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Abstract. We show how the traditional 4D-Var method
can be adapted for implicit time-integration and extended
for multi-parameter estimation. We present the algorithm
for this new method, which we call I4D-Var, and demon-
strate its performance using a fully-implicit barotropic quasi-
geostrophic model of the wind-driven double-gyre ocean cir-
culation. For the latter model, the different regimes of flow
behavior and the regime boundaries (i.e. bifurcation points)
are well known and hence the parameter estimation problem
can be systematically studied. It turns out that I4D-Var is
able to correctly estimate parameter values, even when back-
ground flow and “observations” are in different dynamical
regimes.

1 Introduction

The kinetic energy of ocean flows is distributed over many
scales of motion. In a numerical model with a specified res-
olution, only part of the range of scales can be resolved. The
effect of the unresolved scales on the transport of momen-
tum, heat and salt are represented by so-called subgrid-scale
parameterizations. These representations necessarily intro-
duce parameters of which the magnitude is very uncertain.

A typical example is the representation of the horizontal
mixing of heat in ocean flows. So-called meso-scale eddies,
with typical spatial scales of 10–50 km, take care of much of
this mixing. In ocean models with a too coarse horizontal
resolution, say 1◦, the effect of these eddies cannot be ade-
quately captured and the net horizontal heat flux8 is very
often approximated as

8 = −KH∇HT , (1)

whereT is the temperature andKH is a so-called eddy dif-
fusivity. Similar parameterizations are used for the transport
of momentum and in this case the coefficients are referred to
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as eddy-viscosities. IfAH is the horizontal eddy viscosity in
a coarse resolution model, then estimates ofAH range from
103 m2s−1 to 105 m2s−1. In a flow having a typical length
scaleL and a horizontal velocity scaleU , the Reynolds num-
ber

Re =
UL

AH
(2)

is hence a very uncertain parameter.
The parameterization of subgrid-scale processes intro-

duces model errors and one cannot expect that the large-scale
ocean flows simulated resemble the ones observed. The qual-
ity of these simulations can, however, be substantially im-
proved by using observations in a data-assimilation frame-
work. Within this framework, the parameter estimation pro-
cedure is aimed at choosing an optimal parameter vector in
an admissible parameter volume, so that the model solution
corresponding to this parameter vector is “close to” observa-
tions.

One of the data-assimilation approaches used is the en-
semble Kalman filter method (EnKF), which is an effi-
cient Monto-Carlo approximation to optimal Kalman filter-
ing (Kalman, 1960; Evensen, 1994, 2003). Although this
method is generally used for initial state estimation,Der-
ber (1989); Anderson(2001); Hargreaves et al.(2004) sug-
gested the application of EnKF for parameter estimation,
by considering the parameters as additional state variables.
This method was recently applied byAnnan and Hargreaves
(2004) to estimate a single parameter in theLorenz(1963)
model. InAnnan et al.(2005), the method was applied to
estimate parameters in an intermediate-complexity climate
model.

A second approach used is variational data assimilation
with 4D-Var as a typical method. In this method, all infor-
mation that is present in observations is combined with the
evolution determined by a particular ocean, atmosphere or
climate model. In the 4D-Var approach, a cost function is
minimized by varying the initial condition and/or the forc-
ing of the model. This cost function measures the distance
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between the data and a state vector at a sequence of times.
The so-called analysis is that state which minimizes the cost
function and the minimization procedure requires the evalua-
tion of the gradient of the cost function. The 4D-Var method
is routinely applied at ECMWF in weather forecasting (Ra-
bier et al., 2000; Mahfouf and Rabier, 2000; Klinker et al.,
2000). The method is also used in operational oceanogra-
phy, for example within the French Mercator project (Weaver
et al., 2003; Vialard et al., 2003) where the use of observa-
tions to initialize ocean circulation models results in better
forecasts.

Parameter estimation using variational methods has been
used for example byYu and O’Brien (1991) to estimate
wind-stress coefficients and eddy-viscosity profiles.Zhu
and Navon(1999) study adjustment of three parameters, one
of them being a horizontal eddy viscosity, in the Florida
State University global atmosphere model using a variational
approach. They combine 4D-Var with a penalty function
method to transform the constrained optimization problem
into an unconstrained optimization problem. They show that
maximum benefit is obtained from the combined effect of
both parameter estimation and initial condition optimization.
An overview of many of the current parameter estimation
methods used is presented inNavon(1998).

