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Abstract. Recent progress in nonlinear dynamic theory has
inspired hydrologists to apply innovative nonlinear time se-
ries techniques to the analysis of streamflow data. However,
regardless of the method employed to analyze streamflow
data, the first step should be the identification of underlying
dynamics using one or more methods that could distinguish
between linear and nonlinear, deterministic and stochastic
processes from data itself. In recent years a statistically rig-
orous framework to test whether or not the examined time
series is generated by a Gaussian (linear) process undergo-
ing a possibly nonlinear static transform is provided by the
method of surrogate data. The surrogate data, generated to
represent the null hypothesis, are compared to the original
data under a nonlinear discriminating statistic in order to re-
ject or approve the null hypothesis. In recognition of this
tendency, the method of “surrogate data” is applied herein to
determine the underlying linear stochastic or nonlinear de-
terministic nature of daily streamflow data observed from
the central basin of Puget Sound, and as applicable, distin-
guish between the static or dynamic nonlinearity of the data
in question.

1 Introduction

Irregular patterns and spikes are common in streamflow data,
and for decades hydrologists have been trying to explain the
cause of irregularity in the streamflow. Various methods cov-
ering a wide range of approaches, from detailed physically
based computer models to complicated statistical analysis,
has been used to characterize, analyze and forecast stream-
flow dynamics. For example, shot noise stochastic models
were used to generate spikes of streamflow (Weiss, 1977;
Murrone et al., 1997), while a number of studies (Tong,
1990; Kantz and Schreiber, 1997; Schreiber and Schmitz,
2000) have shown that a linear stochastic process undergo-
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ing a possibly nonlinear static transform can also create very
complex looking signals, suggesting that the apparent spikes
and irregular patterns may be caused by either linear cor-
relations or random input. Inspired by discoveries in the
early 1980s of embedding theorems of time delay recon-
struction (e.g. Packard et al., 1980; Takens, 1981) and of
algorithms to calculate correlation dimensions of strange at-
tractors (e.g. Grassberger and Procaccia, 1983a, b) numerous
claims of low dimensional deterministic chaos in hydrologic
time series data were reported (Nicolis and Nicolis,1984;
Hense, 1987; Rodriguez-Iturbe et al., 1989; Jayawardena
and Lai, 1994; Islam and Sivakumar, 2002; Sivakumar et
al., 1999; Sivakumar, 2001; Sivakumar and Jayawardena,
2002; Regonda et al., 2004). But the results are not convinc-
ing. As discussed by Kantz and Schreiber (1997), Hegger
et al. (1999), and Schreiber and Schmitz (2000), when ap-
plying algorithms developed to quantify deterministic low-
dimensional chaos from field data, necessary procedures
must be undertaken with care. These algorithms, especially
the algorithms calculating correlation dimensions, only work
under very strict conditions that data quality and quantity are
sufficient to observe clear scaling regions. Further, these al-
gorithms may incorrectly characterize non-chaotic and even
linear stochastic process as low-dimensional chaos, particu-
larly those of power law type linear correlations (e.g. Theiler,
1986; Osborne and Provenzale, 1989). Unfortunately, many
early works in hydrology had not followed the necessary pre-
cautions when these algorithms were applied to hydrologic
data. Consequently, the initial results of the studies have
been followed by a wave of corrections and counterclaims
(Pasternack, 1999; Schertzer et al., 2002).

Before building a model for the data (e.g. for prediction
purposes), or applying algorithms for phase-space recon-
struction (e.g. calculating correlation dimensions), it is ad-
visable to check whether the data alone suggest this type of
modeling or calculation. Why use advanced nonlinear pre-
diction models if there is no evidence of nonlinear struc-
ture in the data? Or why put effort on detecting chaos from
streamflow records at all if the pertaining data cannot be
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distinguished from linear stochastic process? The main ob-
jectives of the present study are to develop a statistically rig-
orous, foolproof framework, called “surrogate data test”, to
examine whether or not the streamflow time series is gen-
erated by a Gaussian (linear) process undergoing a possi-
bly nonlinear static transform, and to apply this procedure
to characterize twenty-three selected daily streamflows from
the central basin of Puget Sound in the state of Washington.

