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Abstract. Kalman filters are widely used for data assimi-
lation into ocean models. The aim of this study is to dis-
cuss the relevance of these filters with high resolution ocean
models. This was investigated through the comparison of
two advanced Kalman filters: the singular evolutive extended
Kalman (SEEK) filter and its ensemble-based variant, called
SEIK filter. The two filters were implemented with the
Princeton Ocean model (POM) considering a low spatial res-
olution configuration (Mediterranean sea model) and a very
high one (Pagasitikos Gulf coastal model). It is shown that
the two filters perform reasonably well when applied with the
low resolution model. However, when the high resolution
model is considered, the behavior of the SEEK filter seri-
ously degrades because of strong model nonlinearities while
the SEIK filter remains remarkably more stable. Based on the
assumption of prior Gaussian distributions, the linear analy-
sis step of the latter can still be improved though.

1 Introduction

The recent dramatical progress in computing power enabled
the use of very high resolution numerical models to simu-
late the general circulation of different oceanic areas while
continuously incorporating more fine scale information. Al-
though these highly sophisticated models are now capable
of adequately reconstructing most of the variability of the
studied areas, different sources of errors, related to mod-
eling approximations and/or uncertainties in the model pa-
rameters, might strongly degrade their performance. These
errors cause very often a large drift of the model trajectory
from reality, if the models are not somehow constrained with
real ocean measurements. The latter framework is called
data assimilation and it was shown to be the best way to
improve consistency between ocean models and observa-
tions. Following meteorology, assimilation techniques are
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now widely used in oceanography. They can be classified
into two classes: sequential approach and variational ap-
proach (Ghil and Malanotte-Rizzoli, 1991). Sequential meth-
ods proceed by incrementally correcting the discrepancy be-
tween observations and a model prediction based on prior
information about uncertainties in the model and data. Vari-
ational methods seek to minimize the misfit between data and
model trajectory over a given period of time through the ad-
justments of a well chosen set of control parameters.

Using simple dynamical models, several studies demon-
strated that the application of the current data assimilation
techniques can be problematic when these models are highly
nonlinear (Evensen, 1994; Miller et al., 1994). This is ex-
pected to be also true for high resolution ocean models
since fine scale variations are naturally associated with strong
model nonlinearities. For instance, in variational methods the
cost function becomes highly nonlinear preventing any im-
provement with an affordable optimization algorithm (Köhl
and Willebrand, 2002). Sequential methods are generally
based on the Kalman filter which is only optimal for lin-
ear models. Until recently, the practice was to linearize
the model about the most recent estimate, leading to the so-
called extended Kalman (EK) filter (Jazwinski, 1970). This
approximation might however provoke the divergence of the
filter when used with a strongly nonlinear model (Evensen,
1992; Gauthier et al., 1993). Nonlinear ensemble techniques
based on Monte-Carlo methods were therefore developed to
avoid the linearization of the model (Evensen, 1994).

A comparison of the extended and the ensemble ap-
proaches cannot be assessed a priori for a particular nonlin-
ear model but must be determined by simulations (Jazwinski,
1970). Because of significant computing requirements, sim-
ple dynamical models, as the Lorenz model, were so far used
to compare the two approaches (Evensen, 1992; Miller et al.,
1994). However, these works pointed out the need of better
understanding the behavior of these methods in more realistic
frameworks. Madsen and Canizares (1999) used a hypothet-
ical bay region model and concluded that the performance
of both approaches is comparable. Similar conclusions were
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also made by Verlaan and Heemink (1995) and Nerger et al.
(2005) using simple ocean models. All these previous stud-
ies were, however, based on weakly nonlinear models. This
paper considers this problem through the implementation of
the singular evolutive extended Kalman (SEEK) filter, which
is a suboptimal EK filter, and of its ensemble-based variant,
called SEIK filter, with two different configurations of the
Princeton Ocean model (POM) using a low spatial resolution
(1/4◦

×1/4◦) for the whole Mediterranean Sea and a very
high one (1/100◦

×1/100◦) for the Pagasitikos Gulf. The ap-
plication of these two filters with fully realistic ocean models
was possible because of the use of low rank error covariance
matrices, making the computations relatively affordable.