In general, the gradient of the cost function in the 4D-
Var method is calculated by using both the forward and the
adjoint model. In this paper, we show that when a fully-
implicit model is available, 4D-Var can be performed with-
out the need for an explicit adjoint model. The gradient can
be computed by using the transpose of the Jacobian matrix
that is available during the implicit time stepping. This im-
plicit variant of 4D-Var, called I4D-Var, is highly suitable
for strongly nonlinear problems, since the Jacobian (the tan-
gent linear model) is evaluated at each time step and hence
varies over a single assimilation interval. In addition, we
show how I4D-Var can be adapted for parameter estimation.
The capabilities of the resulting method are shown for the
barotropic quasi-geostrophic model of the double-gyre wind-
driven ocean circulation. From the bifurcation diagrams for
these flows (Dijkstra and Katsman, 1997), the different flow
regimes (steady, periodic and quasi-periodic) are known and
hence the parameter estimation problem can be studied sys-
tematically. Using synthetic observations from the same
model, we will show that I4D-Var is able to correctly es-
timate parameter values, even when background flow and
(synthetic) observations are in different dynamical regimes.

2 The I4D-Var method

To describe the version of 4D-Var for implicit models and its
extension for multi-parameter estimation, we start by sum-
marizing the main steps of 4D-Var.

2.1 A summary of 4D-Var

Let w be the state vector consisting of model variables that
are to be estimated by combining model dynamics and ob-
servations. Ifwb is the background state andδw is the incre-
ment on the background state, then with 4D-Var one wants
to determineδw such that the resulting statew defined by

w = wb
+ δw. (3)

is “close” to observations. LetM=M(ti, ti−1) represent the
evolution operator of the particular model used, such that

w(ti) = M(ti, ti−1)(w(ti−1)). (4)

Substitution of Eq. (3) into Eq. (4) and linearizing around
wb(ti) gives:

w(ti) ≈ M(ti, ti−1)(w
b(ti−1))+ M(ti, ti−1)δw(ti−1) , (5)

whereM(ti, ti−1) is the tangent linear operator,

M ≡
∂M

∂w

∣∣∣∣
w=wb

, (6)

and δw(ti)=M(ti, ti−1)δw(ti−1) is the corresponding
tangent-linear model. Letyi denote the vector of ob-
servations andHi the observation operator at timeti ,
then

yi = Hi(w(ti)) ≈ Hi(w
b(ti))+ H iδw(ti) , (7)

whereH i is the linearization ofHi around the background
state. By the hypothesis of causality, we have

M(ti, t0) = M(ti, ti−1) · · · M(t1, t0), (8a)

M(ti, t0) = M(ti, ti−1) · · · M(t1, t0), (8b)

and the model estimates of the observations can be linked to
the initial conditions att=t0 through Eq. (8a) as

Hi(w(ti)) ≈ HiM(ti, t0)(w
b(t0))+ H iM(ti, t0)δw(t0). (9)

In variational methods, such as 4D-Var, the analysiswa is
defined as the state vector which minimizes both the distance
to the backgroundwb(t0) and to the time-sequence of obser-
vationsyi in the intervalt0 ≤ ti≤tn. If the analysis is close
to the background state then the cost function can be written
asCourtier et al.(1994):

J(δw) = δwTB−1δw +

n∑
i=0

dT
i R−1

i d i, (10)

whereB is the matrix of background error covariances,Ri

is the matrix of observation error covariances,δw is the in-
crement on the background state andn is the length of the
assimilation intervals (withn+ 1 points). The departuresd i
are defined as:

d i = yi −HiM(ti, t0)(w
b(t0))− H iM(ti, t0)δw(t0). (11)
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If δwa is defined as the solution of the minimization problem,
i.e.

J (δwa) = min
δw

J(δw). (12)

then the analysis atti is given by

wa(ti) = M(ti, t0)(w
b(t0)+ δwa), (13)

and the backgroundwb(tn+1) at the beginning of the next
interval is given by:

wb(tn+1) = M(tn+1, t0)(w
b(t0)+ δwa). (14)

To solve the minimization problem (Eq.12), the gradient

∇J(δw) = 2B−1δw − 2
n∑

i=0

MT(ti, t0)HT
i R−1

i d i, (15)

has to be calculated. In an explicit time-stepping ocean, at-
mosphere or climate numerical model, the usual procedure is
to compute this gradient using a forward evolution over the
assimilation interval and a backward evolution using the ad-
joint model, with evolutionMT(ti, ti−1) and forcingHT

i d i . It
requires a discrete adjoint model that is well-defined and as
efficient as the forward model.

