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Abstract. Global climate variability affects important local
hydro-meteorological variables like precipitation and tem-
perature. The Southern Oscillation (SO) is an easily quantifi-
able major driving force that gives impact on regional and lo-
cal climate. The relationships between SO and local climate
variation are, however, characterized by strongly nonlinear
processes. Due to this, teleconnections between global-
scale hydro-meteorological variables and local climate are
not well understood. In this paper, we suggest to study these
processes in terms of nonlinear dynamics. Consequently,
the nonlinear dynamic relationship between the Southern
Oscillation Index (SOI), precipitation, and temperature in
Fukuoka, Japan, is investigated using a nonlinear multivari-
able approach. This approach is based on the joint varia-
tion of these variables in the phase space. The joint phase-
space variation of SOI, precipitation, and temperature is stud-
ied with the primary objective to obtain a better understand-
ing of the dynamical evolution of local hydro-meteorological
variables affected by global atmospheric-oceanic phenom-
ena. The results from the analyses display rather clear low-
order phase space trajectories when treating the time series
individually. However, when plotting phase space trajecto-
ries for several time series jointly, complicated higher-order
nonlinear relationships emerge between the variables. Con-
sequently, simple data-driven prediction techniques utiliz-
ing phase-space characteristics of individual time series may
prove successful. On the other hand, since either the time
series are too short and/or the phase-space properties are too
complex when analysing several variables jointly, it may be
difficult to use multivariable statistical prediction techniques
for the present investigated variables. In any case, it is es-
sential to further pursue studies regarding links between the
SOI and observed local climatic and other geophysical vari-
ables even if these links are not fully understood in physical
terms.

Correspondence to:Y.-H. Jin
(jin.younghoon@tvrl.lth.se)

1 Introduction

Global climatic variation and warming are expected to result
in significant changes in local and regional climate. It is es-
pecially local temperature and precipitation patterns that are
expected to significantly deviate from the present-day levels
in case of a significant future global warming. The Southern
Oscillation Index (SOI) is an easily quantifiable climatic pa-
rameter that can be used to measure the strength of the atmo-
spheric signal in local and regional climatic data. The SOI is
defined as the normalized difference in surface pressure be-
tween Papeete at Tahiti in central Pacific Ocean and Darwin
in northern Australia. The SOI characterizes the inter-annual
atmospheric seesaw phenomenon called Southern Oscilla-
tion (SO). Quantitative links between the SOI and observed
local climatic and other geophysical variables are important
to establish because they can be used as early indicators of
near-term extreme weather or long-term effects on available
water resources (e.g. Chiew et al., 1998).

The El-Niño – Southern Oscillation (ENSO) phenomenon
has been shown to affect large-scale temperature and
weather patterns for many areas of the world (e.g. Gor-
don, 1986; Opoku-Ankomah and Cordery, 1993; Uvo et
al., 1998). Similarly, during recent years strong con-
nections between ENSO and large-scale hydrological and
hydro-meteorological anomalies have been demonstrated
(e.g. McBride and Nicholls, 1983; Moss et al., 1994; Uvo
and Graham, 1998). Hense (1987) hypothesized the exis-
tence of a chaotic strange attractor for several ENSO related
monthly time series. Similarly, several ENSO models have
been shown to exhibit chaotic properties (Jin et al., 1994;
Tziperman et al., 1994). Elsner and Tsonis (1992) analyzed
time series of the El-Niño – Southern Oscillation and found
a significant nonlinear structure on the monthly time scale.
Kawamura et al. (1998) on the other hand, found no evidence
of chaos when analyzing monthly Southern Oscillation Index
for 130 years.
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Figure 1. Time series plots of raw monthly (a) SOI, (b) precipitation, and (c) temperature. 6 

7 

Fig. 1. Time series plots of raw monthly(a) SOI, (b) precipitation,
and(c) temperature.

As indicated from the above, finding quantitative links be-
tween the SOI and local climatic variables may be expected
to be hampered by the strong nonlinearities involved when
studying relationships between joint atmosphere-ocean-land
surface data. Recently, Kawamura et al. (2000) showed that
categorized extreme SOI displays corresponding elevated
values of temperature and precipitation in south Japan. Con-
sequently, it has been shown that certain kinds of co-variation
exist between SOI and local temperature and precipitation.
This type of relationship, however, is not easily distinguished
using simple linear statistics. Consequently, there are needs
to develop methods that can display complicated nonlinear
relationships among several variables simultaneously. We
thus, attempt to further investigate these relationships for SOI
and local temperature and precipitation in south Japan.

