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Abstract. We quantify the long-term predictability of global
mean daily temperature data by means of the Rényi entropy
of second orderK2. We are interested in the yearly amplitude
fluctuations of the temperature. Hence, the data are low-pass
filtered. The obtained oscillatory signal has a more or less
constant frequency, depending on the geographical coordi-
nates, but its amplitude fluctuates irregularly. Our estimate
of K2 quantifies the complexity of these amplitude fluctu-
ations. We compare the results obtained for the CRU data
set (interpolated measured temperature in the years 1901–
2003 with 0.5◦ resolution, Mitchell et al., 20051) with the
ones obtained for the temperature data from a coupled ocean-
atmosphere global circulation model (AOGCM, calculated
at DKRZ). Furthermore, we compare the results obtained by
means ofK2 with the linear variance of the temperature data.

1 Introduction

Since the discovery of chaos in a conceptual climate model
by Lorenz (1963) the predictability of weather (and climate)
is still an open and not fully understood problem. Several
similar conceptual models have been proposed so far (e.g.
Lorenz, 1990). These models are usually given by systems of
nonlinear ordinary differential equations, which can generate
chaotic oscillations.

In this paper we consider daily mean temperature data
from observed as well as gridded model data on a global
scale. For the measured data the Climate Research Unit
(CRU) dataset (Mitchell et al., 20051) has been used. This
monthly data on a 0.5◦ resolution has been interpolated from
available observational data from all over the world (only
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continental regions are considered). We apply a moving av-
erage filter to the simulated AOGCM data and then sample it
down using each 15th data point. The resulting rather smooth
temperature time series exhibit fluctuations on the time scale
of one year (Fig.3). Usually the annual fluctuations are con-
sidered to be a trivial (periodic) signal and are therefore fil-
tered out (Govindan et al., 2002). However, the climate sys-
tem is highly nonlinear and complex. If such a system is
forced periodically, the resulting fluctuations may be highly
complex and even chaotic (Lorenz, 1990) (see Fig.4, where
no clear annual cycle is observed). In order to quantify the
complexity of the fluctuations of the signal’s amplitude, we
compute an estimate of the Rényi entropy of second order
of each temperature time series, i.e. at any coordinate of the
earth’s surface. This measure quantifies how predictable the
annual fluctuations are. This is an alternative approach to the
ones presented inFraedrich(1987); Latif and Barnett(1996);
Chen et al.(1997).

We then compare the results obtained for the CRU data
with the results for the data simulated based on an AOGCM,
which is given on a coarser resolution of 3.75◦, including
the oceans, and find a good agreement. However, the es-
timated predictability depends on the geographical coordi-
nates (for the CRU as well as for the AOGCM data), which
is an interesting difference from the results obtained with the
method of the detrending fluctuation analysis (DFA) applied
in Govindan et al.(2002), which are rather independent on
the geographical coordinates. Furthermore, we compare the
results obtained with the estimate of the Rényi entropy with
the variance of the data sets. A key result of this comparison
is that over the continents the predictability correlates with
the variance in the northern hemisphere and anticorrelates in
the southern hemisphere.

The paper is structured as follows: after introducing the
concept of the Ŕenyi entropy of second orderK2, we outline
the method that we use to estimateK2. Then we describe the
data we analyze in detail. After outlining the preprocessing,
we discuss the results obtained with the CRU and AOGCM
data and then conclude.
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2 Rényi entropy of second orderK2

In this section, we first recall the definition of the Rényi en-
tropy of second order. Let us therefore consider a trajectory
x(t) in a boundedd-dimensional phase space and suppose
that the state of the system is measured at time intervalsτ .
Let {1, 2, ..., M(ε)} be a partition of the phase space in boxes
of sizeε. Thenp(i1, ..., il) denotes the joint probability that
x(t=τ) is in the boxi1, x(t=2τ ) is in the boxi2, ..., and
x(t=lτ ) is in the boxil . The Ŕenyi entropy of second order
(Rényi, 1970; Grassberger, 1983) is then defined as

K2 = − lim
τ→0

lim
ε→0

lim
l→∞

1

lτ
ln

∑
i1,...,il

p2(i1, . . . , il). (1)