Recently, a similar work was presented by Zang and
Malanotte-Rizzoli (2003) using a simple quasi-geostrophic
model with two different eddy viscosity parameterization
cases (low and high) and concluded that the ensemble
method generally behaves better. However, the compari-
son of the two approaches was carried out between an en-
semble Kalman filter and a steady-state simplified EK filter,
where the evolution of the filter’s error covariance matrix was
not carried out and this may result in a significant degrada-
tion of the EK filters performances (Hoteit and Pham, 2003).
This approach made difficult the interpretation of their results
since it was quite unclear how to separate and/or quantify the
errors due to the linearization from the errors induced by the
use of time-invariant error covariance matrices. The SEEK
and SEIK filters used in the present study are “more compa-
rable” by construction since they are based on the same as-
sumption. The only difference between them lies in the use
of linearization (SEEK) or Monte-Carlo techniques (SEIK)
for the evolution of the error covariance matrices, making the
comparison more straightforward. Numerical experiments
are based on a twin experiments approach which provides
an efficient way for an inter-comparison between the perfor-
mances of two assimilation techniques since all uncertain in-
puts are known by design. This is very convenient for the
present study because it enables to clearly and easily iden-
tify which filter provides the best estimate for all the state
variables. Additionally, it eliminates the influence of differ-
ent filters’ parameters, especially the model error, allowing
to attribute the differences between the filters’ solutions only
to the method used for the evolution of the filters statistics.
The result of an experiment assimilating AVISO sea level
anomaly data into POM for the Mediterranean Sea config-
uration is also presented and discussed to show that the con-
clusions from the former framework still hold in a different
setup where the influence of the model error is much more
pronounced.

Section 2 briefly summarizes the SEEK and SEIK filters.
The ocean models are described in Sect. 3. The design and
the results of the numerical experiments are presented in
Sect. 4. Finally, a general discussion concludes the paper
in Sect. 5.

2 The filters

The Kalman filter is a data assimilation technique that re-
cursively generates an optimal analysis, in the least-square
sense, of the state of a linear system given a set of measure-
ments (Kalman, 1960). It operates in two steps starting from
an initial estimate of the state and the corresponding error
covariance matrix: (i) forecast step using the model, and (ii)
analysis step to correct the forecast each time new observa-
tions are available. The filter is very powerful in several as-
pects: it supports estimations of past, present, and even future
system states, and it can do so even when the model and the
measurements are noisy. The filter however requires that the
system and measurement noises are uncorrelated, additive,
white and Gaussian. Indeed, linear models interact uniquely
well with Gaussian noise since under this assumption, the fil-
ter’s distributions are Gaussian and the calculations are easy.
Note that when the noise is not Gaussian, the Kalman filter
still provides the best linear state estimator, given only the
mean and covariance matrix of noise.

The use of the Kalman filter for data assimilation with re-
alistic ocean models is not straightforward. The most obvi-
ous difficulty is the huge dimension (n) of the ocean state (of
the order of 107) making the manipulation of the error co-
variance matrices practically impossible. Several simplified
versions of the Kalman filter have been proposed to reduce
its computational burden. These sub-optimal Kalman filters
basically consist of projecting the state of the system onto a
low dimensional subspace (Fukumori and Malanotte-Rizzoli,
1995; Verlaan and Heemink, 1995; Cane et al., 1996). An-
other difficulty is related to the nonlinear nature of the ocean
models. In this case the system equations are generally lin-
earized about the current analysis state leading to the pop-
ular, but no longer optimal, extended Kalman (EK) filter
(Jazwinski, 1970). However, this amounts to neglect higher-
order statistical moments and several studies have shown that
it might produce instabilities, even divergence, when im-
plemented with strongly nonlinear systems (Evensen, 1992;
Gauthier et al., 1993).

The SEEK filter and its ensemble variant, called SEIK fil-
ter, are two alternatives to the Kalman filter, designed for
data assimilation with realistic ocean models. These two fil-
ters are briefly summarized below. The reader is referred to
Pham et al. (1997) and Pham (2001) for a detailed descrip-
tion.