2.2 4D-var for implicit models (I4D-var)

For models in which implicit time stepping is used, such
as a Crank-Nicholson method, no explicit adjoint model is
needed. To see why, we first write a model in general opera-
tor form as

T
∂w

∂t
+ Lw +N (w)w = F, (16)

whereT andL are linear operators,N is a nonlinear op-
erator andF contains the explicitly known part of forcing.
Spatial discretization gives

T
∂w

∂t
+ Lw + N(w)w = F , (17)

with T, L , N andF being discretized versions ofT , L,N
andF , respectively. Using a time step1t with time indexi,
a general implicit scheme can be defined forω ∈ (0, 1] as,

1

1t
T(wi+1

− wi)+ (1 − ω)(L + N(wi))wi
+

ω(L + N(wi+1))wi+1
= (1 − ω)F i

+ ωF i+1. (18)

For example, forω = 1 the backward Euler method is ob-
tained and forω = 1/2 the Crank-Nicholson method. Using
the notationNi

= N(wi), then re-arranging Eq. (18) gives:

[
1

1t
T + ω(L + Ni+1)]wi+1

= Gi (19a)

Gi
=[

1

1t
T−(1−ω)(L+Ni)]wi

+(1−ω)F i
+ωF i+1. (19b)

This nonlinear system of equations is solved using the
Newton-Raphson method. Let the Newton iteration index be
indicated byl andNi+1,l be the linearization ofNi+1 around
wi+1,l . For the system (Eq.19a), the Newton-Raphson
method is:

wi+1,0
= wi, (20a)

wi+1,l+1
= wi+1,l

+1wi+1,l+1, (20b)

J1wi+1,l+1
= Jwi+1,l

+ Gi , (20c)

J =
1

1t
T + ω(L + Ni+1,l). (20d)

and the linear system (Eq. 20c) has to be solved for each
iteration. The relation (Eq.18) provides an explicit represen-
tation of the spatially discretized evolution operator as:

M(ti+1, ti)(w(ti)) =

[
1

1t
T + ω(L + Ni+1)

]−1

Gi (21)

The spatially discretized tangent linear model follows
from linearization of this operator aroundwb(ti) and be-
comes

M ≡
∂M

∂w

∣∣∣∣
w=wb

=

 1

1t
T + ω(L + Ni+1)︸ ︷︷ ︸

C1,i


−1

[
1

1t
T − (1 − ω)(L + Ni)

]
︸ ︷︷ ︸

C2,i

(22)

and it can be explicitly written as

M(ti+1, ti) = C−1
1,i C2,i . (23)

As the Jacobian matrixJ is available during the Newton-
Raphson iteration, one gets the tangent-linear model and its
transpose, to be used in the computation of the cost function
in 4D-Var, nearly for free. This approach has another advan-
tage: the tangent linear model is adapted at each time step
and hence I4D-Var is expected to perform better in strongly
nonlinear problems than the original 4D-Var method.

2.3 Parameter estimation

As mentioned in the introduction, typically parameter val-
ues are uncertain in ocean, atmosphere or climate models, in
particular those associated with the mixing of, for example,
heat and momentum. The typical problem which we consider
here is one in which the parameters guessed are far from the
value needed for the model solution to be close to observa-
tional values. When parameters are not adapted, 4D-Var may
improve the results of badly tuned models but usually large
error will remain. How can one adapt 4D-Var to change these
parameters to “correct” values during assimilation?
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Parameter estimation is difficult in 4D-Var, since a change
in the underlying vector field due to a parameter variation
cannot be easily taken into account. In I4D-Var, however, the
parameter dependence of the local Jacobian matrix is explic-
itly available. Letp be the vector of parameters and rewrite
the cost function (10) to explicitly include the parameters in
its formulation, i.e.

J(δw,p) =

n∑
i=0

dT
i R−1

i d i, (24)

where the departuresd i are given by

d i = yi −HiM(ti, t0,p)(w
b(t0))− H iM(ti, t0,p)δw. (25)

andM(ti, t0,p) represents the evolution operator. The mini-
mization problem now becomes:

min
δw,p

J(δw,p). (26)

When a simultaneous minimization is attempted over both
the initial condition or forcing and the parameters, the cost
function is no longer quadratic since the introduction of the
parameters as control variables gives additional nonlineari-
ties. Hence, a unique minimum is no longer guaranteed; a
different approach is needed.

In Zhu and Navon(1999), the cost function is extended
by including a penalty termλT g(p), where the penalty co-
efficient vectorλ is determined such that penalty term is of
the same order as the other terms in the cost function. The
quadratic vector functiong(p) is introduced to set the bound-
aries in the parameter space. The advantage is that the cost
function is again quadratic, but the direct disadvantage is that
the results of the analysis can be very sensitive to the spec-
ification of the penalty coefficient vector (Nash and Sofer,
1996).