2 Surrogate data test

The surrogate data test herein is referred as a statistical pro-
cedure that includes formulating a hypothesis, choosing a test
statistic, specifying a probability of false rejection and gen-
erating surrogate data sets from original data set. The sur-
rogate data test has not been used to investigate underlying
hydrologic dynamics until recent years though the compar-
isons of surrogate data with original data were used in some
hydrologic studies. Sivakumar et al. (1999) calculated corre-
lation dimension from the original Singapore rainfall data to
compare correlation dimension calculated from a surrogate
of original data. No statistical test was really performed.
Livina et al. (2003) compared seasonality of river flux in-
crement series with the surrogate volatility series and found
that the seasonal periodicity was almost diminished in sur-
rogate volatility series, indicating that “periodic volatility” is
a result of nonlinearity. Again, no test statistics were given.
Moreover, the periodicity of surrogate volatility also disap-
peared when the noise level increased. This scheme indicates
that the surrogate volatility does not always diminish the
seasonal periodicity of the volatility series, but rather elimi-
nates the nonlinear part of the process which is proportional
to the noise level. Laio et al. (2004) applied deterministic
versus stochastic (DVS) plots to the decay phases of daily
discharges of three rivers in Italy and detected nonlinearity
from the data. DVS was first introduced by Casdagli (1991).
Though it is robust towards non-Gaussianity, it is difficult to
distinguish between a nonlinear non-Gaussian system with
a linear Gaussian system, since the possible nonlinearities
tend to be dominated by the stochastic component. Further-
more, it is not a real statistical test “since no test statistics
are produced which allows a unequivocal acceptance or re-
jection of the null hypothesis of linearity” (Laio et al., 2004).
Laio et al. (2004) also showed that a surrogate data set gen-
erated from a linear decay system with non-Gaussian shot
noise (see Eq. 3 below) appeared significantly different than
an original data set and tested for reversibility using a sim-
ple third order statistic. The authors concluded that when
applying a surrogate data test, it is only valid to test a linear
Gaussian stochastic process. It is apparent that the process
generated from Eq. (3) is irreversible, but that does not mean
that the process is not linear, so choosing a statistic in the
surrogate data test is the key. Indeed, by choosing appro-
priate robust nonlinear statistics, the surrogate data test may
be justified when the noise deviates from a Gaussian process
(Kantz and Schreiber, 1997; Schreiber and Schmitz, 2000).

We will show herein that the null hypothesis of linearity can
not be rejected by our surrogate data test from Eq. (3), while
the linearity is rejected correctly when we apply our surro-
gate data test to a nonlinear system in Eq. (4). This indicates,
when an appropriate statistic is chosen, surrogate data test is
not only sensitive, but also robust and has larger statistical
power. The surrogate data test, in any case, is a useful tool
for data driven hydrologic analysis.

If the null hypothesis, that the underlying hydrologic pro-
cess is a linear (possibly Gaussian) stochastic process, can
not be rejected, then either it is due to the finite power of the
test (we expect that the null hypothesis will be rejected only
with probabilityβ<1, whereβ is defined as the probability
that the null hypothesis is rejected when it is indeed false)
or the hypothesis actually describes the data properly. In the
latter case, one can apply ARMA-type models to the hydro-
logic data under investigation. If the null hypothesis is re-
jected: (1) the rejection could have happened by chance with
a probability ofα, (2) the data may be nonstationary, (3) the
measurement function could depend on more than one mea-
surement and is noninvertible; or finally, (4) the process is
nonlinear. In all cases but the last one the rejection is not jus-
tified. One way to justify the rejection is to use other methods
such as DVS plot to see whether or not the minimum pre-
diction error occurs at smaller neighborhood size (Casdagli,
1991), or to compare the spectrum of increment series with
surrogate volatility series (Linvina et al., 2003). After the
rejection is justified, one may investigate other properties of
the data or calculate additional invariants such as correlation
or fractal dimensions.

The rest of this section is organized as follows: first we
briefly introduce the procedures in the surrogate data test.
Then we choose nonlinear statistics to test linear and non-
linear decay systems with Poisson distributed shot noise (see
Eqs. 3 and 4). Finally, we apply DVS plot to the nonlinear
decay system to justify that the rejection of the null hypothe-
sis is indeed due to existence of nonlinear properties.

The first step in the surrogate data test is to formulate a
null hypothesis. In our case, the null hypothesis is that the
streamflow data is sampled from a Gaussian linear stochastic
process, i.e.

qn =

p∑
i=1

aiqn−i +

q∑
j=1

bjηn−j , (1)

whereqn is the subject time series,ηn is an independent
Gaussian random variable with zero mean and unit variance,
andai andbi are coefficients (Diggle, 1989).