2.1 The SEEK filter

The SEEK filter aims at reducing the computational burden
of the EK filter by using low rank (r�n) matrices approx-
imations of the filter’s error covariance matrices. It there-
fore belongs to the family of square-root Kalman filters (Tip-
pett et al., 2003) and is formulated very alike the reduced-
rank square root (RRSQRT) EK filter (Verlaan and Heemink,
1995), except for the use of a singular value decomposition
(SVD), which is computationally expensive for large values
of r, at the initial time only. Indeed, the use of low rank error
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covariance matrices allows the decomposition

P = LULT , (1)

whereL andU aren×r andr×r matrices, respectively. Un-
der this assumption, the algorithm of the EK filter remains
mostly unchanged. Only the evolution of the error covari-
ance matrices is avoided and replaced by those ofL andU .
It can then be easily seen that the correction of the EK fil-
ter is only applied in the directions parallel to the columns
of L, henceL will be called “directions of correction” of
the filter. Pham et al. (1997) showed that the columns ofL

converge toward the directions of error growth. This implies
that the SEEK filter corrects the forecast in the directions for
which the error was not sufficiently attenuated by the dynam-
ics of the model. When the model error is not neglected, the
SEEK filter projects this error onto the subspace spanned by
the columns ofL to avoid continuous increase in the rank
of the error covariance matrices, since this would make the
filter computationally not affordable. In practice,r can be
relatively small (10–100) enabling the implementation of the
SEEK filter with high resolution realistic ocean models.

2.2 The SEIK filter

Ensemble representations can be efficiently used to represent
square-root covariance matrices (Tippett et al., 2003) since
the sample covariance matrix of a given ensemble ofN mem-
bersX1, . . . , XN can be naturally decomposed as in Eq. (1),
with L=1/

√
N−1[X1

· · · XN
] andU=IN×N . Pham (2001)

exploited this feature to develop an ensemble-based variant
of the SEEK filter, called SEIK filter. The basic idea of this
filter consists of representing the low rank (r) error covari-
ance matrix of the SEEK filter by an ensemble of state vec-
tors using a stochastic approach called the second-order exact
sampling scheme (Pham, 2001). Such Monte-Carlo scheme
allows to sample the ensemble members so that their mean
and sample covariance matrix exactly match the filter’s anal-
ysis and the corresponding error covariance matrix, respec-
tively. Note that other schemes can also be derived following
this approach since the representation (1) is not unique and
P can be decomposed asP=(L�)(L�)T for any orthogonal
N×N matrix�.

The SEIK filter has strong similarities with the ensemble
Kalman (EnK) filter (Evensen, 1994). The main differences
between the two filters lies in the procedure of generating
the analysis ensemble. The EnK filter is based on perturbed
observations (Tippett et al., 2003) in which the analysis en-
semble is obtained by assimilating different observations1 to
each member of the background ensemble. The SEIK fil-
ter does not perturb the observations and applies the anal-
ysis only once, to provide both the mean analysis and the
corresponding error covariance matrix. Then the analysis
members are sampled using the second-order exact sampling

1These observations are created by adding random noise (gener-
ated according to the observational error covariance matrix) to the
real observations.

scheme. The SEIK filter makes also use of the low rank (r)
error covariance matrices approximation allowing to use, in
a very efficient way, the smallest number of ensemble mem-
bers, namelyr+1, thus has an advantage in terms of com-
putational cost with respect to the EnK filter. Furthermore,
re-sampling the ensemble every analysis step helps prevent-
ing an over-dispersion of the members, which allows the fil-
ter to operate more efficiently with a small number of mem-
bers. Nerger et al. (2005) compared the performances of the
EnK and the SEIK filters and found that the SEIK filter gen-
erally provides better results, as the perturbed observations
approach tends to increase the sampling error of the filter
(Lawson and Hansen, 2004).

A schematic illustration of the algorithms of the SEEK and
SEIK filters is given in Fig. 1. Starting from the same initial-
ization step, which requires an initial estimate of the model
state and a low rank approximation of the corresponding er-
ror covariance matrix (generally obtained by applying an em-
pirical functions analysis (EOF) on a set of model outputs),
the two filters provide the analysis state in two steps. In the
forecast step, the SEIK filter integrates the nonlinear model
to evolve the statistics of the forecast while the SEEK filter
uses the tangent linear model to do the same work. The anal-
ysis step is the same for both filters and it minimizes the er-
ror variance of the analyzed estimate in a least-squares sense.
The difference in the update formula of the analysis error co-
variance matrices (more preciselyU in the diagram) is only
due to the decomposition of the background error covariance
matrices. The SEEK and the SEIK filters have therefore the
same analysis formula and the only difference between them
is the use of the tangent linear model or of a nonlinear en-
semble forecasting scheme to perform the evolution of the
statistics of the forecast state. Using the same rank for the
error covariance matrices in the two filters, allows therefore
to efficiently assess the relevance of both approaches on the
assimilation results by comparing the performances of the
filters with high resolution primitive equations models. It is
important to note that under this condition the computational
cost of both filters is basically the same.

