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Abstract. Abundant evidence for the occurrence of mod-
ulated envelope plasma wave packets is provided by recent
satellite missions. These excitations are characterized by a
slowly varying localized envelope structure, embedding the
fast carrier wave, which appears to be the result of strong
modulation of the wave amplitude. This modulation may be
due to parametric interactions between different modes or,
simply, to the nonlinear (self-)interaction of the carrier wave.

A generic exact theory is presented in this study, for
the nonlinear self-modulation of known electrostatic plasma
modes, by employing a collisionless fluid model. Both cold
(zero-temperature) and warm fluid descriptions are discussed
and the results are compared. The (moderately) nonlinear os-
cillation regime is investigated by applying a multiple scale
technique. The calculation leads to a Nonlinear Schrödinger-
type Equation (NLSE), which describes the evolution of the
slowly varying wave amplitude in time and space. The NLSE
admits localized envelope (solitary wave) solutions of bright-
(pulses) or dark- (holes, voids) type, whose characteristics
(maximum amplitude, width) depend on intrinsic plasma pa-
rameters. Effects like amplitude perturbation obliqueness
(with respect to the propagation direction), finite tempera-
ture and defect (dust) concentration are explicitly consid-
ered. Relevance with similar highly localized modulated
wave structures observed during recent satellite missions is
discussed.

1 Introduction

In a wide variety of physical contexts, the dynamics of prop-
agating periodic excitations (waves) is dominated by a com-
petition between the effects of “mode dispersion” and “non-
linearity” of the medium. The latter mechanism, which is ig-
nored when studying harmonic (linear) wave propagation in
the small-amplitude limit, generally increases when the dis-
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placement from equilibrium grows bigger. For a sufficiently
important excitation amplitude, it is known that nonlinearity
may be strong enough to balance spatial delocalization (i.e.
mode separation due to dispersion) and thus result to the for-
mation of propagating localized structures (solitary waves,
solitons). On the other hand, weakly nonlinear effects enter
into play as the wave amplitude acquires (even small yet) fi-
nite (non negligible) values, moderately beyond the linear ap-
proximation. The generic signature of this mechanism is the
appearance of secondary phase “harmonics” in the Fourier
spectrum of the system observed, in addition to a nonlinear
modulation of the wave’s amplitude, manifested as a slow
variation of the wave’s amplitude in space and time. The oc-
currence of amplitude modulation may be due to parametric
wave coupling, interaction between high- and low- frequency
modes or, simply, self-interaction of the carrier wave (“auto”-
or “self”-modulation). Furthermore, analytical and numeri-
cal studies have established the relevance of these phenom-
ena with modulational instability, which may lead to energy
localization via localized pulse formation, as known in fields
as diverse as Nonlinear Optics, Condensed Matter Physics
and Biophysics (Davydov, 1985; Hasegawa, 1989; Infeld,
1990; Remoissenet, 1994).

Charged matter (plasma), a nonlinear and dispersive
medium “par excellence”, provides a typical paradigm for
the study of such mechanisms. As far as plasma modes are
concerned (Krall and Trivelpiece, 1973; Stix, 1992), the oc-
currence of such phenomena has been confirmed by exper-
iments related to the nonlinear propagation of electrostatic
(ES, e.g. ion-acoustic) (Watanabe 1977; Bailung and Naka-
mura, 1993; Luo et al., 1998; Nakamura et al., 1999; Naka-
mura and Sarma, 2001) as well as electromagnetic (EM, e.g.
whistler) waves (Kostrov, 2003). Recent numerical simu-
lations of electron cyclotron waves (Eliasson and Shukla,
2004) (as well as earlier ones, by Hasegawa, 1970, 1972)
also predict such a behaviour.

In the context of Space Physics, moving localized electro-
static structures have been reported by recent spacecraft mis-
sions e.g. the FAST at the auroral region (Delory et al., 1998;
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Fig. 1. Modulated structures, related to “chorus” (EM) emission in
the magnetosphere (CLUSTER satellite data; reprinted from Santo-
lik, 2003).