Note that it is not our intention to merely test our hypothe-
sis against one particular linear stochastic process, e.g. to test
for the correct choice of a model of orderp andq with spec-
ified ai andbi . Rather, we wish to test against a whole class
of processes defined by Eq. (1) with unknown valuesp, q, ai

andbi . Moreover, we want to test the more general hypoth-
esis that includes the possibility that the data were observed
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Figure 1. (a) Samples from a linear shot noise process defined in equation (3) and (b) a corresponding surrogate series
          (c) Samples from a nonlinear shot noise process defined in equation (4) and (d) a corresponding surrogate series

Fig. 1. (a)Samples from a linear shot noise process defined in Eq. (3)and(b) a corresponding surrogate series.(c) Samples from a nonlinear
shot noise process defined in Eq. (4) and(d) a corresponding surrogate series.

through the instantaneous, invertible and static, but possibly
nonlinear functions given by

Qn = h(xn), xn =

p∑
i=1

aiqn−i +

q∑
j=1

bjηn−j (2)

whereh is called measurement function, which may be non-
linear and invertible. So, the process given by Eq. (2) is
considered as a linear stochastic process defined in Eq. (1),
but transformed by a possible static nonlinear measure-
ment functionh (Kantz and Schreiber, 1997; Schreiber and
Schmitz, 2000).

Next, we need to choose a test statistic to actually per-
form the test. Conventional statistics, like Student’s t or Chi-
square in basic statistical analysis, result in a number that
will lead us to either reject or accept the null hypothesis.
From a statistical point of view, we hope the statistic cho-
sen for the test is robust, i.e. when the distribution of sam-
ples depart from assumed underlying distribution, the statis-
tic still has test power. In order to test the hypothesis that the
data is generated from the more general process defined in
Eq. (2), a nonlinear test statisticλ must be computed from
the data. This test statistic may be a prediction error or a
dimension, but in any case it must not depend on the param-
eters in Eq. (2), and also be robust and powerful enough to
distinguish the difference between static and dynamic non-
linearity.

The final step is to generate surrogate data sets. Recall that
a linear stochastic process can be fully described by its first
and second moments, such as its mean, variance and autocor-
relation function, and also note that the unknown parameters
in our null hypothesis reflect specific properties of interest of

the data. For example, the unknown autocorrelation coeffi-
cients under a linear stochastic null hypothesis are reflected
in the autocorrelation function of the data.

Now we apply the procedures described above to two ex-
amples: one is a linear shot noise process, and the other is
a nonlinear shot noise process. Both processes are, respec-
tively, given by

dx

dt
= −x(t) + Np(t) (3)

dx

dt
= −x2(t) + Np(t) , (4)

whereNp(t) is the random driving process in the form of a
white Poisson noise and is defined by a sequence of pulses at
random timesτi , each pulse having an independent random
amplitudehi , i.e.

Np(t) =

hi∑
i

δ(t − τi) , (5)

whereδ(·) is the Dirac delta function and{τi} come from a
Poisson distribution. Figure 1 shows the samples and their
corresponding surrogate series generated from Eqs. (3) and
(4).

Evidently, both samples are very different from their cor-
responding surrogate series. To test the linearity versus non-
linearity, we choose zeroth-order nonlinear prediction error
as a discriminating statistic. It was shown that zeroth-order
nonlinear prediction error is a robust and powerful statis-
tic (Pikovsky, 1986; Kennel and Isabelle, 1992; Theiler and
Prichard, 1996; Kantz and Schreiber, 1997).
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Fig. 2. (a)Prediction errors for Eq. (3) and 19 corresponding surro-
gates,(b) Prediction errors for Eq. (4) and 19 corresponding surro-
gates,. Prediction errors are estimated using embedding dimension
m=1 and time delayτ=1.

The surrogate data test is set up in such a way that the
null hypothesis may be rejected when the prediction error is
smaller for the data than for all of the nineteen surrogates.
Figure 2 shows the plots of the prediction errors. To distin-
guish prediction errors between surrogates and original data
we plot the prediction errors from surrogates on the left and
the prediction errors from the original data on the right. As
we can see from Fig. 2, the prediction error of the linear pro-
cess is not significantly smaller than that of all nineteen sur-
rogates, that is, the predictability is not significantly reduced
by destroying possible nonlinear structure. The prediction
error of the nonlinear process, however, is the smallest one
among all nineteen surrogates. This shows that the test works
correctly, even though the random errors are generated from
a non-Gaussian process.

Further, we apply DVS plot to investigate whether or not
the rejection is due to nonlinearity. Figure 3 shows clearly
that the minimum prediction error occurs at medium neigh-
borhood size, which is a signature of so called “weak non-
linearity” when the nonlinear structure in the system is weak
and the noise level is moderate (Casdagli, 1991).