In this paper we investigate nonlinear relationships be-
tween SOI, temperature, and precipitation at Fukuka, Japan,
using a multivariable dynamical approach. The method,
which is based on chaos theory, has been significantly devel-
oped during the past two decades (see e.g. Sivakumar, 2004).
Our main interest is focused towards simultaneous temporal
variation in the span 10–100 years. The approach involves
investigation of the dynamical variational pattern in phase
space after standardization and nonlinear noise reduction. In
the first parts of the paper we outline the data transformation
and methodology. Then follow analyses using joint phase
space trajectories and correlation dimension estimation. We
close with a summary and discussion of practical implica-
tions.

2 Data used

Monthly time series of SOI, precipitation, and temperature
are used to investigate joint phase space relationships. The
SOI data are calculated using the mean sea level pressure
(MSLP) at Papeete, Tahiti (149.6◦ W, 17.5◦ S) in central
Pacific Ocean and Darwin (130.9◦ E, 12.4◦ S) in northern
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Figure 2. Trend-removal for temperature data from 1937: (a) annual mean temperature and its 7 

thirty-year moving average, (b) annual mean temperature and its thirty-year moving average 8 

after linear trend was removed, and (c) trend-removed monthly temperature. 9 

10 

Fig. 2. Trend-removal for temperature data from 1937:(a) annual
mean temperature and its thirty-year moving average,(b) annual
mean temperature and its thirty-year moving average after linear
trend was removed, and(c) trend-removed monthly temperature.

Australia. The MSLP data starting from 1882 are avail-
able through web sites such as NOAA/National Weather Ser-
vice (www.cpc.ncep.noaa.gov/data/indices). However, in the
present study, we use MSLP data from 1866 augmented
by Ropelewski and Jones (1987), and Allan et al. (1991).
Two commonly used methods to compute SOI from MSLP
at Tahiti and Darwin are Troup’s method (Troup, 1965;
McBride and Nicholls, 1983) and the Climate Prediction
Centre’s method (Ropelewski and Jones, 1987). The dif-
ference between the two methods is very small as pointed
out by McBride and Nicholls (1983), Ropelewski and Jones
(1987), and Kawamura et al. (1998, 2001). Therefore, in
the present study, only the Troup’s SOI time series are used.
Troup’s method first takes the difference between pressures
at Tahiti and Darwin. Then the difference series is normal-
ized to mean zero and standard deviation one by subtracting
the monthly mean values and dividing with the monthly stan-
dard deviations using a base period (usually 1951–1980) for
the computation of the mean and standard deviation. This
normalized time series is defined as Troup’s SOI and used in
the present study (Fig. 1a).

Monthly precipitation and temperature data at Fukuoka,
Japan, are selected because of long and well-established
observations. The annual mean for precipitation here is
1627 mm, while the annual mean temperature is 15.6◦C. The
time series plots are shown in Figs. 1b and 1c. The monthly
temperature data, however, display clear positive linear trend
from about 1937. Therefore, mean annual values and thirty-
year moving averages are calculated to remove the trend (see
Fig. 2). It is likely that this linear trend is an effect of urban-
ization. For all variables, the data periods are from 1890 to
2000.

www.cpc.ncep.noaa.gov/data/indices
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Figure 3. Normally standardized data for (a) precipitation and (b) temperature. 6 

7 

Fig. 3. Normally standardized data for(a) precipitation and(b)
temperature.

3 Data transformation

In order to be able to compare the present nonlinear analy-
ses results with previous analyses involving linear statistical
techniques (see Kawamura et al., 2000), we perform simi-
lar data transformation below for the same data. The SOI
data are used directly without transformation due to its al-
ready normal distribution. However, the precipitation and
temperature data display positive skewness and annual peri-
odicity (e.g. Jin et al., 2002a, b). Therefore, precipitation,
and temperature data are normalized and standardized to re-
move deterministic components, i.e. seasonality and annual
periodicity (Salas, 1993). The monthly precipitation data are
normalized by a cubic root transformation. The normalized
precipitation is then standardized to zero mean and standard
deviation of one (Fig. 3a). The temperature data are sim-
ilarly standardized to zero mean and standard deviation of
one (Fig. 3b; e.g. Jin, 2004). The standardization with nor-
malization of the local variables is not expected to alter the
dynamical co-evolution of deterministic components in the
time frame for the different variables. In other words, the
variations around the mean including extreme values or out-
liers in the data are mainly considered in the present study.