3 The ocean models

The model used in the assimilation experiments is the Prince-
ton Ocean model (POM) implemented in two (low and high)
horizontal resolution cases as stated before. POM has been
previously used in numerous applications like the Adriatic
Sea (Zavatarelli and Pinardi, 1995), the Mediterranean Sea
(Drakopoulos and Lascaratos, 1997), and the Levantine Sea
(Korres and Lascaratos, 2003).

3.1 The POM model

POM is a primitive equations finite difference model which
makes use of the hydrostatic and Boussinesq approxima-
tions. The model solves the 3-D Navier-Stokes equations
on an Arakawa-C grid with a numerical scheme that con-
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matrices P a and P f is not needed for the filters algorithms. They have been included for completeness.
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serves mass and energy. The spatial differences are central
and explicit in the horizontal and central and implicit in the
vertical. Centered differences are used for the time integra-
tion (leapfrog scheme) of the primitive equations. In addi-
tion, since the leapfrog scheme has a tendency for the solu-
tion to split at odd and even time steps, an Asselin filter is
used at every time step. The numerical computation is split
into an external barotropic mode with a short time step (dic-
tated by the CFL condition) solving for the time evolution of
the free surface elevation and the depth averaged velocities,
and an internal baroclinic mode which solves for the vertical
velocity shear. Horizontal mixing in the model is parameter-
ized according to Smagorinsky (1963) while vertical mixing
is calculated through the Mellor and Yamada 2.5 turbulence
closure scheme. The reader is referred to Blumberg and Mel-
lor (1987) for a detailed description of POM.

The model state vector is composed of all prognostic
(state) variables of the model at each sea grid point. The
state variables consist of the sea surface elevation, the zonal
and meridional components of velocity, potential tempera-
ture, salinity, the turbulent kinetic energy and the turbulent
kinetic energy times the turbulent length scale.

3.2 The areas of POM implementation

Two configurations of POM were considered to test the per-
formance of the SEEK and SEIK filters: (i) low horizontal
resolution model 1/4◦

×1/4◦ of the Mediterranean Sea, and
(ii) high horizontal resolution 1/100◦

×1/100◦ of the Paga-
sitikos Gulf (a coastal area within the Aegean Sea), each with
25 sigma levels in the vertical logarithmically distributed
near the surface and the bottom. A small domain (Paga-
sitikos Gulf) was considered for the high resolution case to
save computational time. The general behavior of the filters
is not expected to be sensitive to the size of the domain. The
model bathymetry was obtained from the US Navy Digital
Bathymetric Data Bases DBDB5 and DBDB1 and is shown
in Fig. 2. The Mediterranean model covers the geographi-
cal area 7◦ W to 36◦ E and 30◦ N to 46◦ N and has one open
boundary located at 7◦ W. The Pagasitikos Gulf model cov-
ers the area 22.8◦ E to 23.3◦ E and 39◦ N to 39.4◦ N and has
two open boundaries to the south and east respectively. The
number of grid points was therefore 175×65 for the Mediter-
ranean model and 49×49 for the Pagasitikos Gulf model.
Open boundary conditions were set as follows:
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Fig. 2. Topography of the Mediterranean (upper panel) and the Pa-
gasitikos (lower panel) models.

- Zero gradient condition for the free surface elevation.

- Flather (1976) boundary condition for the barotropic ve-
locity normal to the open boundary.

- Sommerfeld radiation for the internal (baroclinic) ve-
locities.

- Temperature and salinity at the open boundaries are ad-
vected upstream. When there is inflow through the open
boundary, these fields are prescribed from the MODB-
MED4 seasonal climatology.