3 Characterization of streamflow in central basin of
Puget Sound

Puget Sound is a 35 000 km2 region of western Washington
located at the northwest corner of the United States. Cupped
between the jagged Olympic Mountains to the west and the
volcanic peaks of the Cascade Range to the east with majes-
tic Mount Rainier standing at 4392 m, the Puget Sound basin
has among the most diverse hydrologic conditions of any re-
gion in the United States, varying from arid conditions in

Fig. 3. DVS plot for a nonlinear shot noise process defined in
Eq. (4). 1000 samples are generated from Eq. (4). Prediction er-
rors are estimated using embedding dmensionm=1 and time delay
τ=1.

the shadows of the Olympic and Cascade Mountains to very
wet rainforest along the Pacific coast. In the coastal area and
Cascade Mountains, the maximum precipitation occurs dur-
ing the winter months, while in the eastern basins, with more
steppe and continental climates, the maximum precipitation
occurs in the early summer. On average, the region receives
about 1000 mm of precipitation annually. Much of the an-
nual precipitation falls between November and April as rain
and with snow at high altitudes.

Streamflows in the Puget Sound basins are largely influ-
enced by seasonal snowpack melt off over spring and early
summer. Runoff from rainstorms and groundwater discharge
(in the form of springs or seeps) from shallow aquifers also
influence the amount and form of water that drives stream-
flow in its rivers and streams. To better manage water re-
sources in the Puget Sound basin, it is essential to have a
clear understanding of the characteristics of streamflow hy-
drology. Unlike the conventional characterization of stream-
flow using either a physically based model or a statistically
based model (such as regression analysis or ARMA), we use
nonlinear dynamics tools developed for time series analysis
to investigate the characteristics of the streamflow, such as
dimensionality, predictability, periodicity, deterministic non-
linearity and probability. The theoretical foundation of our
characterization is borrowed from Taken’s time delay em-
bedding theorem of phase-space reconstruction and surrogate
data test described in the previous section.

Twenty-three daily streamflow time series in central
basin of Puget Sound are chosen for characterization.
These streamflows represent three typical watersheds in
Puget Sound basin: rainfall-driven streams, snowmelt-driven
streams, and hybrid (mixed rainfall- and snowmelt-driven)
streams. The drainage areas range from 12.2 to 1385.6 km2;
average daily flows over the study time period (from 19.5
years to 74 years) range from 0.62 to 112.2 m3/s; the eleva-
tions range from 11 to 564 m a.s.l.; and the length of the time
series range from 20 to 74 continuous years. All stream-
flow data are measured and processed by the United States
Geologic Survey (USGS) and can be found at the website:
http://waterdata.usgs.gov/nwis/sw. Table 1 lists some of the
important physical characteristics of these twenty-three sub-
basins and statistics of the observed streamflows.

http://waterdata.usgs.gov/nwis/sw
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Table 1. Physical characteristics of 23 streamflows in central Basin of Puget Sound.

Station ID Station name Drainage area (km3) Datum a.s.l. (m) Mean flow (m3/s) Length of data

12121600 Issaquah Creek near Mouth Near Issaquah 146.6 11 3.76 10/1/1963–9/30/2002
12167000 NF Stillaguamish River near Arlington 678.6 27 53.61 8/1/1928–9/30/2002
12060500 South Fork Skokomish River near Union 197.6 32 20.96 8/1/1931–9/30/1985
12122500 Bear Creek near Redmond 36.0 34 0.62 5/16/1979–9/30/1996
12134500 Skykomish River near Gold Bar 1385.6 64 112.20 10/1/1928–9/30/2002
12054000 Duckabush River near Brinnon 172.2 74 11.78 7/1/1938–9/30/2002
12108500 Newaukum Creek near Black Diamond 71.0 94 1.67 10/1//1952–9/30/2002
12161000 SF Stillaguamish River near Granite Falls 308.2 94 30.29 8/1/1928–9/30/2002
12079000 Deschutes River near Rainier 232.6 106 7.55 6/1/1949–9/30/1976
12056500 NF Skokomish R BL Staircase RPDS NR Hoodsport 148.1 232 14.41 8/1/1924–9/30/2002
12141300 Middle Fork Snoqualmie River near Tanner 398.9 238 35.02 2/1/1961–9/30/2002
12117000 Taylor Creek near Selleck 44.5 287 2.75 8/1/1956–9/30/2002
12142000 NF Snoqualmie River near Snoqualmie Falls 165.8 344 14.32 3/1/1961–9/30/2002
12094000 Carbon River near Fairfax 204.4 366 12.14 4/1/1929–5/31/1978
12083000 Mineral Creek near Mineral 194.8 408 10.25 6/1/1942–9/30/2002
12143400 SF Snoqualmie River AB Alice Creek near Garcia 107.7 438 8.55 10/1/1960–9/30/2002
12082500 Nisqually River near National 344.5 442 21.87 6/1/1942–9/30/2002
12115000 Cedar River near Cedar Falls 105.4 475 7.34 10/1/1945–9/30/2002
12115500 Rex River near Cedar Falls 34.7 488 2.87 10/1/1945–9/30/2002
12092000 Puyallup River near Electron 7.3 497 14.95 1/1/1958–9/30/2002
12097500 Greenwater River at Greenwater 190.4 526 5.99 5/1/1929–9/30/1977
12147600 South Fork Tolt River near Index 13.8 564 1.56 8/1/1928–12/27/1980
12115700 Boulder Creek near Cedar Falls 12.0 0.69 3/1/1983–9/30/2002

Table 2. Power spectrum analysis of 23 streamflows in central basin of Puget Sound.