This measure quantifies how fast the number of possible fu-
ture evolutions increases as time goes by. If the system is per-
fectly deterministic in the classical sense, there is only one
possibility for the trajectory to evolve. Hence, there exists
only one series{i1, . . . , il} of future steps with probability 1
and therefore,K2=0. In contrast, one can easily show that
for purely stochastic systems, the number of possible future
trajectories increases to infinity so fast, thatK2→∞ (Thiel
et al., 2003). Chaotic systems are characterized by a finite
value ofK2, as they belong to an intermediate category. They
are less predictable than purely periodic but more predictable
than purely stochastic systems. Also in the chaotic case the
number of possible trajectories diverges but not as fast as in
the stochastic case. The inverse ofK2 has units of time and
can be interpreted as the mean prediction horizon/time of the
system.

The algorithm to estimateK2 is linked to a weather pre-
diction scheme introduced byLorenz(1963). He proposed to
use naturally occurring analogues for prediction. His idea is
to record long series of data describing the state of the atmo-
sphere (or any other system under consideration). To predict
the weather one then has to compare the actual state with all
the states in the database and to identify a former state which
is (extremely) similar/close to the current one, with respect to
some metric, so that the mismatch could also be attributed to
a measurement error. Such a state is called “analogue”. The
prediction of the future is then given by the time evolution
of the former state. In this paper we do not focus on predic-
tion but rather on quantifying the predictability of a system.
Therefore, we identify close analogues of a given state and
consider all their respective evolutions. Then we quantify the
time that these possible evolutions remain similar. This time
is directly linked toK2.

Next, we introduce a tool to visualize recurrences of trajec-
tories of (dynamical) systems in phase space, which is called
Recurrence Plot (RP) (Eckmann et al., 1987). These plots
have proved to be rather useful for the analysis of time se-
ries, as they give a first impression of the behavior of the
system under study. But the most interesting aspect of RPs
for our purposes is that they allow to estimateK2 from time
series in a very robust way.

3 Estimation of K2

Let us consider a dynamical system represented by the tra-
jectory{xi} for i=1, . . . , N in a d-dimensional phase space
(i. e. xi ∈ Rd ). Then we compute the recurrence matrix

Ri, j = 2(ε − ||xi − xj ||), i, j = 1 . . . N, (2)

whereε is a predefined threshold and2(·) is the Heaviside
function. The norm used in Eq. (2) is in principle arbitrary,
but for theoretical reasons (Thiel et al., 2004), it is advanta-
geous to use the maximum norm. The graphical representa-
tion of Ri, j , called Recurrence Plot (RP), is obtained encod-
ing the value one as “black” and zero as “white” point. The
analogues of a pointxi are visualized in the i-th column of
the RP as black points, i.e. ifxi andxj are analogues, then
Ri, j=1. If the evolution ofxi andxj is similar for n time
steps we haveRi+1, j+1=1, . . . , Ri+n, j+n=1, i.e. we have
a diagonal line in the RP. Figure1a shows the RP of a sine
function, i.e. a circle in phase space. Its RP is then character-
ized by non-interrupted diagonal lines. Figure1b represents
the RP of the R̈ossler system in a chaotic regime (Rössler,
1976). In this case, the predominant structure are diagonal
lines, which are interrupted. Figure1c represents the RP of
white noise. It is homogeneous with mainly single points,
which is typical for independent stochastic systems, as the
state at timei+1 is unrelated to the one at timei. From
these plots, we can easily make out that there is a certain
connection between the length of diagonal lines and the ratio
of determinism or predictability inherent to the system. The
better the predictability of a system is, the longer are these
diagonals. Now we show how these diagonals can be used to
estimateK2.