In I4D-Var, the Jacobian matrix is explicitly available at
each time step, while the derivative of the vector field to each
parameter can be made available. Hence, instead of simulta-
neously minimizing overδw andp, one can attempt to min-
imize sequentially overδw andp. In this approach, we first
determineδwa as a solution of the minimization problem

min
δw

J(δw,pb) (27)

with δw=0 as a first guess for the minimization andpb is
the parameter vector for which the background has been cal-
culated. This minimization problem yields an analysis atti
given by

wa(ti) = M(ti, t0,p
b)(wb(t0)+ δwa). (28)

Next, we determinepa such that the analysis (Eq.28) is
improved. This can be done by minimizing

min
p

J(δwa,p), (29)

where the linearization around the background state has been
dropped, i.e. the departures are taken as

d i = yi −HiM(ti, t0,p)(w
b(t0)+ δp). (30)

As a first guess, the parameters of the background are
taken asp = pb. When these problems are solved, then the
analysis is found from

wa(ti) = M(ti, t0,p
a)(wb(t0)+ δwa), (31)

and the backgroundwb(tn+1) at the beginning of the next
interval is given by:

wb(tn+1) = M(tn+1, t0,p
a)(wb(t0)+ δwa). (32)

This sequential minimization has several advantages over
Eq. (26). First, for the minimization overδw in Eq. (27),
the cost function remains quadratic and hence a unique min-
imum can be expected. Secondly, minimizing over the initial
conditions first, yields an improvement of the model solution.
This improvement gives an indication whether the current es-
timatepb is accurate. If not, the initial conditionδwa gives
an analysiswa(t0), which is close to the observationy0. Fix-
ing δw=δwa introduces a strong constraint on the minimiza-
tion problem (Eq.29). ThoughJ (δw,p) is non-linear and
therefore multiple minima of Eq. (29) may be expected, this
constraint reduces the number of feasible minima. As a re-
sult, the computation is numerically better conditioned. The
main advantage of I4D-Var over parameter estimation with
4D-Var is that I4D-Var takes in account changes in the state
due to a parameter variation, since the Jacobian is evaluated
for each time step and therefore also the parameter depen-
dence of the local Jacobian.

To test the I4D-Var method obtained in this way, one
would like a problem for which it is known that different pa-
rameter values lead to a qualitatively different type of flow
behavior. For such a problem, parameters can be chosen
in one flow regime (for example, a regime where only one
steady state solution exists fort→∞) whereas synthetic ob-
servations can be chosen at parameter values in another flow
regime (for example, a regime of multiple steady states, or
(quasi-) periodic behavior). The example below of the wind-
driven circulation in an idealized ocean basin is ideally suited
as such a problem, since the regime boundaries have been
studied extensively (Dijkstra and Katsman, 1997).

3 The quasi-geostrophic barotropic double-gyre flow

We consider a rectangular ocean basin of sizeL×L having a
constant depthD. The basin is situated on a midlatitudeβ-
plane with a central latitudeθ0=45◦ N and Coriolis param-
eterf0=2�sinθ0, where� is the rotation rate of the Earth.
The variation of the Coriolis parameter at the latitudeθ0 is
indicated byβ0. The densityρ of the water is constant and
the flow is forced at the surface through a wind-stress vec-
tor τ0[τ x(x, y), τ y(x, y)]. The governing equations are non-
dimensionalized using the horizontal length scaleL, the ver-
tical length scaleD, a horizontal velocity scaleU and the
advective time scaleL/U . A typical choice of the horizon-
tal velocity scaleU is based on the Sverdrup balance and is
given by

U =
τ0

ρDβ0L
. (33)
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The effect of ocean-atmosphere deformations on the
flow is neglected. The dimensionless barotropic quasi-
geostrophic model of the flow for the vorticityζ and the
geostrophic streamfunctionψ is (Pedlosky, 1987)[ ∂
∂t

+ u
∂

∂x
+ v

∂

∂y

]
[ζ + βy] = Re−1

∇
2ζ

+ατ

(∂τ y
∂x

−
∂τ x

∂y

)
, (34a)

ζ = ∇
2ψ (34b)

where the horizontal velocities are given byu = −∂ψ/∂y

andv = ∂ψ/∂x. This equation contains several parameters.
These are the Reynolds numberRe, the planetary vorticity
gradient parameterβ and the wind-stress forcing strengthατ .
These parameters are defined as:

Re =
UL

AH
; β =

β0L
2

U
; ατ =

τ0L

ρDU2
(35)

whereg is the gravitational acceleration andAH is the lateral
friction coefficient. If the characteristic velocityU is chosen
as in Eq. (22), it follows thatατ = β and there are only two
independent parameters in the problem. We assume no-slip
conditions on the east-west boundaries and slip conditions
on the north-south boundaries. The boundary conditions are
therefore given by

x = 0, x = 1 : ψ =
∂ψ

∂x
= 0, (36a)

y = 0, y = 1 : ψ = ζ = 0. (36b)

The wind-stress forcing is prescribed as

τ x(x, y) =
−1

2π
((1 − a) cos(2πy)+ a cos(πy)), (37a)

τ y(x, y) = 0. (37b)

with a being an additional dimensionless parameter control-
ling the symmetry of the zonal wind stress. Fora=0 the wind
stress is symmetric, with easterlies at the northern and south-
ern boundaries of the domain and westerlies at the midaxis
of the basin.