Station ID Station name Dominate periodicity Harmonics Sub-harmonics

12054000 Duckabush River near Brinnon 6 months 12 months
12056500 NF Skokomish R BL Staircase RPDS NR Hoodsport 12 months 6 months
12060500 South Fork Skokomish River near Union 12 months 6 months
12079000 Deschutes River near Rainier 12 months 6 months
12082500 Nisqually River near National 6 months 12 and 82 months
12083000 Mineral Creek near Mineral 12 months 6 months
12092000 Puyallup River near Electron 6 months 12, 22 and 90 months
12094000 Carbon River near Fairfax 6 months 12 and 54 months
12097500 Greenwater River at Greenwater 12 months 3, 4 and 6 months 59 and 197 months
12108500 Newaukum Creek near Black Diamond 12 months 6 months 87 months
12115000 Cedar River near Cedar Falls 12 months 6 months
12115500 Rex River near Cedar Falls 12 months 6 months
12115700 Boulder Creek near Cedar Falls 12 months 6 months 40 months
12117000 Taylor Creek near Selleck 12 months 6 months 23 and 93 months
12121600 Issaquah Creek Near Mouth near Issaquah 12 months 6 months 25 and 95 months
12122500 Bear Creek near Redmond 12 months 30 months
12134500 Skykomish River near Gold Bar 6 months 12 months
12141300 Middle Fork Snoqualmie River near Tanner 6 months 12, 19 and 84 months
12142000 NF Snoqualmie River near Snoqualmie Falls 6 months 12, 25 and 84 months
12143400 SF Snoqualmie River AB Alice Creek near Garcia 6 months 12, 20 and 72 months
12147600 South Fork Tolt River near Index 6 months 12 months
12161000 SF Stillaguamish River near Granite Falls 12 months 6 months
12167000 NF Stillaguamish River near Arlington 12 months 6 months
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Fig. 4. Power spectrum analysis for streamfroms(a) at USGS
12167000 and(b) at USGS 12094000. (a) shows harmonic peri-
odicity; (b) shows subharmonic periodicity.

Different streams with different drainage areas at different
elevations respond differently to the winter inflow of mois-
ture to the region. Streams at low elevations (e.g. USGS
12121600) tend to respond quickly and directly to the pre-
cipitation that falls on the basin, since the basin tempera-
tures are typically above freezing level, and all the precip-
itation falls as rain. Streams at moderate elevations (e.g.
USGS12115000) have a transient snow zone, where precip-
itation frequently falls as snow but then melts a few days or
weeks later in a cycle that is typically repeated many times
in the winter. The transient snow zone can cause flooding
if heavy rain and warm temperatures occur at the same time
when snow has already accumulated. Typically streams of
this type show a dual peaked hydrograph: one during the
winter, another during spring or early summer. Figure 4a
shows the power spectrum of streamflow at a moderate el-
evation. Clearly, two periodicities occur at six-month and
one-year periods. It can be seen that the annual periodicity
is stronger than the six-month periodicity. This is referred to
as harmonic cycles in time series analysis. However, Fig. 4b
shows a different scenario, i.e. the six-month periodicity is
stronger than the annual and long-term (54-month) periodic-
ity. This is referred to as sub-harmonic in time series anal-
ysis, which is usually the evidence of existing long term cy-
cles.

Table 2 shows the results of power spectral analysis from
which the periodicity of the streamflow time series are iden-
tified clearly. Moreover, the complexity of the data is shown
through the harmonics and sub-harmonics of frequencies and
periodicity.

The deviation of hydrographs from typical dual peaks in
some streamflows (most in moderate elevations) may be the
effect of El Niño Southern Oscillation (ENSO) phenomenon
to transient snow zones. Numerous researchers (Koch et al.,
1991; Redmond and Koch, 1991; Chiew et al., 1998) have
shown that the snowpack in the Pacific Northwest regions
is evidently affected by ENSO, such as Southern Oscilla-
tion Index (SOI), sea surface temperatures (SST) and Pacific
Decadal Oscillation (PDO). These oscillators usually have
3 to 10 year cycles. An El Niño event can lead to a drier
and warmer than normal winter, while a La Niña event can

Fig. 5. DVS plots for two daily streamflow discharges in central
basin of Puget Sound(a) USGS 12097500,(b) USGS 12147600.
Time delay and embedding dimensions are the same as in Table 3,
whereε is the size of neighborhood.

lead to a wetter and cooler than normal winter. The vari-
ability observed in the streamflows, both from year to year
and within the year, is related to these large-scale features
in the ocean and atmosphere. Correlations between stream-
flows and ENSO have been found in many streams in Pacific
Northwest (Peter et al., 2002; Piechota and Dracup, 1999).
The streamflow records reflect the interactions between sea-
sonality and long-term cycles of climate.