In order to adjust the model dynamics and achieve a per-
petually repeated seasonal cycle before applying the inter-
annual atmospheric forcing, the Mediterranean and Paga-
sitikos models were integrated climatologically for 19 years
and 10 years, respectively. The Mediterranean model clima-
tological run was initialized with the MODB-MED4 spring
temperature and salinity profiles and the initial velocities
were set to zero. For the Pagasitikos Gulf model the above
data set was enriched with CTD data acquired through the
research project Development of an Integrated Policy for the
Sustainable Management of Pagasitikos Gulf. The surface
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Fig. 3. Basin average kinetic energy and norm of the second deriva-
tive for both models.

forcing fields (monthly climatological wind stresses, upward
heat flux, net shortwave radiation and evaporation rates) were
derived from the 1979–1993 ECMWF 1◦

×1◦ reanalysis 6-h
atmospheric data set, except for the precipitation fields which
were derived from Jaeger monthly climatology. The refer-
ence experiment to which all assimilation runs refer, was ini-
tialized from the end of the 19th year and 10th year of clima-
tological integration for the Mediterranean and Pagasitikos
cases, respectively. These experiments were forced with the
1979–1994 ECMWF reanalysis 6-h atmospheric data (wind
velocity, air temperature and relative humidity) and cloud
cover and precipitation data taken from COADS monthly
1◦

×1◦ fields for the same period. Proper bulk formulae were
used to compute the surface momentum, heat and freshwa-
ter fluxes at each time step of model integration taking into
account the SST predicted by the model itself.

The evolution of the basin average kinetic energy within
the time period 1979–1987 for the two models is shown in
Fig. 3a. The low resolution Mediterranean model involves a
strong seasonal cycle to which inter-annual anomalies are su-
perimposed with the most important being that of year 1981
forced by the corresponding wind stress anomalies. The ki-
netic energy of the Pagasitikos model on the other hand is
largely affected by the activity and the instabilities of a large
mesoscale eddy that on average is developed in the central
part of the Pagasitikos basin and changes polarity and shape
according to the momentum and buoyancy fluxes at the sur-
face of the basin. Thus the kinetic energy of the basin con-
sists of a seasonal signal to which quasi-chaotic mesoscale
fluctuations are dominant, suggesting stronger nonlinear be-
havior of the high resolution model.

The nonlinearities in the two models were also assessed by
checking the norm of the second derivative of the model solu-
tion with respect to the initial conditions. The second deriva-
tive was computed via finite differencing. First, a domain
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Fig. 4. Evolution of the RRMS error as function of time for the SEEK and SEIK filters with the low resolution Mediterranean model using
an error covariance matrix of rank 50 (analysis step is 5 days).

scale perturbation (1% of the model state vector standard de-
viation as deduced from the 4-year ensemble) was added to
the initial conditions. The second derivative with respect to
the initial conditions (which can be used as a measure of
the degree of nonlinearity in the model) was obtained by
adding the positively and the negatively perturbed runs and
subtracting twice the unperturbed run. The norm of the sec-
ond derivative for the Mediterranean and Pagasitikos models
is shown in Fig. 3b at intervals of 5 days. In both cases,
the major contribution to the second derivative norm is due
to the barotropic velocity field and the associated free sur-
face elevation. The nonlinear variations in the low resolution
Mediterranean model are shown to be less important while

the presence of strong eddy activity in the Pagasitikos model
and the flow exchange with the open boundaries makes this
model highly nonlinear.

4 Experiments

4.1 Experiments setup

The initialization of the filters requires an initial state esti-
mate and a low rank approximation of the corresponding er-
ror covariance matrix. A common strategy for the estima-
tion of the error covariance matrix is to use model statis-
tics as an approximation of the true system statistics (Pham
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et al., 1997). Then by appropriate sampling of model state
vectors one can obtain an approximation of the filter’s co-
variance matrix through the dominant empirical orthogonal
functions (EOFs). In the twin experiments setup, the mod-
els were first integrated for a 2-year period (1980–1981) in
order to achieve a quasi adjustment of the model climato-
logical dynamics to the ECMWF inter-annual forcing. Next,
another integration of 4 years (1982–1985) was carried out
to generate a historical sequence of model states sampled ev-
ery 2 days. Since the state variables are of different nature,
a multivariate EOF analysis was applied on the sampled set
of 730 state vectors. In this analysis, model state variables
were normalized by the inverse of the square-root of their
domain-averaged variances.