The next procedure is to calculate accumulated deviations
from mean for all time series. This is done in order to display
general quasi-periodical characteristics in time domain. The
resulting time series are shown in Figs. 4a–4c. Generally,
observed geophysical time series data contain a substantial
amount of noise. Therefore, the data need to be cleaned by a
noise reduction scheme (e.g. Grassberger et al., 1991). Mov-
ing average and low-pass filter are commonly used methods
for noise reduction. In the present study, however, we use
a nonlinear noise reduction scheme specifically developed
for deterministic dynamics studies proposed by Schreiber
(1993). The general idea of the nonlinear smoothing is to
replace each coordinate in the time series{xi}, i=1,. . . ,T , by
an average value over a suitable neighborhood in the phase
space. The neighborhoods are defined in a phase space re-
constructed by delay coordinates. To define the neighbor-
hoods, first fix the positive integersk and l, and construct
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Figure 4. Accumulated deviations from mean for (a) SOI, (b) precipitation, and (c) 7 

temperature. 8 
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Fig. 4. Accumulated deviations from mean for(a) SOI, (b) precip-
itation, and(c) temperature.

embedding vectorsXi .

Xi = [xi−k, ... , xi+l]. (1)

A radiusη is chosen for the neighborhoods. For each coor-
dinate inXi find the set�η

i of all neighborsXj for which

sup
{ ∣∣xj−k−xi−k

∣∣ , ..., ∣∣xj+l−xi+l

∣∣ } ≡
∥∥Xj−Xi

∥∥
sup<η, (2)

where the symbol “sup” denotes the highest value of the el-
ements. Consequently, the present coordinatexi is replaced
by its mean value in�η

i :

xcoor
i =

1∣∣�η
i

∣∣ ∑
�

η
i

xj . (3)

Here,k and l are both selected to 12 months. As a result,
the first and last 12 months of the monthly time series are not
noise-reduced, and the unchanged periods are neglected in
the following analysis. The resulting noise-reduced monthly
time series are shown in Figs. 5a–5c.

4 Phase space analysis

Dissipative dynamical systems exhibiting chaotic behavior
generally display strange attractors in the phase space (Grass-
berger and Procaccia, 1983). The attractor can be examined
in the phase space by using the method of time-delay co-
ordinates. For this, time series are plotted versus the same
series but with a time delay on the other axes. In mathemat-
ical terms, let{xi} be a discrete sample time series. A state
space vectorXi is constructed, or embedded fromm con-
secutive values of the time series into a phase space whose
coordinates are described by

Xi = [xi, xi+τ , ... , xi+(m−1)τ ] (4)

whereτ is the delay time, and the dimensionm of the vector
is known as the embedding dimension. Following Eq. (4), a
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Figure 5. Noise-reduced monthly time series of the accumulated deviations from mean for (a) 7 

SOI, (b) precipitation, and (c) temperature. 8 

9 

Fig. 5. Noise-reduced monthly time series of the accumulated devi-
ations from mean for(a) SOI,(b) precipitation, and(c) temperature.

new time series of the state space vectorX1, X2, ... , XN

is generated. Each vectorXi describes a point in anm-
dimensional phase space. Thus, the sequence of these vectors
defines a trajectory in time.

Figures 6a–6c show phase space trajectories for SOI, pre-
cipitation, and temperature, respectively, as previously de-
fined. In the figures an embedding dimension equal to three
(i.e. m=3) was used. From the figures it can be seen that
this embedding dimension efficiently visualizes the dynami-
cal evolution of the data used for the study. The generated
time series for the state space vectors are connected with
straight lines to indicate the continuous time evolution, even
though the transition values between one space vector and
the next are not known. For all variables, the delay timeτ

was selected to four months. As seen from the figures all
time series display a relatively clear evolution for this delay
time in the three-dimensional phase space.

If a time series contain chaotic properties, the state vector
Xi will be attracted to a particular region in the phase space
known as the strange attractor (see e.g. Jinno et al., 1995;
Berndtsson et al., 1994). The attractor may, however, be
completely concealed if the time series contain noise. There-
fore, it is important to clean the time series before any type
of analysis.