From Table 2, it is clear that either a six-month or a
twelve-month periodicity dominates the streamflow dynam-
ics. However, sub-harmonic frequencies are present in most
data sets at moderate elevations. This implies that, not only
annual and semi-annual cycles, but also long-term cycles
play important roles in these streamflow processes. The in-
teraction of a dominant frequency with harmonic and sub-
harmonic frequencies may create various complex behav-
iors of the streamflow from linear stochastic process to de-
terministic chaos, or something in between such as quasi-
periodicity or tori. Our next task, therefore, is to test these
complexities using a surrogate data test.

To conduct the surrogate data test, we need to choose an
appropriate nonlinear statistic. As we demonstrated in the
previous section, the zeroth-order prediction error is a ro-
bust and powerful nonlinear statistic. Therefore, we use this
statistic to test the twenty-three streamflows versus their cor-
responding surrogates. If the null hypothesis were rejected,
we use DVS plot for further investigation. The surrogate data
test and the DVS plot are performed using the software pack-
age TISEAN (Hegger et al., 1999).

The results of the surrogate data test for the twenty-three
streamflows in the central basin of Puget Sound are presented
in Table 3.

Zeroth-order prediction error is chosen as the test statis-
tic. The time delay and embedding dimensions associated
with prediction errors are the key elements in the algorithm
of the zeorth-order prediction. If the time delayτ is taken
too small, there is almost no difference between the different
components of the embedding vectors, such that all points are
concentrated around the diagonal. On the other hand, if it is
taken too large, the different coordinates may be almost un-
correlated, such that the reconstructed attractor becomes very
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Table 3. Surrogate data tests of 23 streamflow in central basin of Puget Sound.

Station ID Station name Embedding Delays Test Period
dimension

12054000 Duckabush River near Brinnon 7 52 Reject 7/1/1938–9/30/2002
12056500 NF Skokomish R BL Staircase RPDS NR Hoodsport 7 62 Reject 8/1/1924–9/30/2002
12060500 South Fork Skokomish River near Union 7 59 Reject 8/1/1931–9/30/1985
12079000 Deschutes River near Rainier 12 71 Not Reject 6/1/1949–9/30/1976
12082500 Nisqually River near National 6 64 Not Reject 6/1/1942–9/30/2002
12083000 Mineral Creek near Mineral 8 82 Not Reject 6/1/1942–9/30/2002
12092000 Puyallup River near Electron 8 40 Reject 1/1/1958–9/30/2002
12094000 Carbon River near Fairfax 13 42 Not Reject 4/1/1929–5/31/1978
12097500 Greenwater River at Greenwater 5 71 Reject 5/1/1929–9/30/1977
12108500 Newaukum Creek near Black Diamond 13 42 Not Reject 10/1//1952–9/30/2002
12115000 Cedar River near Cedar Falls 6 60 Reject 10/1/1945–9/30/2002
12115500 Rex River near Cedar Falls 8 53 Not Reject 10/1/1945–9/30/2002
12115700 Boulder Creek near Cedar Falls 13 26 Reject 3/1/1983–9/30/2002
12117000 Taylor Creek near Selleck 9 85 Reject 8/1/1956–9/30/2002
12121600 Issaquah Creek near Mouth Near Issaquah 7 58 Reject 10/1/1963–9/30/2002
12122500 Bear Creek near Redmond 9 20 Not Reject 5/16/1979–9/30/1996
12134500 Skykomish River near Gold Bar 8 52 Not Reject 10/1/1928–9/30/2002
12141300 Middle Fork Snoqualmie River near Tanner 16 43 Not Reject 2/1/1961–9/30/2002
12142000 NF Snoqualmie River near Snoqualmie Falls 8 51 Not Reject 3/1/1961–9/30/2002
12143400 SF Snoqualmie River AB Alice Creek near Garcia 11 52 Reject 10/1/1960–9/30/2002
12147600 South Fork Tolt River near Index 13 15 Reject 8/1/1928–12/27/1980
12161000 SF Stillaguamish River near Granite Falls 14 45 Reject 8/1/1928–9/30/2002
12167000 NF Stillaguamish River near Arlington 10 60 Reject 8/1/1928–9/30/2002

complicated and the original structure of the attractor is lost.
The choice of time delayτ is here based on the so-called mu-
tual information (Frazer and Swinney, 1986), which can be
considered as a nonlinear analogue to linear correlation and
is more adequate than an autocorrelation function when non-
linear dependencies are present. A possible rule to choose
an appropriate time delayτ is to use the first minimum of
the time delayed mutual information . Thus, the components
of the embedding vectors can be considered independent at
least with this lag.