A reference model run was first carried out and a sequence
of 73 state vectors was retained every 5 days during a one-
year period over 1986. These reference states, considered
as the “true states” of the sea, were retained to be latter
compared with the fields produced by the filters. The as-
similation experiments were performed during the same pe-
riod, using pseudo-observations of sea surface height for the
Mediterranean model, and temperature and salinity profiles
for the Pagasitikos model (according to the available obser-
vation systems in each domain) which were extracted every
5 days and every 4 grid points from the reference states. In-
dependent Gaussian errors of mean zero and standard devia-
tion equal to 5% of the observed standard deviation (as com-
puted from the model SSH during 1982–1985) were added
to the pseudo-observations. The filters were initialized from
the mean state vector of the 4-year period (1982–1985) used
for the calculation of the multivariate EOFs. In all the assim-
ilation experiments, the model was assumed perfect (Qk=0).
Another experiment is initialized from the same mean state
vector, as above, and is integrated over 1986 without any as-
similation. This is the model pure forecast (free-run without
assimilation).

To avoid Kalman filters divergence problems due to the
underestimation of the error covariance matrices (by low
rank matrices) and/or to reduce the influence of model er-
rors when real data are assimilated, the inverse of the prior
covariance matrices were artificially multiplied by a factor,
called forgetting factor (Pham, 2001), of 0.8 in all the assim-
ilation runs.

The performance of the filters was evaluated by compar-
ing the filter’s analysis errors, for the whole state vector or
separately for each model state variables, relative to the pure
forecast error (free-run without assimilation)

RRMS =

√∫
(Xanalysis− Xtrue)2∫
(Xfree run− Xtrue)2

. (2)

4.2 Assimilation results

4.2.1 SEEK versus SEIK with the low resolution model

Twin Experiments

The SEEK and SEIK filters were first implemented under
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Fig. 5. Evolution of the RRMS error as function of time for
the SEEK and SEIK filters with the low resolution Mediterranean
model using different ranks for the error covariance matrices (anal-
ysis step is 5 days).

the same conditions using an error covariance matrix of
rank 50. The evolution of the RRMS for both runs as a
function of time is plotted in Fig. 4. It can be seen that a
large reduction of the estimation error is achieved at the first
analysis step. Subsequent analyzes are significantly less
important and both filters are able to reduce the analysis
error up to a certain level. Although the SEEK filter is
performing efficiently with the low resolution model, the use
of nonlinear ensemble forecasting in the SEIK filter is more
stable and provides better assimilation results for all model
state variables.

Sensitivity to the rank of the covariance matrices

Several assimilation runs were performed to study the
sensitivity of the SEEK and SEIK filters with respect to
the rank of the error covariance matrix. Figure 5 shows the
filters RRMS for the whole state vector using 50, 70 and
100 directions of correction. The use of additional modes
is shown to improve the overall performance of the SEEK
filter, but this is only true up to a certain value. Indeed,
the assimilation results obtained with this filter saturate, or
even sometimes degrade, when more than 70 directions of
correction were used. This observation is consistent with
that reported by Verron et al. (1998) and Hoteit and Pham
(2003) and suggests that the evolution of the last EOFs,
which generally represent fine scale variations is not well
supported by the tangent linear model used in the SEEK
filter. It is therefore more beneficial in certain situations to
keep these modes out of the correction basis of the filter. By
contrast, although the SEIK filter is showing some degree
of saturation, it is clear that its behavior is progressively
improved when more ensemble members are used. This
can be explained by the fact that at each analysis step, the
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SEIK filter evolves combinations of modes weighted by
their relevance (i.e. estimated variance). Such combinations
statistically attenuate the “bad influence” of fine scale
variations in the forecast ensemble, and therefore provide a
better estimate of the filter’s directions of correction.

Sensitivity to the initial error covariance matrix

Another sensitivity experiment was conducted to assess the
influence of using “bad initial directions of corrections”
on the convergence of the SEEK and SEIK filters. To this
matter, we ran the two filters using the 51–100 EOFs as
initial directions of correction and compared them to the
original runs (with the first 1–50 EOFs as initial directions
of correction). The RRMS of these runs are plotted in Fig. 6.
The convergence of the SEEK filter is shown to be strongly
slowed down when the initial directions of correction are
not well estimated. The error decreasing is also more
unstable. Except for the second correction, which can be
explained by the widely spread initial forecast ensemble
members, the SEIK filter seems to be much less affected
by the use of ‘bad’ EOFs. This suggests that the nonlinear
ensemble forecasting is more robust with respect to the
initial conditions and it guides the Kalman filter toward the
directions of error growth of the model much faster than the
tangent linear model.

