave
bursts.

6.1 The transition from the anti-persistent to the persistent
regime

Two classes of signal have been widely used to model
stochastic fractal time series (Henegham and McDarby,
2000): fractional Gaussian noise (fGn) and fractional Brow-
nian motion (fBm). These are, respectively, generalizations
of white Gaussian noise and Brownian motion. A formal
mathematical definition of continuous fBm was first offered
by Mandelbrot and Ness (1968). For the case of the fBm
model the scaling exponentβ lies between 1 and 3, while
the regime of fGn is indicated byβ-values from−1 to 1
(Henegham and McDarby, 2000). Theβ-values in the VHF
EM pre-fracture time series are distributed in the region from
1 to 3. This means that the seismogenic EM activity follows
the fBm model.

Theβ-exponent is related to the Hurst exponent,H , by the
formula

β = 2H + 1 with 0 < H < 1 (12)

for the fBm model (Mandelbrot and Ness, 1968; Henegham
and McDarby, 2000).

The exponent H characterizes the persistent/anti-
persistent properties of the signal (Eftaxias et al., 2004,
and references therein). The range 0<H<0.5, (1<β<2)

indicates an anti-persistency, reflecting that increases in the
value of a time-series are likely to be followed by decreases
and conversely. Physically, this implies a set of fluctuations
tending to induce a stability to the system, namely a non-
linear feedback system that “kicks” the opening rate away
from extremes. The group of the 19 green time windows
show anti-persistent behavior (the Hurst exponent lies from
1.25 to 1.85). On the contrary, the time-series has persistent
properties (the Hurst exponent range from 2.56 to 2.92) dur-
ing the red time windows, namely, within the two strong EM

bursts. This means that increases in the value of a time-series
are likely to be followed by increase, namely the system has
been starting to self-organize by a positive feedback process.
The system seem to acquire to a great degree the property
of irreversibility. Thus the launch of the persistent activity
could give a significant hint of a considerable probability
for a forthcoming significant seismic event. The appearance
of persistent properties within the characteristic two EM
bursts in the tail of the VLF EM precursor, i.e. a few hours
before the EQ occurrence, strongly supports the concept that
the emergence of the two impulsive bursts witnesses the
appearance of the final preparation phase of the impending
EQ.

It is worth mentioning that laboratory experiments by
means of acoustic and EM emission also show that the main
rupture occurs after the appearance of persistent behavior
(Ponomarev et al., 1997; Alexeev and Egorov, 1993; Alex-
eev et al., 1993; Lei et al., 2004). Recently, Sammis and
Sornette (2002) presented the most important mechanisms
for such positive feedback mechanism.

7 Discussion and conclusions

In this paper, we are studying in terms of nonlinear and lin-
ear techniques, whether precursory EM features emerged in-
dicating the approach to the global failure. More precisely,
we presented an analysis of pre-seismic EM emission asso-
ciated with the Athens EQ. In order to extract possible pre-
cursory signatures we analyze the recorded preseismic EM
time series into distinct time windows. The aim was to dis-
cover a clear difference of dynamical characteristics as the
catastrophic event was approaching.

Our study was firstly based on symbolic dynamics and
Shannon-like entropy. For this purpose, starting from the raw
data, we isolated stationary windows in the detected preseis-
mic EM time series. Within each of these stationary time
windows the block entropy by lumping for the optimal parti-
tion has been calculated. The block entropy was interpreted
as a measure of “complexity”. Dynamical changes with time
in the precursory EM activity were clearly visible. In par-
ticular, the analysis helps to discriminate two characteristic
preseismic epochs: the second epoch abruptly emerged a few
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tens of hours before the earthquake occurrence and abruptly
ended a few hours before the global instability. This epoch
is of much lower complexity than the early first epoch. The
existence of two distinct periods during the evolution of the
preseismic EM activity, and particularly the significant re-
duction of the complexity into the second epoch is also veri-
fied by the analysis in terms of Kolmogorov-Sinai entropy,
as well as by the calculation of the conditional entropies.
The appearance of a new phase, which is characterized by
a strong loss of complexity, in the tail of the precursory EM
activity, is also verified in terms of correlation dimensionD2.