The governing equations were discretized on a equidis-
tantN×M grid using central spatial differences. The Crank-
Nicholson scheme was used in the time-integration, the non-
linear system of algebraic equations was solved with the
Newton-Raphson method and the emerging linear systems
were solved iteratively with a preconditioned conjugate gra-
dient method. The gradient Eq. (15) was calculated us-
ing backward iteration, which required the transposition of
Eq. (23) and one extra linear system to be solved per iter-
ation. The derivative ofJ with respect to a parameterpj
was, when possible, calculated by differentiation of the dis-
cretized equations Eq. (18) with respect topj . Otherwise
finite differences were used according to

∂J

∂pj

∣∣∣∣
p=p∗

≈
J (δw,p∗

+ εej)− J(δw,p∗)

ε
, (38)

Table 1. Standard values of the parameters for the barotropic quasi-
geostrophic ocean model in the steady flow regime.

Parameter Value

L 1.0 × 106 m
U 7.1 × 10−3 m
D 7.0 × 102 m
β0 2.0 10−11 (ms)−1

f0 1.0 × 10−4 s−1

g 9.8 ms−2

ρ 1.0 × 103 kgm−3

τ0 1.0 × 10−1 Pa

Parameter Value
ατ = β 2.8 × 103

a 0.0

whereej is the j-th unit vector,p∗ is the point at which the
gradient ofJ with respect top is evaluated andε small. The
evaluation of the gradient with respect to one parameter re-
quires two evaluations of the cost functionJ and in com-
parison with the gradient of the cost function with respect to
δw does not require storage of the Jacobian, nor backward
iteration.

4 Results

In this section, we will show the performance of I4D-Var
on three test problems using the barotropic ocean model as
described in the previous section. The latter model is used
as the background model during assimilation and parameter
estimation and also for generation of the “observations” of
the streamfunctionψ . A standard set of parameter values
was chosen that are similar to those inDijkstra and Katsman
(1997) and these values are given in Table1. With the choice
of U as in Eq. (33) and the wind stress as in Eq. (37a), there
are three independent dimensionless parameters in the sys-
tem. We fix the value ofβ and considerRe, ατ anda as our
“uncertain” parameters.

For the parameters as in Table1, Dijkstra and Katsman
(1997) showed that there are several flow regimes depend-
ing on the value ofRe. ForRe<30 the background model
has one unique steady-state symmetric (with respect to the
basin’s mid-axis) double-gyre solution. For 30<Re<52,
two stable asymmetric steady-state solutions exist, one with
a northward jet displacement (the so-called jet-up solution)
and one with a southward jet displacement (the jet-down
solution). Both asymmetric steady states become unstable
for Re>52 due to the occurrence of Hopf bifurcations. For
52<Re<74 periodic orbits exists, while forRe>74 the so-
lutions are first quasi-periodic and thereafter become very ir-
regular. The boundaries between these qualitatively different
dynamical regimes depend on the values ofατ anda. For a
nonzero value ofa, the reflection symmetry with respect to
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Table 2. The values of the dimensionless parameter for each of the
cases I, ..., VI considered.

Regime ατ Re a

I 2800 20 0.0
II 2800 50 0.0
III 2800 120 0.0
IV 2200 20 −0.2
V 3400 50 0.2
VI 3400 120 −0.2

the mid-axis of the basin is broken and no symmetric double
gyre solutions exist anymore.

All solutions below are calculated with a time-step of 1
day on an equidistant 60×40 grid. For moderate values of
the Reynolds numberRe, this resolution is sufficient to cap-
ture an accurate representation of the solutions (Dijkstra and
Katsman, 1997). Six different parameter sets were consid-
ered to illustrate the capabilities of the I4D-Var method (see
Table2). To show the behavior of the background model in
each of these cases, the time evolution of the basin integrated
kinetic energy is shown in Fig.1. For case I, for whicha=0,
a steady symmetric state is obtained of which the stream-
functionψ is plotted in Fig.2a. At a slightly larger value
of Re = 50 (case II), an asymmetric steady state (Fig.2b)
is obtained which is a “jet-up” solution. For an even larger
value ofRe=120 (case III), the flow is time-dependent and
the time-mean of the streamfunction averaged over a 4000
day period is shown in Fig.2c. For the cases IV, V and
VI, the wind-stress forcing is asymmetric (a 6=0). While the
flows for the cases IV and V approach steady states (shown
in Fig. 2d and Fig.2e, respectively), the flow for case VI is
again time-dependent and the time-mean state is plotted in
Fig. 2f.