Ergun et al., 1998a, 1998b; Pottelette et al., 1999), as well as
the S3-3 (Temerin, 1982), Viking (Boström, 1988), GEO-
TAIL and POLAR earlier missions in the magnetosphere
(Matsumoto et al., 1994; Franz et al., 1998; Cattell et al.,
1999, 2003; McFadden et al., 2003) (also see many ref-
erences therein) (the interpretation of the Viking measure-
ments, Bostrom, 1988, has recently risen some doubt; see
the thorough discussion in McFadden et al., 2003). Some
of the localized structures reported therein bear qualitative
characteristics which are reminiscent of solitary electrostatic
waves and are strongly believed to be related to ion acous-
tic waves; see the discussion in (McFadden et al., 2003).
It should be stressed that both compressive and rarefactive
large amplitude structures have been observed (Matsumoto
et al., 1994; Franz et al., 1998; Cattell et al., 1999, 2003)
(also see many references therein). Note that it was recently
suggested by McFadden et al. (2003) that neither the veloc-
ity dependence of the observed potential structure amplitudes
nor their asymmetry should be taken for granted, since they
may be attributed to intrinsic measurement errors. Finally,
the observed phase speeds lie over an extended region of
values, sometimes even above the ion sound velocity; these
facts seem to suggest that plainly employing the soliton (Ko-
rteweg – deVries, KdV) picture may not suffice for the elu-
cidation of the generation of these solitary structures and an
alternative instability mechanism may be present; also see
the discussion in (Berthomier et al., 1998; McFadden et al.,
2003). Localized modulated wave packets, in particular, are
encountered in abundance e.g. in the Earth’s magnetosphere,
where they are associated with localized field and/or density
variations simultaneously observed (Pottelette et al., 1999;
Alpert, 2001; Santolik, 2003). The occurrence of such wave
forms is, for instance, thought to be related to the broadband
electrostatic noise (BEN) encountered in the “auroral” region
(Pottelette et al., 1999).

Recent analytical studies have supplied evidence for
the relevance of nonlinear modulational effects in dust-
contaminated plasmas (“Dusty” or “Complex” Plasmas),
where a strong presence of mesoscopic, massive, charged
dust grains strongly affects the characteristics of the plasma
(Verheest, 2001; Shukla and Mamun, 2002). The modifica-
tion of the plasma response due to the presence of dust gives
rise to new ES/EM modes, whose self-modulation was re-
cently shown to lead to modulational instability and soliton
formation; these include e.g. the dust-acoustic (DA) (Rao et
al., 1990; Amin et al., 1998; Tang and Xue, 2003; Kourakis
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Fig. 2. Electrostatic noise wave forms, related to modulated
electron-acoustic waves (FAST satellite data; figure reprinted from
Pottelette et al., 1999). The co-existence of a high (carrier) and
a low (modulated envelope) frequencies is clearly reflected in the
Fourier spectrum, in the right.

and Shukla, 2004a) and dust-ion acoustic (DIA) ES modes
(Shukla and Silin, 1992; Amin et al., 1998; Kourakis and
Shukla, 2003a, 2004b), in addition to magnetized plasma
modes, e.g. the Rao EM dust mode (Kourakis and Shukla,
2004c).

The purpose of this paper is to provide a “generic”
methodological framework for the study of the nonlinear
(self-) modulation of the amplitude of electrostatic (ES)
plasma modes. The results which follow cover a variety of
ES modes. We mean to emphasize the generic character of
the nonlinear behaviour of these modes, so focusing upon a
specific mode is avoided on purpose. Where appropriate, de-
tails regarding specific modes may be sought in (Kourakis
and Shukla, 2003a, b, 2004a, b, d), where some of this mate-
rial was first presented.

In the following, we study the modulational instability of
electrostatic plasma waves propagating “along” the magnetic
field, so that the Lorentz forces can be omitted. Amplitude
modulation is allowed to take place in an oblique direction,
at an angleθ with respect to the carrier wave propagation
direction. By assuming the wave’s amplitude to vary on
slow space and time scales, sayX andT (see definitions be-
low), we shall seek an evolution equation for the amplitude
ψ(X, T ), establish its oscillatory solution and then establish
an explicit criterion for modulational (in)stability. Our aim
is to trace the influence ofθ on the conditions for modula-
tional instability onset, and determine the magnitude of the
associated instability growth rate. We shall also examine the
possibility of the formation of localized excitations and dis-
cuss their characteristics. Exact new expressions are derived
for quantities of interest, in terms of the system’s dispersion
laws and the intrinsic plasma parameters.