The phase space plots of SOI, precipitation, and tempera-
ture as seen in Fig. 6 appear to display regions of recurring
visits in time domain. These may indicate the region which
could hold a strange attractor. Due to the rather short time se-
ries, however, the number of recurring visits in phase is also
rather small and it is therefore difficult to make an exhaustive
analysis.

Corresponding plots for joint phase space plots are shown
in Fig. 7. As seen from the figure the phase space trajecto-
ries for these relationships are much more complicated and
do not display any obvious relationships. Consequently, if
relationships exist, they contain higher-order nonlinearities.
The diagrams can, however, be used to show similarities be-
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Fig. 6. Phase space plots for(a) SOI, (b) precipitation, and(c)
temperature with delay timeτ = four months, respectively.

tween different co-evolving climatic variables and driving
climatic indicator such as the SOI. For precipitation and tem-
perature it can be seen that years that represent a local min-
imum and/or maximum in the cumulative time series dia-
grams (Fig. 5) is clearly displayed in the joint phase space
diagrams. Examples of such situations are the years 1945,
1963, 1976, and 1998 for precipitation. Corresponding years
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Figure 7. Joint phase space plots of SOI, precipitation, and temperature (τ = 0). 7 

Fig. 7. Joint phase space plots of SOI, precipitation, and tempera-
ture (τ=0).

for temperature are 1891, 1928, 1976, and 1998. For these
years SOI displayed maximum for 1976 and minimum for
1998. For the years 1891, 1928, 1945, and 1963, SOI dis-
played intermediate values. When comparing joint precipita-
tion and temperature phase space trajectories, 1891 and 1963
were years when both variables displayed large maxima and
1928 and 1945 large minima.

 22

 1 

-50
0

50
100

150

-30
-20

-10
0

10
20

30
-60

-50

-40

-30

-20

-10

0

10

SOI

Precipitation

Te
m

pe
ra

tu
re

 2 

 3 

 4 

Figure 8. Joint three-variable phase space plot of SOI, precipitation, and temperature (τ = 0). 5 
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Fig. 8. Joint three-variable phase space plot of SOI, precipitation,
and temperature (τ=0).

In a similar way, phase space plots can be drawn for all
three variables jointly. Figure 8 shows this for all the three
investigated time series. Again, the plot shows an extreme
variation and no obvious structure. This may partly be due to
that time series are relatively short and consequently do not
cover many quasi-periodical trajectories in the phase space.
However, the figure still shows the extreme nonlinearities at
hand and the complicated three-dimensional structure among
the three interrelated variables.

5 Correlation dimension

Strange attractors are typically characterized by a fractal di-
mensiond which is smaller than the number of degrees of
freedomF , d<F (Grassberger and Procaccia, 1983). There
are several ways to estimate the fractal dimension. One of
the most popular methods is the correlation dimension intro-
duced by Grassberger and Procaccia (1983), estimated ac-
cording to the algorithm given by Grassberger (1990). This
algorithm is now the most commonly used way for fractal
dimension estimation and, therefore, is used for the present
study.

We now describe briefly the Grassberger and Procaccia al-
gorithm. Sufficiently close trajectories will be attracted to
particular regions of the phase space known as strange at-
tractor if there are chaotic characteristics in the time series.
Therefore, the points will be partially correlated (Jeong and
Rao, 1996). A measure of the spatial correlation, which is
commonly used for the correlation dimension method, is the
correlation integralC(N, r, m) which is approximated by

C(N, r, m) =
2

N(N − 1)

N∑
j=1

N∑
i=j+1

2
(
r −

∣∣Xi − Xj

∣∣), (5)

where 2 is the Heaviside function defined by2(s)=0
for s<0 and 2(s)=1 for s>0. In the limit N→∞,
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C(N, r, m)→C(r, m) (Ding et al., 1993). The double sum
counts the number of pairs (i, j) whose distance

∣∣Xi−Xj

∣∣
is less thanr. For small values ofr, the correlation integral
C(r, m) exhibits a power-law dependence onr.