Assimilation of AVISO altimetry data

Another demonstration of the performance of the SEEK
and SEIK filters is given by assimilating real merged T/P
and ERS sea level anomalies (SLA) on a weekly basis
for one-year period (1993). The merged altimetric data
were processed by the AVISO altimetry group mapped on a
1/3◦

×1/3◦ Mercator grid using a space-time objective anal-
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Fig. 7. Evolution of the RMS error as function of time for the SEEK
and SEIK filters with the low resolution Mediterranean model as-
similating real merged Topex and ERS SSH observations.

ysis method that accounts for long wavelength errors (Le
Traon et al., 1998). To assimilate the AVISO anomalies, a
mean sea surface height (SSH) needs to be added so that they
can be compared with the filter’s forecast SSH. Following
Verron et al. (1998), we added a mean SSH obtained from
the model’s free-run over 4-year period (1989–1992), used
for the calculation of the EOFs. The problem of the mean
SSH estimation, not addressed here, remains open for future
studies. Hindcast runs using the SEEK and SEIK filters were
performed to compare the performances of the two filters in a
near real-time situation by assimilating AVISO altimetry data
on a weekly basis. The model has been also ran without as-
similation but starting from the initial conditions of the filters
to assess the relevance of the assimilation schemes. Guided
by the sensitivity studies results, an error covariance matrix
of rank 50 was used to save computational time. In all runs,
the observational error was set to 3cm. The performance of
the filters is evaluated by monitoring the basin average mis-
fit (RMS) between the filters’ estimates (forecast and analy-
sis) and observed SSH, as well as with Reynolds 1/4◦

×1/4◦

SST data. The latter are independent data (not assimilated)
and they are used to assess the consistency of the filter anal-
ysis with the model dynamics following a cross-validation
approach.
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RMS differences of the AVISO SSH with the free-run so-
lution and the filters analysis are shown in Fig. 7a. The model
free-run presents an average RMS difference of 6 cm with
peaks reaching approximately 9.5 cm. The SEEK filter ef-
ficiently reduces the average RMS difference by 2.5 cm but
generally its solution does not fit the data within the specified
observational errors (3 cm). The SEIK filter is showing a bet-
ter behavior and is able to reduce the model/data difference
to a lower level than 3cm, which is a strong indication of the
relevance of this filter. The same RMS differences but for
the forecast/data are plotted in Fig. 7b. This is the quantity
that one should monitor to make sure that the filter analysis is
consistent with the model dynamics. It can be seen that the
model tends to drift from the data after each forecast step,
especially when the model forecast error is high. Both fil-
ters analysis successfully improves the forecast with the new
observations and again the SEIK filter provides a better so-
lution. Finally, one can see from Fig. 7c that the impact of
the assimilation on the independent SST data is dramatically
less pronounced, with the SEIK filter showing a better be-
havior. This comparison also confirms the analysis/model
consistency. The SST field is even shown to be better sim-
ulated by the model run without assimilation during the first
10 weeks, but this can be attributed to the time needed by
the filters to update their internal statistics. The poor perfor-
mance of the filters with the SST is probably associated with
the AVISO climatology problem and more data need to be
assimilated for a better control of the model SST. The lack
of adequate representation of the model imperfections may
also be another reason. Overall, the results of this hindcast
experiment are consistent with those obtained in the twin ex-
periments approach: both filters were able to improve the
consistency between the model and the data but the SEIK fil-
ter generally provides a better solution than the SEEK filter.