The manuscript is organized as follows. In the next Sec-
tion, the analytical model is introduced. In Sect.3, we carry
out a perturbative analysis by introducing appropriate slow
space and time evolution scales, and derive a NLS-type equa-
tion which governs the (slow) amplitude evolution in time
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Fig. 3. Localized envelope structures in the magnetosphere
reprinted from Alpert (2001).

and space. The exact form of dispersion and nonlinearity
coefficients in the NLS-type equation is presented and dis-
cussed. In Sect.4, we carry out a stability analysis of the
NLSE allowing for a thorough study of the DA wave stabil-
ity in various regions of the physical parameters involved.
We pursue the analysis in Sect.5, by discussing the possibil-
ity of the existence of localized solutions of the NLSE, and
identifying their forms in different parameter regions. The
relevance of the formalism with known plasma modes is dis-
cussed in Sect.6. Finally, our results are briefly discussed
and summarized in the concluding Sect.7.

2 The model: formulation and analysis

In a general manner, several known electrostatic plasma
modes (Stix, 1992; Swanson, 2003) are adequately described
by (single) fluid models; ES plasma modes are thus as-
sociated with propagating oscillations which are related to
“one” dynamical plasma constituent, sayα (massmα, charge
qα ≡ sαZαe; e is the absolute electron charge;s = sα =

qα/|qα| = ±1 is the charge “sign”), against a background of
one (or more) constituent(s), sayα′ (massmα′ , chargeqα′ ≡

sα′Zα′e, similarly). The background species is (are) often as-
sumed to obey a known distribution, e.g. to be in a fixed (uni-
form) or in a thermalized (Maxwellian) state, for simplicity,
depending on the particular aspects (e.g. frequency scales)
of the physical system considered. For instance, the “ion-
acoustic” (IA) mode refers to ions (α = i) oscillating against
a (much hotter) electron background (α′

= e), which may be
considered to be Maxwellian (Krall and Trivelpiece, 1973;
Kourakis and Shukla, 2003b); the “electron-acoustic” (EA)
mode (Krall and Trivelpiece, 1973; Kourakis and Shukla,
2004d) can be modelled as electron oscillations (α = e)
against a background of ions (α′

= i), which are practically
immobile (fixed), and so forth (Krall and Trivelpiece, 1973;
Stix, 1992). The coexistence of “hot” (h) and “cold” (c) elec-
tron populations, observed in the upper parts of the Earth’s
magnetosphere (Berthomier et al., 1998), may also readily
be accommodated in this description, in order to study its
influence on IA (α = i, α′

= c, h) (Kourakis and Shukla,
2003b) and EA (α = c, α′

= i, h) (Kourakis and Shukla,
2004d) waves. As regards “dusty plasma” modes, the DA
mode describes oscillations of dust grains (α = d) against a
Maxwellian electron and ion background (α′

= e, i) (Shukla
and Mamun, 2002; Kourakis and Shukla, 2004a), while DIA
waves denote IA oscillations in the presence of inertial dust

in the background (α = i, α′
= e, d) (Shukla and Mamun,

2002; Kourakis and Shukla, 2003a; Kourakis and Shukla,
2004b).

2.1 A generic fluid description

A standard (single) fluid model to be employed for the dy-
namic speciesα consists of the first moment evolution equa-
tions, namely the densitynα (conservation) equation, the
mean fluid velocity equation and the pressure equation:

∂nα

∂t
+ ∇ · (nα uα) = 0

∂uα
∂t

+ uα · ∇uα = −
qα

mα
∇8−

1

mαnα
∇pα

∂pα

∂t
+ uα · ∇pα = −γ pα ∇ · uα, (1)

where nα, uα and pα respectively denote the “density”,
“mean” (fluid) “velocity” and “pressure” of speciesα. The
parameterγ = cP /cV = 1 + 2/f denotes the specific
heat ratio (forf degrees of freedom), e.g.γ = 3 in the
one-dimensional (“1d”) case,γ = 2 in the two-dimensional
(“2d”) and γ = 5/3 in the three-dimensional (“3d”) case;
also,γ = 1 if an adiabatic evolution is considered.