It can be seen that, for most streamflows in Table 3 the time
delays are quite large, somewhere from 15 days to 85 days.
This may be due to the fact that most streamflows in this
study are either snowmelt-driven or hybrid (mixed rainfall-
and snowmelt-driven). These sub-basins receive most pre-
cipitation from November to April. During these six months,
a cycle of snow falls and melts off (described earlier) oc-
curs frequently. The snowpack at transient zones are typi-
cally completely melted off in early June. During summer
months (from July to September), these sub-basins receive
very little precipitation. Therefore, streamflows in these sub-
basins may have long-term persistence. Also, soil moisture
and permeability, forest canopies, and topographies of sub-
basins may be factors associated with the time delay. While
no extensive investigation on the effects of time delay has
been conducted on these streamflows, the study by Regonda
et al. (2004) in a nearby area, Stillaguamish River, found
a similar long time lag using the first zero autocorralation

function. The long time showed the additional complexity
inherent in the subject streamflow.

The embedding dimensions are determined using false
nearest neighbors proposed by Kennel et al. (1992). The
range of embedding dimensions for these streamflows are
from 5 to 16. Note that the embedding dimension thus ob-
tained is not necessarily equal to the dimension of the entire
hydrologic system. By Taken’s theorem, the original system
is topologically equivalent to embedded system as long as
the embedding dimensionm is as twice as large than the di-
mension of the original systemn. Therefore, the embedding
dimension is an upper bound of the real dimension of the
system.

Using the surrogate data test, we find that about 57% of
the selected streamflow data sets were unlikely to be gener-
ated by linear stochastic processes. So, we further investi-
gate, using DVS plot, whether or not the rejections were due
to nonlinearity. Figure 5 shows plots of the prediction errors
as a function of log neighborhood size from two streamflows
measured at USGS 12097500 (Greenwater River at Green-
water, WA) and USGS 12147600 (South Fork Tolt River
Near Index, WA), respectively. From Fig. 5a, one can see that
the minimum prediction error occurs at small neighborhood
size, which is a clear indication of nonlinearity. However,
in Fig. 5b, the minimum is not seen at small neighborhood
size, but somewhere in the moderate neighborhood size. This
shows that determinism is weaker, presumably due to a much
higher noise level. Most DVS plots for streamflows are
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similar to Fig. 5b, which indicates that linear stochastic pro-
cesses and high dimensional deterministic processes make no
difference in short-term prediction. For the rest of the 43%
streamflows that did not pass the surrogate data test, it ap-
pears that the data were generated from stochastic processes.

4 Conclusion and closing remarks

In this paper we introduced a statistically rigorous frame-
work, called surrogate data test, to examine whether or not
the streamflow under investigation is generated by a Gaus-
sian (linear) process undergoing a possibly nonlinear static
transform. The surrogate data, generated to represent the null
hypothesis, are compared to the original data under a non-
linear discriminating statistic in order to reject or accept the
null hypothesis. The negative result can mean several things.
The statistics chosen may just not have any power to detect
the kind of nonlinearity present. Alternatively, the underly-
ing process may be linear and the null hypothesis true. It
could also be, and this seems the most likely option after all
we know about the equations governing hydrologic process,
which is nonlinear but the single time series at this sampling
covers such a poor fraction of the rich dynamics that it must
appear linear stochastic to the analysis. When the null hy-
pothesis is rejected, we have to keep in mind that the rejec-
tion has to be justified because it may depend on the applied
nonlinear method and the choice of the nonlinear statistics
(e.g. a linear process with Poisson distributed shot noise was
incorrectly rejected by using a simple third order statistic,
but was accepted by using prediction errors of false nearest
neighbors, see Sect. 2), or the measurement function could
depend on more than one measurement. Hence, we suggest
to use more than one method such as DVS plot or to compare
the spectrum of increment series with surrogate volatility se-
ries to confirm the result. We have to also keep in mind that
a rejection after the justification only indicates nonlinearity,
not necessarily low dimensional deterministic chaos.