Finally, we turn into the linear method. In order to extract
transient precursory footprints, we divide the measurements
into short consecutive time-windows and analyze these in
terms of statistical fractal analysis. The dynamics into each
time-window is mainly characterized by the value of the
Hurst exponentH , which characterizes the persistent/anti-
persistent properties of the signal. Based on the behavior
of Hurst exponents we independently can discriminate two
characteristic epochs in the evolution of precursory activity:
The first epoch includes the initial anti-persistent part of the
precursory time series, i.e. the epoch with 0<H<0.5. This
behavior implies a set of fluctuations tending to induce stabil-
ity within the system, namely, a nonlinear negative feedback,
which kicks the system away from extremes. In the opposite,
the second epoch includes the last stage of the precursory
activity characterized by persistent behavior, i.e. epoch with
0.5<H<1. This implies that a new phase has been emerged,
which is characterized by a super-diffusion behavior (or a
nonlinear positive feedback mechanism).

Theoretical studies suggest that final EQ and neural-
seizure dynamics should have many similar features and
could be analyzed within similar mathematical frameworks
(Kapiris et al., 2005 and references therein). Recently
(Kapiris et al., 2005), by monitoring the temporal evolution
of fractal spectral characteristics in EEG (electroencephalo-
graph) recordings on rat experiments and pre-seismic elec-
tromagnetic (EM) time series associated with the Athens EQ,
we showed that many similar distinctive symptoms (includ-
ing common alterations in their associated scaling parame-
ters) emerge as epileptic seizures and EQs are approaching.
We emphasize that both catastrophic events happen after the
occurrence of persistent behavior: the transition from anti-
persistent to persistent behavior may indicate that the onset
of a severe crisis is imminent.

We stress that the first epoch of high complexity corre-
sponds to anti-persistent behavior and the second epoch of
low complexity corresponds to persistent behavior. We think
that, taken together: the significant reduction of the “block-
entropy”, the reduction of the Kolmogorov-Sinai entropy, the
considerable decrease of “correlation dimension”, and the
emergence of strong persistent behavior, it might be con-
cluded that they are generated by the last stage, i.e. nucle-
ation phase, of the impending EQ. Sufficient field and labo-
ratory experimental evidence indeed supports the above con-
sideration.

1. The first strong EM burst contains approximately 20%
of the total EM energy received during the emergence of
the two bursts, and the second the remaining 80% (Ef-
taxias et al., 2001). On the other hand, the fault mod-
elling of the Athens EQ, based on information obtained
by radar interferometry (Kontoes et al., 2000), predicts
two faults: the main fault segment is responsible for
80% of the total energy released, with the secondary
fault segment for the remaining 20%. A recent seismic
data analysis carried out by M. Kikuchi, using the now
standard methodology (Kikuchi and Kanamori, 1990),
indicates that a two-event solution for the Athens EQ
is more likely than a single event solution (Eftaxias et
al., 2001). According to Kikuchi, there was probably a
subsequent (Mw=5.5) EQ after about 3.5 s of the main
event (Mw=5.8). This surprising correlation in the en-
ergy domain between the two strong pre-seismic kHz
EM signals and two faults activated in the case of the
Athens EQ, strongly supports the hypothesis that the
two strong EM bursts reveal the nucleation of the im-
pending EQ. On 1 and 2 September 1999, a series of
ULF seismic electric signals (VAN-signals) has been
recorded with duration of 9 h (Varotsos et al., 1999).
The recorded activity exhibits the following peculiarity:
its last portion has a larger amplitude and also changes
polarity (see Fig. 3 in Varotsos et al., 1999). The de-
tected precursory anomaly could be interpreted as con-
sisting of two separate activities, coming from two dif-
ferent sources (Varotsos et al., 1999). It might be argued
that the information for the impending two faults acti-
vation had imprint in the detected VAN-signals as well.

2. Enhanced thermal infrared (TIR) emission from the
Earth’s surface are being retrieved by satellites prior to
earthquakes, also known as “thermal anomalies”, has
been frequently reported (Tronin et al., 2002; Ouzounov
and Freund, 2004). Recently, (Freud et al., 2005) have
proposed an explanation for “thermal anomalies” from
a solid state physics viewpoint, namely that the IR emis-
sion giving rise to the apparent land surface temperature
fluctuations is due to the radiative decay of vibrationally
highly excitedO−O bonds, which form at the rock sur-
face during recombination of positive holes, activated
by the build-up of stress in the Earth’s crust. Clear
increase in the TIR emission over the area around the
Athens’ EQ epicenter has been detected from satellites
during the days where the EM emission of low com-
plexity and persistent behavior emerged (Filizzola et al.,
2004).