Thiel et al.(2004) have shown that the following relation-
ship holds

P c
ε (l) ∼ εD2 exp

(
−K̂2(ε)τ l

)
, (3)

whereP c
ε (l) is the cumulative distribution of diagonal lines

in the RP, i. e. it represents the probability of finding a di-
agonal in the RP of at least lengthl, andK̂2(ε) is an esti-
mator ofK2. D2 is the correlation dimension of the system
under consideration (Grassberger, 1983). Therefore, the rep-
resentation ofP c

ε (l) on a logarithmic scale versusl yields a
straight line with slope−K̂2(ε)τ for largel. For chaotic sys-
tems this slope is independent ofε in a rather large range
of ε. This is shown in Fig.2a for the chaotic Bernoulli
map xn+1=2xnmod1. Finally, one represents the slope of
the curves for largel in dependence onε. Then, for chaotic
systems a plateau is found. The value of the ordinate of this
plateau determineŝK2 (Fig. 2b). In the case of the Bernoulli
map, one obtainŝK2=0.6917, in good accordance with the
theoretical values of ln(2).

In the representation of ln(P c
ε (l)) vs. l we usually find two

different slopes: one slope for short diagonal lines and an-
other one for long diagonals (Thiel et al., 2003). SinceK2
is defined for largel (Eq. 1), we have to detect the second
slope. This can be done automatically (see Appendix). An
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Fig. 1. Prototypical examples of RPs:(a) RP of a sine function,(b) RP of the R̈ossler system in chaotic regime,(c) RP of white noise.

Fig. 2. (a)Number of diagonal lines of at least lengthl versusl in the RP of the Bernoulli map for different values of the thresholdε. The
mean slope of the curves is equal to 0.6917.(b) Estimator of the Ŕenyi entropy of second order̂K2 vs.ε for the Bernoulli map.

advantage of this algorithm to estimateK2 is that the result
is independent of the embedding parameters used (seeThiel
et al., 2003), i.e. even without embedding the time series at
all, we obtain reasonable results. However, using embedding
allows the algorithm to recognize the scaling region more
easily. Hence, we will embed the time series in our analy-
sis. Furthermore, our studies have shown that the algorithm
yields robust results even if a time series is corrupted by noise
or if one adds a nonstationarity.

4 Description of the data and preprocessing

As an example for (partially) measured data the Climate Re-
search Unit (CRU) dataset (Mitchell et al., 20051) has been
used. This monthly data on a spatial resolution of 0.5◦ has
been constructed from global available observed data. It is
based on interpolation from all stations available at any mo-
ment in time. The primary purpose was to create an input
data set for environmental modeling. The CRU data set has
been widely used as e.g. a driving force for models of the
global vegetation dynamics (Sitch et al., 2003). The monthly
data has been embedded in a two-dimensional space with a
delay of one month.

The global climate model (AOGCM) consists of the spec-
tral atmospheric model ECHAM4Roeckner et al.(1996) and
the ocean model HOPE-GWolff et al. (1997), both devel-

oped at the Max-Planck-Institute of Meteorology in Ham-
burg. In our case the model ECHAM4 has a horizontal res-
olution of T30 (approximately 3.75◦

×3.75◦) and 19 vertical
levels, five of them located above 200 hPa. The horizontal
resolution of the ocean model HOPE-G is about 2.8◦

×2.8◦

with a grid refinement in the tropical regions, where the
meridional grid-point separation decreases progressively to
the equator, reaching a value of 0.5◦. This increased reso-
lution allows for instance for a more realistic representation
of El Niño southern oscillation (ENSO) events. The ocean
model has 20 vertical levels. In this simulation, the model
has been driven by estimations of three past external forc-
ing factors: solar variability, greenhouse gas concentrations
in the atmosphere and an estimation of the radiative effects
of stratospheric volcanic aerosols. No changes in the an-
thropogenic atmospheric aerosol concentrations have been
considered. Changes in vegetation cover or land-use have
also been neglected. The atmospheric concentrations of two
greenhouse gases, carbon dioxide and methane, have been
estimated from analysis of air bubbles trapped in Antarctica
ice cores (Etheridge et al., 1996; Blunier et al., 1995). The
past variations of solar output have been derived from the
values used inCrowley (2000). For the period after 1610
A. D., past solar variations are empirically estimated from
observations of sun spots (Lean et al., 1995) and between
1500 and 1610 A. D. they are based on concentrations of
the cosmogenic isotope10Be. The third external factor is the
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Fig. 3. Temperature time series from AOGCM at the coordinates
(86.25◦ W, 11.25◦ N) (solid line) and its corresponding filtered sig-
nal (bold line). The annual period is predominant in this time series.

stratospheric loading of volcanic aerosols. After a volcanic
eruption, these are washed out by precipitation, that influence
the acidity of the ice layers in ice cores. Changes in optical
densities of the stratosphere can be thus estimated from ice
acidity through a semi-empirical model (Crowley, 2000). We
only used the first 200 years (1500–1700), not the full record.