The electric potential8 obeys Poisson’s eq.:

∇
28 = −4π

∑
α′′=α,{α′}

qα′′ nα′′ = 4π e (ne−Zi ni+...) , (2)

where all the particle species appear in the right-hand side
(“rhs”). Overall charge neutrality is assumed at equilibrium,
i.e.

qα nα,0 = −

∑
α′

qα′ nα′,0 . (3)

2.2 Reduced description

By choosing appropriate scales for all quantities, the above
system of evolution equations may be cast into the following
form:

∂n

∂t
+ ∇ · (n u) = 0, (4)

∂u
∂t

+ u · ∇u = −s ∇φ −
σ

n
∇p, (5)

∂p

∂t
+ u · ∇p = −γ p∇ · u (6)

(the indexα will be understood where omitted, viz.s = sα).
The re-scaled (dimensionless) dynamic variables are now:
n = nα/nα,0, u = uα/c∗, p = pα/(nα,0kBTα), and
φ = |qα|8/(kBT∗), wherenα,0 is the equilibrium density
andc∗ = (kBT∗/mα)

1/2 is a characteristic (e.g. sound) ve-
locity. Time and space are scaled over appropriately chosen
scalest0 (e.g.ω−1

p,α = (4πnα,0q2
α/mα)

−1/2) andr0 = c∗t0;
Tα is the fluid temperature (so pressure at equilibrium is:
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p0 = nα,0kBTα), andT∗ is an effective temperature (related
to the background considered), to be determined for each
problem under consideration (kB is Boltzmann’s constant).
The temperature ratioTα/T∗ is denoted byσ , in this “warm
model” (Chan and Seshadri, 1975; Durrani et al., 1979) (the
so-called “cold model” is recovered forσ = 0; see that
Eq. (6) then becomes obsolete). The Lorentz force term was
omitted, since wave propagation along the external magnetic
field is considered here. The system is closed by Poisson’s
equation, which may now be expressed as1

∇
2φ = −s

[
n +

∑
α′

nα′ qα′/(nα,0 qα)
]

≡ −s (n− n̂) . (7)

Note that the neutralizing background (reduced) density

n̂ = −

∑
α′

nα′ qα′

nα,0 qα
= −

1

sα Zα nα,0

∑
α′

sα′ Zα′nα′ (8)

is a priori2 a function of the potentialφ (note thatn̂ = 1
for φ = 0, due to the equilibrium neutrality condition); fur-
thermore, it depends on the physical parameters (e.g. back-
ground temperature, plasma density, defect concentration, ...)
involved in a given problem. The calculation in the specific
case of IA waves is explicitly provided below, for clarity.

2.3 Weakly nonlinear oscillation regime

What follows is essentially an implementation of the long
known “reductive perturbation” technique (Taniuti and Ya-
jima, 1969; Asano et al., 1969; Shimizu and Ichikawa, 1972;
Kako, 1974; Kakutani, 1974), which was first applied in the
study of electron plasma (Taniuti and Yajima, 1969; Asano
et al., 1969) and electron-cyclotron (Hasegawa 1970, 1972)
waves, more than three decades ago.