The steady state and time-dependent streamfunction fields
were used as the initial background or as synthetic observa-
tions in the data-assimilation runs presented below. The ob-
servations ofψ at all the gridpoints were used, i.e.Hi is equal
to the identity operator for alli. Two types of test problems
were considered: single-parameter and multi-parameter esti-
mation. For multi-parameter estimation, a total of 50 itera-
tions were calculated, each with one sequential minimization
as described in Sect. 2.3, and we use 6 points per assimilation
interval. For the single-parameter estimation runs, the com-
putation was terminated after an increase in the optimized
cost function was detected at subsequent intervals. For these
test problems, 5 point per assimilation interval were used.

4.1 Single parameter estimation

In these test-problems, we useRe as the uncertain parame-
ter, while the values ofατ anda are fixed. As a first test,
the unique steady-steady state solution of case I (Fig.2a) for
Re=20 is taken as the initial background and the synthetic

Fig. 1. Time evolution of the basin integrated kinetic energy for the
different cases I, ..., VI.

observations are derived from the steady-state “jet-up” solu-
tion of case II (Fig.2b) forRe=50.

After a few intervals, the estimate ofRe computed with
I4D-Var is already close to “correct” valueRe=50 and even-
tually it converges toward this value (Fig.3a). The value of
the cost function for each interval – before minimization over
the initial conditions (drawn) and after minimization overRe
(dashed) – is shown in Fig.3b. The value of the cost function
converges to zero, indicating that a perfect fit to the synthetic
observations is found. For the first interval, the value of the
cost function is reduced by about three orders of magnitude
after minimization over the initial conditions. In the remain-
ing intervals, a decrease of about one order of magnitude is
found.

In Fig. 3c, theL2-norm of the differences between the ob-
servations and the initial background (drawn) and between
the observations and the analysis (dashed) are plotted. The
difference between analysis and observations is for all in-
tervals smaller than the difference between observations and
background and both norms converge to zero indicating that
a perfect fit has been found. The difference between the
observations and the background increases over the assim-
ilation interval which indicates that the background is still
attracted away from the observations. However, this effect
decreases when the estimate forRe approachesRe=50. Af-
ter the first interval both differences are close to each other
at the first point in the second interval. This shows that the
model solution at this point is already close to the observa-
tions. This is in agreement with the decrease of three orders
of magnitude in the cost function as seen in Fig.3b.

The L2-norm of the initial gradient of the cost function
with respect to the increment (drawn) before sequential mini-
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Fig. 2. Contour plots of the streamfunction field:(a) the steady
state of case I;(b) a steady state of case II;(c) a time-mean field of
case III;(d) steady state of case IV;(e)a steady state of case V; and
(f) a time-mean field of case VI. The contours are with respect to a
maximum over these 6 fields ofψ=2.25, which is equivalent with
a transport of 12.4 Sv (1 Sv=106 m3s−1).

mization and after minimization overRe (dashed) are plotted
in Fig. 3d. The convergence of the gradient to zero indicates
again that both a perfect fit to observations and an accurate
estimate ofRe have been found. During the first 14 intervals,
the dashed curve is above the dotted curve (Fig.3d), but the
distance between the curves is decreasing and becomes neg-
ligibly small after the 14th interval. This indicates that during
the first 14 intervals, (large) improvements inRe and/or the
background model are still possible but that after the 14th
interval, the state-parameter solution is very close to the so-
lution corresponding to the observations. In summary, for
the case in which the initial background and the “observa-
tions” are in different dynamical regimes – a unique steady
regime (case I) and a multiple equilibria regime (case II) –
the performance of I4D-Var is very good.

Fig. 3. Results for initial background from case I and observa-
tions from case II:(a) Re versus the number of intervals (note
that the number of intervals is equal to the number of sequen-
tial minimizations ofJ ); (b) the initial value of the cost function
(drawn), its value after minimization over the initial conditions (dot-
ted) and after minimization overRe (dashed);(c) theL2-norm of
the difference between the observations and the initial background
(drawn) and the difference between the observations and the anal-
ysis (dashed);(d) the L2-norm of the initial gradient of the cost
function with respect to the increment (drawn), its value after mini-
mization over the initial conditions (dotted) and after minimization
overRe (dashed).
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Fig. 4. Results for initial background from case I and observations
from case III:(a) Re versus the number of intervals (note that the
number of intervals is equal with the number of sequential mini-
mizations ofJ ); (b) the initial value of the cost function (drawn),
its value after minimization over the initial conditions (dotted) and
after minimization overRe (dashed);(c) theL2-norm of the differ-
ences between the observations and the initial background (drawn)
and between the observations and the analysis (dashed);(d) theL2-
norm of the initial gradient of the cost function with respect to the
increment (drawn), its value after minimization over the initial con-
ditions (dotted) and after minimization overRe (dashed).

The second problem to test I4D-Var is slightly more com-
plicated as we use the time-dependent observations from case
III (Re=120) and as initial background the steady state of

case I (Re=20). As the results in Fig.4 show, I4D-Var is
able to estimate the correct value ofRe (Fig.4a) and the con-
vergence of the different norms is similar (Fig.4b–d) to that
in Fig. 3. This indicates that I4D-Var is also capable of ef-
ficiently estimate an uncertain parameter for highly transient
observations.