In contrast to the CRU dataset we have a daily resolution
of the AOGCM data, but greenhouse gas emissions are not
present in this period. As we are interested in the annual fluc-
tuations of the amplitude of the temperature signals, we ap-
ply a moving average filter to the data and then downsample
them, considering only each 15th data point. The resulting
temperature time series shows oscillations with more or less
constant frequency, depending on the geographical position,
but with varying amplitude. This preprocessing of the data
was applied to the AOGCM data. The data was embedded
in a three-dimensional space with a delay of 5 days. These
embedding parameters were fixed applying the conventional
methods of the autocorrelation function and the false near-
est neighbors method (Kantz and Schreiber, 1997), although
it is not necessary to embed the time series to estimateK2
from RPs, as we have mentioned above (Thiel et al., 2003).
We embed to facilitate the automatized estimation by our
algorithm. In Figs.3 and4 two examples are represented.
The time series in Fig.3 shows a predominant annual cycle,
whereas the fluctuations displayed in Fig.4 do not. This last
figure shows that there is no strict annual cycle at all geo-
graphical positions.

5 Results

In this section, we estimateK2 for the CRU data and for the
AOGCM model data by means of the method of RPs. Due
to the high dimensionality of the models and/or the random
elements involved, the slope ofP c

ε (l) depends, as expected,
on ε (see Eq.3 and Fig.13 Thiel e al., 2002). In Sect.7 we
discuss this feature in more detail. The entropyK2 is also

Fig. 4. Temperature time series from AOGCM at the coordinates
(63.75◦ E, 3.75◦ S) (solid line) and its corresponding filtered signal
(bold line). In this time series no annual period is observed.

well defined in high dimensional and/or stochastic systems
but according to its definition one has to estimate the limit
ε→0. However, due to the finite length of the time series,
this is not possible. Several approaches have been developed
to solve this problem (Grassberger, 1983; Urbanowicz and
Holyst, 2003). The RP-based method has shown to be very
suitable for the estimation ofK2 (Thiel et al., 2004). It also
yields very reliable estimates if e.g. nonstationarities are in-
volved (Romano, 2004). Moreover, the RP based method
has been already applied to experimental turbulent flow data
and has confirmed results which were reported in the liter-
ature (Thiel et al., 2004; Read et al., 1992). Various filters
did not have to be applied as the RP based method can deal
with a rather high degree of nonstationarity and noise. Fur-
thermore, for turbulent systems, such as the coupled ocean-
atmosphere one, the predictability depends on the scale con-
sidered. Hence, we setε=0.1, which corresponds to tenth
a Kelvin prediction error, and determinêK2 by the slope of
P c

ε (l) vs. l.
The estimates ofK2 for the AOGCM data set are shown in

Fig. 5. We find that the entropŷK2 is maximal in the tropical
region. Rather high values of̂K2 can also be found in the
northern hemisphere (Alaska, central and northern Europe).
ENSO can clearly be identified over the ocean as an elevated
area ofK̂2. Therefore the predictability of temperature fluc-
tuations is reduced in that area (the prediction horizon is pro-
portional to the inverse ofK2).

To test the reliability of the estimates ofK2 for the
AOGCM data, a bootstrap resampling has been performed.
We used the shuffled surrogates because they destroy the cor-
relations and also reduce the predictability of the time series.
The results show that the structures obtained by mean ofK̂2
are significant (see Fig.6). The picture lacks all coherent
structure. No continents can be made out. Also the values of
K̂2 are much higher for the shuffled data. In order to vali-
date these results we computeK̂2 also for the CRU data. The
respective estimates are represented in Fig.7. We observe,
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Fig. 5. K2 estimates for the AOGCM data set for a fixedε=0.1 K.