Equations (4)–(7) describe the evolution of the state vec-
tor3 S = {n, u, p, φ} which accepts a harmonic (electro-
static) wave solution in the formS = S0 exp[i(kr − ωt)] +

c.c., in the weak amplitude approximation, i.e. forS0,j � 1.
Once the amplitude of this wave becomes non-negligible, a
nonlinear harmonic generation mechanism enters into play:
this is the first signature of nonlinearity, which manifests its
presence once a slight departure from the weak-amplitude
(linear) domain occurs. In order to study the nonlinear (am-
plitude) modulational stability profile of these electrostatic
waves, we consider small deviations from the equilibrium
stateS(0) = (1, 0, 1, 0)T , viz. S = S(0)+εS(1)+ε2S(2)+ ...,
where ε � 1 is a smallness parameter. We have as-
sumed that4 S(n)j =

∑
∞

l=−∞
S
(n)
j,l (X, T ) exp[il(kr − ωt)]

1A factor ω2
p,α t

2
0 is omitted in the right-hand side of Eq. (7),

since equal to 1 fort0 = ω−1
p,α .

2This is only not true when the background is assumed fixed,
e.g. for EA waves (i.e.sα = −sα′ = −1, nα′ = ni = const.),
wheren̂ = Zini/ne,0 = const.

3Note thatS ∈ <
d+3 in a d− dimensional problem (d =

1,2,3).
4In practice, only terms withl ≤ n do contribute in this summa-

tion. This simply means that up to 1st harmonics are expected for
n = 1, up to 2nd phase harmonics forn = 2, and so forth.

(for j = 1, 2, ..., d + 3; see footnote3; the condition
S
(n)
j,−l = S

(n)
j,l

∗

holds, for reality). The wave amplitude is
thus allowed to depend on the stretched (“slow”) coordinates
X = ε(x − λ) t andT = ε2 t ; the real variableλ, to be de-
termined, will later be interpreted as the wave’s “group veloc-
ity” along the modulation directionx. The amplitude mod-
ulation direction (∼ x̂) is assumed “oblique” with respect
to the (arbitrary) propagation direction, which is expressed
by the wave vectork = (kx, ky) = (k cosθ, k sinθ) ; cf.
(Kako and Hasegawa, 1976; Chhabra and Sharma, 1986;
Mishra et al., 1994), where a similar treatment is adopted.
Note that (not having taken the magnetic field into account
in the analysis) this is essentially a “2d” physical problem,
although readily applicable in a three-dimensional (“3d”) de-
scription, for completeness. We shall limit ourselves to con-
sidering two axes (x andy) in the following.

According to the above considerations, we set:

∂/∂t → ∂/∂t − ε λ ∂/∂X + ε2∂/∂T ,

∂/∂x → ∂/∂x + ε ∂/∂X ,

(while ∂/∂y remains unchanged) and

∇
2

→ ∇
2
+ 2ε ∂2/∂x∂X + ε2 ∂2/∂X2 ,

so that

∂

∂t
A
(n)
l eilθ1 =

(
− ilω A

(n)
l − ε λ

∂A
(n)
l

∂X
+ ε2 ∂A

(n)
l

∂T

)
×eilθ1 ,

∇ A
(n)
l eilθ1 =

(
ilk A(n)l + ε x̂

∂A
(n)
l

∂X

)
eilθ1 ,

∇
2A

(n)
l eilθ1 =

(
− l2k2A

(n)
l + 2ε ilkx

∂A
(n)
l

∂X

+ε2 ∂
2A

(n)
l

∂X2

)
eilθ1 (9)

for anyl−th phase harmonic amplitudeA(n)l among the com-

ponents ofS(n)l ; obviously, θ1 here denotes the elementary
phaseθ1 ≡ kr − ωt .

By expanding nearφ ≈ 0, Poisson’s eq. may formally be
cast in the form

∇
2φ = φ − α φ2

+ α′ φ3
− s β (n− 1) , (10)

where the exact form of the real coefficientsα, α′ andβ (to
be distinguished from the species indices above, obviously)
are to be determined exactly for any specific problem, and
contain all the essential dependence on the plasma param-
eters. Note that the right-hand side in Eq. (10) cancels at
equilibrium.