C(r)∼rd , (6)

whered is the correlation dimension of the attractor. The
dimensiond of the attractor is given by the slope of logC(r)

for the slope of logr according to:

logC(r) = d |logr| . (7)

For chaotic data,d will converge to a constant value with
increasing embedding dimensionm. The constant value is
an estimate of the correlation dimension which measures the
local structure of the strange attractor. The dimensiond of
the strange attractor indicates at least how many variables
are necessary to describe the evolution in time.

Figures 9a, 10a, and 11a show the correlation integrals
C(r) on logarithmic scales as a function of distancer by
varying embedding dimension m from 2 to 10. They were
calculated for the noise-reduced time series of accumulated
deviations from mean for SOI, precipitation, and tempera-
ture, respectively. Figures 9b, 10b, and 11b, on the other
hand, show the local slopes{d logC(r)/d logr} for the same
data. In these figures, distancer is normalized by its maxi-
mum value. If the slopes converge to a constant value with
increase of embedding dimensionm, the convergent slope is
considered as the correlation dimensiond of the time series.
This, thus, indicates the number of mathematical variables
needed in the equation system to simulate a similar process.

For all variables, the calculated correlation integralC(r) is
almost the same for any embedding dimensionm, although
the integrals for temperature shows a wider range for a small
distancer. This means the slopes of logC(r) quickly con-
verge into a specific value with the increase ofm. The con-
vergent slopes for all variables are less than two, i.e. corre-
lation dimensiond<2, which would indicate a chaotic series
in two-dimension becaused indicates the necessary variables
to describe the time series, as mentioned before. However,
this is forbidden according to Poincare-Bendixson theorem
which states that a continuous one- or two-dimensional sys-
tem cannot exhibit a chaotic behaviour in a bounded region
of the phase space (Hense, 1987). Therefore, nonlinearly
smoothed data of the accumulated deviations for all variables
cannot be considered chaotic, even though they have conver-
gent slopes in their logarithmic plots ofC(r) versusr.

6 Conclusions and discussion

In the paper we outlined a methodology to investigate joint
phase space characteristics of several climatic variables by
using ideas from dynamical systems theory. The data used
were firstly treated for trends and non-normal distributions.
After linear trend removal for temperature and normalization
by cubic transformation for precipitation, both time series
were standardized to zero mean and standard deviation of
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Figure 9. (a) Correlation integral C(r) versus distance r for various embedding dimension m 6 

of noise-reduced accumulated deviations for SOI; (b) their local slopes rdrCd log/)(log . 7 
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Fig. 9. (a) Correlation integralC(r) versus distancer for various
embedding dimensionm of noise-reduced accumulated deviations
for SOI; (b) their local slopesd logC(r)/d logr.

one. Consequently, the series are jointly homogeneous. Af-
ter this the accumulated deviations from the mean were cal-
culated for all three time series. Finally, the time series were
noise reduced using an especially designed nonlinear filter.

The results from the analyses displayed rather clear phase
space trajectories when treating the time series individually.
However, when plotting phase space trajectories for several
joint time series complicated relationships emerge. It can
thus be said that the joint relationships between the three in-
vestigated variables are complex with no obvious relation-
ships. It can thus be argued that simple data driven statistical
prediction techniques may be used for individual variables
(e.g. nonlinear auto-regressive techniques, local polynomi-
als in the phase-space, etc; see e.g. Berndtsson et al., 2001).
When it comes to joint co-variation of several variables, it ap-
pears that similar techniques can not be used due to the com-
plex higher-order nonlinearities involved. The methodology
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Figure 10. (a) Correlation integral C(r) versus distance r for various embedding dimension m 6 
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Fig. 10. (a)Correlation integralC(r) versus distancer for various
embedding dimensionm of noise-reduced accumulated deviations
for precipitation;(b) their local slopesd logC(r)/d logr.

presented herein, however, may serve as a basis for prelim-
inary analysis of deterministic dynamics of several jointly
interrelated variables. Because of the importance that SOI
has as a driving ocean-atmosphere climatic force, it is im-
portant to investigate quantitative links between the SOI and
observed local climatic and other geophysical variables even
if they are not fully understood in physical terms. Observed
nonlinear teleconnections may then be used as early indica-
tors of near-term extreme weather or long-term effects on
available water resources. Often these complex relationships
need to consider relationships among several variables simul-
taneously. In this respect, the outlined methodology in this
paper may be used as a first step towards this objective.
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Gust. Richert Foundation for this study.
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Figure 11. (a) Correlation integral C(r) versus distance r for various embedding dimension m 6 
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