3. Recently, we have studied the preseismic EM signals
in terms of the following model (Contoyiannis et al.,
2005): the focal area consists of (a) a backbone of
strong and almost homogeneous large asperities that
sustains the system and (b) a strongly heterogeneous
medium that surrounds the family of strong asperities.
We suggest that the anti-persistent part of the precur-
sory EM activity finds his origin in the fracture of the
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heterogeneous component, while, the persistent part is
caused by the fracture of asperities that sustain the sys-
tem.

4. Laboratory studies under well-controlled conditions i.e.
using well-prepared samples containing well-known as-
perities should be useful for understanding the physics
of asperities. Recently (Lei et al. 2000, 2004) have
studied how an individual asperity fractures, how cou-
pled asperities fracture, and also the role of asperities in
fault nucleation and as potential precursors prior to dy-
namic rupture. These observations reveal a strong sim-
ilarity between the fracture of asperities in laboratory-
scale experiments and tectonic-scale events. More pre-
cisely, they suggest the following.

(a) Intense micro-cracking may occur in a strong asper-
ity when the local stress exceeds the fracture stress
of the asperity. This feature is in agreement with
our results.

(b) The self-excitation strength, which expresses the
influence of excitation of an event on succeeding
events or, equivalently, the degree of positive feed-
back in the dynamics, reaches a maximum of∼1
during the nucleation phase of the fault. Recall that
theH exponent also approaches its maximum value
of 1 in the tail of the precursory EM radiation.

(c) The fractal dimension decreases from∼2.2 in the
pre-nucleation phase to 1.0−1.4 during asperity
fracture. The authors correlate the decrease of the
fractal dimension with the concentration of stresses
around the family of asperities. The fractal dimen-
siond of the detected, in the field, EM time series is
found from the relationd=2−H for the fBm class.
After considering the observed values of the expo-
nentsβ (or H) (see Sect. 6) we conclude that the
time series exhibits a fractal dimension from∼1.2
to ∼1, in its tail, i.e. within the precursory two
strong EM bursts. On the other hand a few days
prior to the Athens event, the seismicity was cen-
tered at the epicenter area, i.e. at a distance of about
one source dimension from the Athens EQ epicen-
ter (Tzanis and Makropoulos, 2002; Papadopoulos,
2002).

Although significant problems remain when extrapo-
lating laboratory results to field conditions, the above
mentioned experimental findings might indicate that
the emergence of strong positive correlations, reflect
the faulting nucleation phase of the EQ preparation,
namely, the fracture of the sequence of asperities

5. The statistical analysis reveals that the cumulative num-
ber (N>A) of EM events detected prior to the Athens
EQ-namely, the number of EM events having amplitude
larger thanA, follows the power lawN(>A)∼A−0.62

(Kapiris et al., 2004a) . Rabinovitch et al. (2002) have
studied the fractal nature of EM radiation induced in

rock fracture. The analysis of the pre-fracture EM time
series reveals that the cumulative distribution of the am-
plitudes also follows a power law with exponent 0.62.
The accord of the critical exponents suggests that the
same fracto-electrodynamics may hold from the geo-
physical down to the microscopic scale. In addition,
scaling similarities of acoustic and EM emissions dur-
ing multiple fractures in solid materials from the labo-
ratory scale up to the geophysical scale strongly support
the hypothesis that both types of emission are generated
during crack opening (Kapiris et al., 2004a).

The question to what extend the present study may con-
tribute to the prediction of EQs, is not easily answered.
The wide diversity of different types of EQ preparation
process makes it even unlikely that there exists one so-
lution at all. In this spirit, we wonder if the observed
significant reduction of the block entropies by lumping
(around 30%) just before the EQ, followed by the emer-
gence of persistent properties, is or not a new statisti-
cal law of nature. In our opinion more experimenta-
tion could enlighten this point. We hope that the present
work might contribute to further research about a more
fundamental understanding of EQs generation mecha-
nism. As concern to basic research, it remains to be
established whether different methods of nonlinear and
time series analysis could furnish additional precursors
that allow one to extend the knowledge about earth-
quake generating mechanisms.
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