The system of Eqs. (4)–(6) and (10) determines the evolu-
tion of the physical system considered, and is the basis of the
analytical study which follows.
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2.4 A case study: ion-acoustic waves

In order to make our method and notation concise and clear,
let us explicitly consider the simple case of “ions” (thusα =

i andqα = qi = +Zie, i.e. sα = +1) oscillating against
thermalized “electrons” (viz.α′

= e andqα′ = qe = −e,
i.e. sα′ = −1; ne = ne,0e

e8/(kBTe)). Adopting the scaling
defined above, and using the equilibrium neutrality condition
ne,0 = Zini,0, it is a trivial exercise to cast Poisson’s Eq. (2)
into the (reduced) form:

∇
2φ = −(ωp,i r0/c∗)

2
[n− eT∗φ/(ZiTe)] ≡ −(n− eξφ) ,

where we took:t0 = r0/c∗ = ω−1
p,i and ξ ≡ T∗/(ZiTe).

Now, expanding nearφ ≈ 0, viz. eξφ ≈ 1+ ξφ + ξ2φ2/2+

ξ3φ3/6 + ..., we have:

∇
2φ ≈ ξφ + ξ2φ2/2 + ξ3φ3/6 − (n− 1) .

Finally, setting the temperature scaleT∗ equal toT∗ = ZiTe,
for convenience (so thatξ = 1)5, one recovers exactly
Eq. (10) with α = −1/2,α′

= 1/6 andβ = 1.
The amplitude modulation of ion-acoustic waves was first

studied for parallel modulation (i.e. in the direction of propa-
gation, viz.θ = 0) in (Shimizu and Ichikawa, 1972), and for
oblique modulation in (Kako and Hasegawa, 1976); as ex-
pected, those results are recovered from the formulae below.

3 Perturbative analysis

By substituting the perturbative series defined in the previ-
ous Section into Eqs. (4)–(6) and (10) and isolating distinct
orders inε, we obtain a set of reduced equations for the har-
monic amplitude at each (nth-) order. Solving at each order
and substituting in th following one, one successively obtains
a linear homogeneous (Cramer-type) system of equations,
whose solution provides the amplitudes of thel−th harmonic
contributions at orderεn (i.e. n(n)l , u(n)x/y,l , p

(n)
l , φ(n)l , viz.

l = 0, 1, 2, ..., n for everyn = 1, 2, 3, ...). The compati-
bility condition obtained at each order, appearing e.g. as the
requirement of a determinant to be equal to zero, need also
be taken into account.

The details of the tedious calculation are explicitly pro-
vided in the Appendix, so only a few essential steps are ex-
posed in the following, for clarity.

3.1 1st-order quantities – dispersion relation

The first harmonic amplitudes are determined (to order∼ ε1)
as

n
(1)
1 = s

1 + k2

β
ψ =

k

ω cosθ
u
(1)
1,x =

k

ω sinθ
u
(1)
1,y =

p
(1)
1

γ
(11)

5Note that a different choice forT∗ would lead to a modified
right-hand-side in Eq. (10), i.e. a factorξ 6= 1 would precede the
first term (inφ). This might, of course, also be a legitimate choice of
scaling; however, the following formula are not valid – and should
be appropriately modified – in this case. Obviously though, the
qualitative results of this study are not affected by the choice of
scaling.

in terms e.g. of the potential correctionφ(1)1 ≡ ψ , along with
the dispersion relation

ω2
=

βk2

k2 + 1
+ γ σk2 . (12)

See that the expected acoustic behaviourω ∼ k is obtained
for low wavelengths, i.e. fork � 1.

3.2 2nd-order quantities - group velocity

The amplitudes of the 2nd and 0th (constant) harmonic cor-
rections are obtained in order∼ ε2 (the lengthy expressions
can be found in the Appendix); retain that the former (later)
are proportional toψ2 (|ψ |

2, respectively).
The compatibility condition obtained forn = 2 andl = 1

provides exactly the constraint:

λ =
∂ω(k)

∂kx
≡ vg , (13)

suggesting that the parameterλ denotes the velocityvg at
which the wave’s amplitude travels along the modulation di-
rectionx; for parallel modulation (viz.θ = 0) this is simply
the “group velocity”∂ω(k)/∂k 6; see Eq. (A12) in the Ap-
pendix for the exact expression forvg.