Fig. 6. K2 estimates for the randomly shuffled AOGCM data set for
a fixedε=0.1 K.

that the structures are similar in both CRU and AOGCM data
(e. g. the values of̂K2 are high in the tropical regions in both
cases).

In order to compare quantitatively the estimates ofK2 for
the AOGCM and the CRU data, we compute the following
index

r := 1 − |K̃2CRU − K̃2AOGCM|, (4)

whereK̃2 denotes the values rescaled to the interval[0, 1].
The indexr is of the order of 1 if the estimates ofK2 for
the AOCGM and CRU data are correlated and of the order
of 0 if they are anticorrelated. Figure8 displays the index

Fig. 7. K2 estimates for the CRU data set for a fixedε=0.1 K.

Fig. 8. The correlation indexr between the estimates ofK2 for the
CRU and AOGCM data set.

r. We can confirm, that the structures seen in theK2 esti-
mates are similar in both CRU and AOGCM data, indicated
by the homogeneous red pattern2. Hence, with respect to the
K̂2 statistic the AOGCM data reproduced the structures ob-
tained with the CRU data set. This analysis shows that with
respect to the predictability the CRU and the AOGCM data
are qualitatively (and almost quantitatively) equivalent.

Now, we address the question what can be learned from
the K2 estimates beyond what can be found by linear tech-
niques. Usually, the models are validated by means of tra-

2The blue regions in Fig.8 are due to the lower resolution of the
AOGCM with respect to the CRU data.
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Fig. 9. Variance for the CRU data set.

Fig. 10. Variance for the AOGCM data set.

ditional linear time series analysis (Govindan et al., 2002).
Hence, we also compute the variance of the filtered time se-
ries for both CRU (Fig.9) and AOGCM (Fig.10) data. In
order to compare quantitatively the results obtained withK2
and the variance, we compute the indexr for the CRU and
for the AOGCM data, analogously to Eq.(4),

r := 1 − |K̃2 − Ṽ ar|, (5)

whereṼ ar denotes the values rescaled to the interval[0, 1].
The results are plotted in Fig.11and Fig.12, respectively.

From these figures, we can conclude the following points:

– The GCM and CRU data exhibit qualitatively (and
quantitatively) the same long term predictability.

Fig. 11. The correlation indexr betweenK̂2 and variance for the
CRU data set.

Fig. 12. The correlation indexr betweenK2 and variance for the
AOGCM data set.

– On the continent the variance and̂K2 of the annual
temperature fluctuations are correlated in the northern
hemisphere and anticorrelated in the southern hemi-
sphere. Western Europe seems to be an exception from
this thumb rule.

– Over the oceans the variance andK̂2 are correlated in
the polar regions and in the vicinity of the equator and
uncorrelated in the mid-latitudes. The southwest region
of America, where the ENSO takes place is the excep-
tion from this rule.
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Fig. 13. (a)Number of diagonal lines of at least lengthl versusl in the RP of one temperature time series from AOGCM for different values
of the thresholdε. (b) Corresponding estimator of the Rényi entropy of second order̂K2 vs.ε.

6 Conclusions

The analysis shows that the predictability does not simply
correlate with the variance of the mean daily temperature
data. The degree of correlation depends on the latitude and
on the fact whether one is on a continent or not. The annual
fluctuations exhibit a complex pattern and in some cases it
might not be suitable to filter them out.

7 Problems of the method

The method to estimateK2 which we have proposed (Sect.3)
allows to investigate automatically large amounts of data and
yields rather robust results. However, the algorithm must be
applied carefully in some cases.

For high dimensional or stochastic signals, the slope of
P c

ε (l) depends in general onε (Thiel et al., 2003). Only for
periodic and chaotic systemsK2 is independent ofε. For the
AOGCM dataP c

ε (l) vs. l is shown in Fig.13a in dependence
onε. Figure13b displays the respective dependence ofK̂2 on
ε. One now has to compute the limitε→0. One possibility
to overcome this problem is to fit a curve e.g. a polynomial
to K̂2(ε), and then to extrapolate toε=0 (Urbanowicz and
Holyst, 2003). But there is some ambiguity choosing the type
of function one might use for the fitting.