4.2.2 SEEK versus SEIK with the high resolution model

The SEEK and SEIK filters, with the same configuration as
described in the twin experiments of the low resolution case,
were used to assimilate data into the high resolution Paga-
sitikos model. Figure 8 compares the temporal evolution of
the RRMS obtained by each filter. After a good first cor-
rection, the overall behavior of the SEEK filter is strongly
unstable with a tendency of an increase in the analysis er-
ror over time. This suggests that the use of the linearized
model to perform the evolution of the forecast distribution
might be inadequate for the high resolution ocean model be-
cause of the presence of strongly nonlinear fine-scale varia-
tions. The use of nonlinear ensemble forecasting seems to be
more appropriate for this problem. Indeed, the SEIK filter is
more stable and provides better estimates of the model states
than the SEEK filter. However, looking more closely to the
assimilation results, one can see that the SEIK filter is also
showing some weaknesses toward the end of the assimilation
window with the RRMS increasing at a closely similar rate to
the SEEK filter, despite the noticeable overall improvement
with respect to the latter. This is probably due to the linear

analysis step of the SEIK filter which, as in the SEEK filter,
only uses the Gaussian part of the forecast distribution.

Finally, in an attempt to improve the performance of the
SEEK filter, several experiments were performed to investi-
gate if the use of more observations over shorter assimila-
tion steps enhances the performance of the SEEK filter. This
can be expected since the linearization of the model will be
carried out over shorter periods where the model behavior
is more linear, and therefore the assumption of the tangent
linear model is more supported. The results of these ex-
periments (not presented here) actually show some improve-
ments. However, small linearization errors still continue to
propagate in time developing instabilities in the filter’s be-
havior. The overall improvements were therefore practically
insignificant with respect to the huge amount of assimilated
data. Since these data will never be available in real situa-
tions, the use of the tangent linear model seems to be ques-
tionable for the strongly nonlinear high resolution model.

5 Discussion

Kalman filtering is one of the most promising tools for data
assimilation in oceanography. Since the Kalman filter is only
optimal for linear models, two different approaches are gen-
erally used for the implementation of this estimation tech-
nique to nonlinear models. The first approach consists of lin-
earizing the model equations about the current analysis lead-
ing to the so-called extended Kalman filter. The other ap-
proach is based on the use of nonlinear Monte-Carlo ensem-
ble forecasting methods to represent estimation errors with
an ensemble of state vectors. Until recently, both techniques
were shown to perform fairly well when applied to relatively
low resolution models. In this paper, the efficiency of these
two approaches was assessed with the implementation of two
advanced Kalman filters, the SEEK and the SEIK, with a
low and a high resolution realistic primitive equations ocean
models. Both filters are based on a low-rank approxima-
tion of the error covariance matrix and differ only in the use
of linearization (SEEK) or a Monte Carlo technique (SEIK)
to overcome model nonlinearities. As expected, numerical
experiments show that the tangent linear model can be effi-
ciently used to update the estimation error in time when the
problem of data assimilation is considered with the low res-
olution model, although its performance never equals that of
the ensemble method. The advantage of using the ensemble-
based approach was however significantly more pronounced
when the filters were implemented with the strongly non-
linear high resolution model. This can be explained by the
ability of the ensemble approach to account for higher order
terms in the Taylor expansion of the model transition oper-
ator than the tangent linear model. Additionally, the latter
approach was also shown to be less sensitive with respect
to the initial conditions and to the approximated rank of the
error covariance matrices. Another advantage (not explored
here) of the SEIK filter over the SEEK filter is the possibility
of stochastically including the model error to the ensemble
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Fig. 8. Evolution of the RRMS error as function of time for the SEEK and SEIK filters with the high resolution Pagasitikos model (analysis
step is 5 days).

members as in the EnK filter. Considering that the compu-
tational cost of both approaches is almost the same, the re-
sults of this study support the use of the ensemble nonlinear
forecasting techniques with high resolution primitive equa-
tion ocean models.

Ensemble-based Kalman methods are definitely more ro-
bust with model nonlinearities. Their simplicity and more
importantly their affordable computational burden make
them well suited for the problem of oceanic data assimila-
tion. But even these methods, which were shown so far to
be the most promising approach to deal with this problem,
can still be improved. Indeed, their linear analysis formu-
lae are still based on the assumption of prior error Gaussian
distributions as in the original Kalman filter. The optimal
nonlinear filter Pham (2001), which resolves the fully non-
linear Bayesian approach for the state estimation problem, is

a serious alternative for the ensemble Kalman filter methods.
But since the numerical implementation of the algorithm of
this filter is very demanding in computing power, some sim-
plifications will be inevitable for realistic ocean applications.
A work in this sense is currently under investigation.
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