3.3 3rd-order quantities - the envelope evolution equation

At this stage, one has obtained a solution up to second order,
viz.

n ≈ n0 + ε {n
(1)
1 exp[i(kr − ωt)] + c.c.}

+ε2
{
n
(2)
0 + {n

(2)
2 exp[2i(kr − ωt)] + c.c.}

}
+O(ε3)

for the density (see that we have takenn(2)1 = 0, with no loss
of generality), along with analogous expressions for the other
state variables, namely velocity componentsux/y , pressurep
and potentialφ.

Isolating the evolution equations forn = 3 and l = 1,
one obtains an explicit condition for suppression of “secular
terms” to be obeyed by the potential correctionψ , i.e. a com-
patibility condition in the form of a “nonlinear Schrödinger–
type equation” (NLSE)

i
∂ψ

∂T
+ P

∂2ψ

∂X2
+Q |ψ |

2ψ = 0 . (14)

6This is a – physically expected – constraint which is imposed
by the equations forn = 2 andl = 1 (1st harmonics at 2nd or-
der). Alternatively, one may assume a dependence onXn = εnx

(plus a similar expansion fory, z and t) for n = 0,1, 2, ...; the

condition for annihilation of secular terms then reads:∂A
(1)
1 /∂T1+

(∂ω/∂kx)∂A
(1)
1 /∂X1, i.e.A(1)1 = A

(1)
1 (X1 − vgT1) (for any of the

1st harmonic amplitudesA(1)1 ∈ {S
(1)
1,j }), which essentially amounts

to the same constraint.
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Fig. 4. Bright type modulated wavepackets (forPQ > 0), for two different (arbitrary) sets of parameter values.
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Fig. 4. “Bright” type modulated wavepackets (forPQ > 0), for
two different (arbitrary) sets of parameter values.

The “dispersion coefficient”P is in fact related to the cur-
vature of the dispersion curve as

P =
1

2

∂2ω

∂k2
x

=
1

2

[
ω′′(k) cos2 θ +

ω′(k)

k
sin2 θ

]
(15)

(the prime denotes differentiation); see that the expected de-
pendenceP = ∂2ω/2∂k2, which is familiar from nonlinear
optics (Hasegawa, 1989) is obtained forθ = 0. The full
expression forP is given by Eq. (A20) in the Appendix.

The “nonlinearity coefficient”Q, which is due to the car-
rier wave self-interaction, is given by a lengthy expression,
reported in the Appendix.

Both coefficientsP andQ are functions ofk, θ and β
(in addition toα, α′, for Q), as expected. The exact general
expressions obtained (see in the Appendix) may be “tailor
fit” to any given electrostatic plasma wave problem (via the
form of the parametersα, α′, β), in view of a numerical in-
vestigation of the wave’s amplitude dynamics (e.g. stability
profile, wave localization; see in the following). One thus
obtains the (tedious) analytical form ofP andQ in terms of
intrinsic plasma parameters such as background plasma den-
sity, temperature, defect concentration, background species

composition (if more than one species is present in the back-
ground), and so forth. Also note the approximate expressions
obtained in the end of the Appendix, which are valid for large
wavelength (i.e. small wavenumber) values.

4 Modulational (in)stability analysis

It is known (see e.g. in Hasegawa, 1975, 1989; Remoissenet,
1994) that the evolution of a wave whose amplitude obeys
Eq. (14) depends on the coefficient productPQ, which may
be investigated in terms of the physical parameters involved.
To see this, first check that Eq. (14) supports the plane
(Stokes’) wave solutionψ = ψ0 exp(iQ|ψ0|

2T ); the stan-
dard linear analysis consists in perturbing the amplitude by
setting:ψ̂ = ψ̂0 + ε ψ̂1,0 cos(k̃X − ω̃T ) (the perturbation
wavenumber̂k and the frequencŷω should be distinguished
from their carrier wave homologue quantities, denoted byk

andω). One thus obtains the (perturbation) dispersion rela-
tion:

ω̃2
= P k̃2 (P k̃2

− 2Q|ψ̂1,0|
2) . (16)

One immediately sees that ifPQ > 0, the amplitudeψ is
“unstable” fork̃ <

√
2Q/P |ψ̂1,0|; i.e. for perturbation wave-

lengths larger than a critical value. IfPQ < 0, the ampli-
tudeψ will be “stable” to external perturbations. This “mod-
ulational instability” mechanism is tantamount to the well-
known “Benjamin-Feir” instability, in hydrodynamics, also
long-known as an energy localization mechanism in solid
state physics and nonlinear optics (Hasegawa, 1989; Infeld,
1990; Remoissenet, 1994).