Several other test problems, with other combinations of
dynamical behavior – i.e. steady state, periodic, quasi-
periodic and irregular, for the initial background and obser-
vations – were investigated. The I4D-Var method worked
equally well for these problems.

4.2 Multi parameter estimation

Using the barotropic model of the wind-driven circulation,
we can also test the performance of I4D-Var in a multi-
parameter estimation problem. A maximum of three uncer-
tain parameters,Re, ατ and a, can be considered. In all
the test problems below, the initial background is the unique
steady state of case IV (Fig.2d). Due to a negative value ofa,
this steady state has a small southward jet displacement when
compared to the symmetric steady-state of case I (Fig.2a).

In the first problem, the parameters of case V are estimated
by taking its steady-state (Fig.2e) as the observations. Note
that case V has different values for all three parameter than
case IV and that, in particular, the value ofa has opposite
sign. The steady state in case V is a jet-up solution and hence
substantially different than that of case IV (Fig.2d). Due to
the higher value ofατ andRe, the amplitude of the flow is
also a lot stronger.

The I4D-Var method is able to find accurate estimates for
all parameters. After 10 intervals the estimated values of
all three parameters are close to those of case V (Fig.5a-
c). In Fig.5d, the final value of the cost function after min-
imization is one order of magnitude smaller than its value
before sequential minimization for all intervals, and two or-
ders of magnitude smaller for the first interval. During the
first twenty intervals, both values of the cost function rapidly
decrease, but after 22 intervals convergence is much slower.
This is due to the minimization routine used, which termi-
nates when the difference of the cost functionJ between suc-
cessive iterates is smaller than 10−5. After 22 intervals, the
initial value of the cost function before minimization over
the parameters is smaller than the stop criteria. As a result,
the minimization routine will always terminate after one it-
eration, which leads to less improvement of the cost function
and decrease convergence. This has no consequences for the
result. After 20 intervals the final values of the cost function
is of order 10−4, and hence the analysis is already sufficiently
close to the observations. Furthermore, the estimates for the
parameter are accurate after 20 intervals.

For this, and the following test problems, we do not show
anymore the differences between the observations and initial
background and between observations and analysis, nor the
gradient of the cost function with respect to the increment
because these figures look qualitatively the same as Fig.3c,d
and Fig.4c,d. The results show that I4D-Var is capable of
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Fig. 5. Results for the initial background from case IV and obser-
vations from case V:(a) ατ versus the number of intervals (note
that the number of intervals is equal to the number of sequential
minimizations ofJ ); (b) Re versus the number of intervals;(c) a
versus the number of intervals;(d) the initial value of the cost func-
tion (drawn), its value after minimization over the initial conditions
(dotted) and after minimization overRe (dashed).

solving accurately and efficiently this multi-parameter esti-
mation problem.

In the next test problem, we will use the time-dependent
streamfunction field of case VI as observations, while still
keeping case IV as background. For case VI, the value of
Re is even larger than that of case V and the jet oscillates
around a “jet-down” mean. Note that one parameter,a, ini-
tially has the correct value but that it is free to vary during
the parameter estimation procedure.

Fig. 6. Results for initial background from regime IV and observa-
tions from regime VI:(a): ατ versus the number of intervals (note
that the number of intervals is equal with the number of sequen-
tial minimizations ofJ ); (b) Re versus the number of intervals;
(c) a versus the number of intervals;(d) the initial value of the cost
function (drawn), its value after minimization over initial conditions
(dotted) and after minimization overRe (dashed).

After 8 intervals the estimates forατ andRe are already
close to the target values of case VI (Fig.6a, b). The initially
correct parameter,a, is changed at first, but recovers to its
initial value. This indicates that, although values of initially
correct parameters may change in the beginning, the final es-
timates of those parameters are recovered. Compared to the
results of the previous test problem, the figures of the behav-
ior of the cost function look qualitatively the same (compare
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Fig. 6d and Fig.5d). The same rapid decrease is seen in the
first 20 intervals, as is the slow convergence thereafter due to
the stop criteria. The results of this test problem also shows
that I4D-Var gives an analysis close to the observations and
an accurate estimation of the parameters in the model.

These two test problems were among several investigated.
The other problems investigated involved other combinations
of several initial steady state solution and their associated pa-
rameters and steady state, (quasi-)periodic and irregular ob-
servations. For some of these problems one or two parame-
ters did have the correct value initially. The result were as
good as the two multi-parameter estimation problems dis-
cussed in this section. Accurate estimations of the param-
eters were found and the analysis was always close to the
observations.