An even simpler approach is used in Sect.5. We fix ε=εfix
and then consider̂K2(εfix) as an estimate of the complexity
of the signal.K̂2(ε) is a measure for the time that two trajec-
tories stay within anε-ball or -tube. Based on this approach
we estimate the time, for which the “prediction” is correct up
to an error less or equal toε. Hence,K̂2 can be interpreted in
a very straight forward and physical manner.

In this paper we have presented an algorithm to estimate
the complexity and predictability of the earth surface temper-
ature fluctuations. The algorithm is based on recurrences of
the temperature signal in an abstract embedding space. We
have analyzed two data sets (CRU and AOGCM) and found
structurally the same results. Comparing the results with the
variance of the temperature signal, one finds that the estimate

of theK2 entropy yields complementary information to the
variance. The variance correlates withK̂2 over the continents
in the northern hemisphere and anticorrelates in the southern
hemisphere. This correlation and anticorrelation still lacks
a physical interpretation. To find an explanation of this de-
pendence would give further insights into the behavior of the
ocean/atmosphere system. However, the combination of lin-
ear and nonlinear data analysis techniques can be used to an-
alyze and quantify data beyond linearity. The analysis sug-
gests that the annual fluctuations of the surface temperature
are not trivial but exhibit a complex behavior. This complex-
ity depends on the geographical position in a nontrivial way.
Hence, filtering the annual oscillations out may yield spuri-
ous results.

The presented algorithm resembles an idea introduced by
Lorenz (1969), where a similar algorithm to estimate the pre-
dictability of different climate variables (such as tempera-
ture, pressure, etc.) is presented. The recurrence based al-
gorithm to estimate the predictability has been applied for
the first time to a high dimensional climate system. To val-
idate the correctness of the application of the algorithm to
such a system it would be necessary to apply it to model
systems with many coupled temporal and spatial time scales
(Lorenz, 1991). This will be the subject of a forthcoming
paper. However, our algorithm can be supposed to yield
rather reliable results in high dimensional systems for two
reasons: 1) In lower dimensional cases it gives robust results
with rather short time series and is often more efficient than
standard techniques (Thiel et al., 2003). 2) Other measures
which quantify predictability (DET, DIV) and are estimated
from RPs have been successfully applied to climate data. The
comparison of these measures withK2 in lower dimensional
systems suggests that the latter has independently of the di-
mension of the underlying systems notable advantages. It is,
e.g. numerically close to the largest Lyapunov exponent.
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Appendix: Automatization of the algorithm

For many applications, e.g. if spatio-temporal data has to be
analyzed, it is desirable to automate the algorithm to esti-
mateK2 based on RPs. Such an automated algorithm is also
more objective, as otherwise the choice of the proper scaling
regions ofP c

ε (l) depends to some extent on the data analyst.
The crucial step for the automatization is the estimation of

the scaling region of lnP c
ε (l) vs. l. For many systems not

only one slope is found in the representation of ln(P c
ε (l)) vs.

l. Usually, for smalll the slope is greater than for largel.
As K2 is defined for long diagonal lines, the slope for largel

has to be identified. On the other hand, too long lines cannot
be taken into account, due to the fact that the time series is
finite and hence, the length of the longest diagonal line to be
found is limited. For this reason, the decay of ln(P c

ε (l)) for
very long diagonals is not the correct one.

Therefore, the automatic detection of the right slope is re-
alized applying a cluster dissection algorithm (Sp̈ath, 1992).
The algorithm divides the set of points into distinct clusters.
In each cluster a linear regression is performed. The algo-
rithm minimizes the sum of all square residuals in order to
determine the scaling region. The following parameters are
used:

– We consider only diagonal lines up to a fixed length
lmax=200. Longer lines are excluded because of finite
size effects, as explained above. Reasonable values of
lmax are at about 10% of the length of the time series.

– We consider only values ofP c
ε (l) with P c

ε (l)>500 to
obtain a reliable statistic.

– We further have to specify the number of clusters when
applying the cluster dissection algorithm: two different
clusters seem to be a rather good choice for many sys-
tems. Then, we use the slope of the largest cluster.

These choices have proven to be the most appropriate ones
for the estimation of the scaling regions. All these parameters
are defaults of a computer program.
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