Streamflow is a complex hydrologic process. Even the
knowledge that certain components of a hydrologic system
may exhibit nonlinear behavior does not necessarily lead
to the conclusion that a specific output of the system (e.g.
streamflow) is consequently nonlinear, or that this nonlinear-
ity will be proven evident in streamflow dynamics. Instead
of pre-supposing the underlying dynamics, we use surrogate
data test to represent the dynamics in an ‘inverse’ manner.
We have shown in Sect. 2 that surrogate data test is a power-
ful statistical tool that is capable of distinguishing nonlinear
dynamics from linear stochastic processes, even if the noise
is generated from non-Gaussian sources. This has significant
implications in hydrology because in most cases streamflow
records are obtained through a measurement function and
their statistical distribution are usually unknown.

Unlike conventional characterization of streamflow, we
introduced concepts fairly new and recent to hydrologists,
such as embedding dimension, time lag and prediction er-
rors. These concepts have significant application to hydrol-

ogy. Embedding dimension and time lag illustrate the com-
plexity of the system. Prediction errors show certain struc-
ture of the dynamic system. For example, embedding di-
mension m gives an upper bound of the original dynamic
system. Moreover, this bound is determined from measured
data rather than through a prejudiced model subjectively se-
lected by investigators. We applied these concepts together
with surrogate data test to characterize twenty-three stream-
flows in the central basin of Puget Sound. As we have shown
in Sect. 3 that the complexity of these streamflows are char-
acterized by the length of time delays, the degrees of em-
bedding dimensions, harmonic and sub-harmonic periods in
streamflow time series, and the linear stochastic and nonlin-
ear dynamic processes presented in the streamflows.

In the review of searching for lower dimensional chaos
from field data, we recommend researchers to use surrogate
data test as the first cut of screening. If the nonlinearity does
not exist in the data, why not bother to calculate invariants
such as fractal and correlation dimensions to make a possi-
ble false claim?
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casting using El Nĩno-Southern Oscillation Indicators, J. Hydrol.
Engng., 4, 144–151, 1999.

Pikovsky, A.: Noise filtering in the discrete time dynamical sys-
tems, Sov. J. Commun. Technol. Electron., 31, 911–914, 1986.

Redmond, K. T. and Koch, R. W.: Surface climate and streamflow
variability in the western United States and their relationship to
large-scale circulation indices, Water Resour. Res., 27, 2381–
2399, 1991.

Regonda, S., Sivakumar, B., and Jain, A.: Temporal scaling in river
flow: Can it be chaotic?, Hydrol. Sci. J., 49, 373–385, 2004.

Rodriguez-Iturbe, I., De Power, B. F., Sharifi, M. B., and Geor-
gakakos, P. K.: Chaos in rainfall, Water Resour. Res., 25, 1667–
1675, 1989.

Schertzer, D., Tchiguirinskaia, I., Lovejoy, S., Hubert, P., Bend-
joudi, H., and Larcheveque, M.: Discussion of “Evidence of
chaos in the rainfall-runoff process”, Which chaos in the rainfall-
runoff process? Hydrol. Sci. J., 47, 139–147, 2002.

Schreiber, T. and Schmitz, A.: Improved surrogate data for nonlin-
earity tests, Phys. Rev. Lett., 77, 635–638, 1996.

Schreiber, T. and Schmitz, A.: Surrogate time series, Physica D,
142, 346–382, 2000.

Sivakumar, B., Liong, S. Y., Liaw, C. Y., and Phoon, K. K.: Singa-
pore Rainfall Behavior: Chaotic?, J. Hydrol. Engng., 4, 38–48,
1999.

Sivakumar, B.: Rainfall dynamics at different temporal scales: A
chaotic perspective, Hydrol. Earth Sys. Sci., 5, 1–7, 2001,
SRef-ID: 1607-7938/hess/2001-5-1.

Sivakumar, B., Jayawardena, A. W.: An investigation of the pres-
ence of low-dimensional chaotic behavior in the sediment trans-
port phenomenon, Hydrol. Sci. J., 47, 405–416, 2002.

Takens, F.: Detecting strange attractors in turbulence, in: Lecture
Notes in Mathematics, edited by: Young, L. S., Springer, Berlin,
1981.

Theiler, J.: Spurious dimension from correlation algorithms applied
to limited time-series data, Phys. Rev. (A), 34, 2427–2432, 1986.

Theiler, J. and Prichard, D.: Using “Surrogate Surrogate Data” to
calibrate the actual rate of false positives in tests for nonlinear-
ity in time series, Fields Institute Communications, 11, 99–113,
1996.

Tong, H.: Nonlinear Time Series, A Dynamic System Approach,
Oxford University Press, Oxford, 1990.

Weiss, G.: Shot noise models for the generation of synthetic stream-
flow data, Water Resour. Res., 13, 101–108, 1977.

http://direct.sref.org/1607-7946/npg/2004-11-463
http://direct.sref.org/1607-7938/hess/2001-5-1