5 Conclusions

The main point of this paper was to show that one can per-
form 4D-Var data assimilation without using an explicit ad-
joint model, when an implicit forward model formulation is
available. In that case, the tangent-linear model, needed for
the evaluation of the gradient of the cost function, can be de-
rived and its transpose can be explicitly calculated without
much extra cost.

Implicit forward models have an advantage that usually
larger time steps can be taken than with explicit forward
models. The choice of the time step in implicit models is
not limited by numerical stability, like in explicit models, but
by numerical accuracy. The discrete derivation of the im-
plicit models is in most cases more complicated than those
of explicit models, since the Jacobian matrix has to be ob-
tained and large linear systems of equations involving this
matrix have to be solved. Over the last decade a hierarchy of
implicit ocean and climate models has been developed, aided
by the development of efficient solvers for linear systems of
equations (Dijkstra, 2000).

Here, a simple one-layer quasi-geostrophic model of the
double-gyre wind-driven circulation was used as background
model and for generating observations. For this model, the
different flow regimes are known for different values of the
control parameters. The I4D-Var method performs well in a
variety of test problems for this model, involving both single
and multi parameter estimation. Even when the initial back-
ground model and the observations are chosen in different
dynamical regimes, I4D-Var is able to find an accurate esti-
mate of the uncertain parameters in the model as well as a
perfect fit to the observations.

While this is the first step in the development of implicit
4D-Var methods, there are several issues which need further
study to evaluate the potential use of these methods in more
realistic models and real world applications. These are (i)
the effect of noisy observations and more complex behavior
of trajectories, and (ii) the effect of an increase in dimension
of the state space. While we cannot address these issues here
in depth, we discuss each of them briefly below.

A few additional cases were studied to test the perfor-
mance of I4D-Var under “noisy” observations. We added
Gaussian noise, with zero mean and a prescribed standard
deviationσ , to the model-derived observations and consid-
ered a single parameter setup withRe as the uncertain pa-
rameter. Other parameters had standard values as in Table1.
For the initial background, the symmetric steady state of case
I (Re=20) was taken and the observations consisted of the
asymmetric steady state from case II (Re=50). For several
values ofσ , in the range 0.001−0.2, a twenty-member en-
semble of estimations forRe was calculated. The estimates
of Re in the ensemble members decreased whenσ was in-
creased, but they stabilized betweenRe=40 andRe=45.
However, the spread around the ensemble mean was signifi-
cant and the best estimate ofRe (for each values ofσ ) was
often aroundRe=49. For large standard deviations, the ob-
served values ofψ close to zero (right side of the basin and
around the jet) can change several orders of magnitude and/or
sign. This leads to an ill-posed minimization problem or sud-
den increases inJ . Although I4D-Var was not able to esti-
mate the value forRe exactly, the method is able to provide
values close to the correct value.

Variational methods seem to have a disadvantage when
compared to the EnKF method, since they rely on accurate
adjoints and gradients. In our methodology, we circumvent
constructing the adjoint model, by utilizing the extra infor-
mation available in the implicit model. In this methodology,
we linearize the model at every point of the assimilation in-
terval, which gives a gradient that is more accurate than when
an adjoint method was used. This makes the estimation tech-
nique more suitable for parameter estimation in nonlinear
models. InLea et al.(2000), some fundamental methodolog-
ical issues concerning sensitivity analysis of chaotic systems
are addressed. They show that, for the Lorenz system, varia-
tional methods are a limited tool for sensitivity analysis and
parameter estimation, due to the behavior of the adjoint and
gradient for various time scales. Note thatLea et al.(2000),
however, also found a range of time-scales for which the ad-
joint was reasonably accurate. This suggests that if the in-
tegration segment is chosen carefully, variational methods,
such as I4D-Var, may still produce good results.

The potential for real world applications of I4D-Var heav-
ily depends on the quality and performance of numerical
solvers of giant dimensional linear systems. With respect
to the computational work, which has to be performed in the
implicit time stepping, the extra costs of the I4D-Var method
are (i) the storage of several Jacobian matrices and (ii) the
solution of the additional linear systems. As in most implicit
ocean models (Weijer et al., 2003), efficient storage schemes
are used for the Jacobian, the extra storage is not expected
to become a severe problem for more complex models. In
addition, the preconditioners which have been developed for
the implicit time stepping procedure can also be used to solve
the additional linear systems in I4D-Var. Currently, systems
of O(106) equations can be solved with techniques such as
MRILU combined with GMRES (Botta and Wubs, 1999)
which makes it possible to apply I4D-Var to ocean or atmo-
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sphere models with reasonable resolution. The main advan-
tage of I4D-Var over traditional 4D-Var methods is that at
each time step, changes in the state due to a parameter vari-
ation are taken into account because of the availability and
use of the local Jacobian matrix.

In summary, the results look promising and motivating
enough to apply I4D-Var to problems where the dimension
of the state space is much larger and where “real” (noisy)
observations are used.
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