This type of analysis allows for a numerical investiga-
tion of the stability profile in terms of parameters e.g. like
wavenumberk, perturbation (obliqueness) angleα, temper-
atureTα, background plasma parameters etc. A few known
ES modes have already thus been investigated; see in Sect.6
below.

5 Envelope excitations

It should be pointed out that the evolution Eq. (14) is known
to be integrable (Infeld, 1990; Remoissenet, 1994). Its lo-
calized solutions, which can be rigorously obtained via the
tedious Inverse Scattering Transform method, are properly
speaking “solitons”, in the sense that they satisfy an infin-
ity of conservation laws; they have been shown analytically
(and confirmed numerically) to survive collisions between
one another and also exhibit a robust behaviour against ex-
ternal perturbations.

The modulated (electrostatic potential) wave finally result-
ing from the above analysis is of the form7

φ
(1)
1 = εψ̂0 cos(kr − ωt +2)+O(ε2).

7In fact, the potential correction amplitude here isψ̂0 = 2ψ0,
from Euler’s formula:eix + e−ix = 2 cosx (x ∈ <).



I. Kourakis and P. K. Shukla: Localized envelope modulated electrostatic wavepackets 413

Note that once the potential correctionφ(1)1 is determined,
density, velocity and pressure corrections follow from
Eq. (11). The slowly varying amplitudeψ0(X, T ) and phase
correction2(X, T ) (both real functions of{X, T }; see in
Fedele and Schamel, 2002a; Fedele et al., 2002b for details)
are determined by (solving) Eq. (14) for

ψ = ψ0 exp(i2).

The different types of solution thus obtained are summarized
in the following.

5.1 Bright-type envelope solitons

For “positive” PQ, the carrier wave is modulationally “un-
stable”; it may either “collapse”, due to (possibly random)
external perturbations, or lead to the formation of “bright”
envelope modulated wavepackets, i.e. localized envelope
“pulses” confining the carrier (see Fig.4), given by (Fedele
and Schamel, 2002a; Fedele et al., 2002b)8

ψ0 =

(
ψ̃0

)1/2
sech

(
X − ve T

L

)
,

2 =
1

2P

[
veX +

(
�−

v2
e

2

)
T

]
, (17)

whereve is the envelope velocity;L and� represent the
pulse’s spatial width and oscillation frequency (at rest),
respectively. We note thatL and ψ̃0 satisfy Lψ̃0 =

(2P/Q)1/2 = const. (in contrast with KdV solitons (Re-
moissenet, 1994), whereL2ψ̃0 = const. instead). Also, the
amplitudeψ0 is independent of the pulse (envelope) velocity
ve here.

It may be pointed out that, although the bright (envelope)
soliton phase profile remains constant as it propagates (see
Fig. 6), its phase bears a (slow) space and time dependence,
thus allowing for a slight deformation of the wave packet
internal structure during propagation; see e.g. Fig.6, where
this effect is clearly pointed out.

5.2 Black-type envelope solitons

For PQ < 0, the carrier wave is modulationally “stable”
and may propagate as a “dark” (“black” or “grey”) envelope
wavepackets, i.e. a propagating localized “hole” (a “void”)
amidst a uniform wave energy region. The exact expres-
sion for “dark” envelopes reads (Fedele and Schamel, 2002a;
Fedele et al., 2002b)8:

ψ0 = ψ ′
0

∣∣∣∣tanh

(
X − ve T

L′

)∣∣∣∣ ,
2 =

1

2P

[
veX +

(
2PQψ ′

0
2
−
v2
e

2

)
T

]
(18)

(see Fig.7a); again,L′ψ ′
0 = (2|P/Q|)1/2 (=cst.).

8These expressions are readily obtained from (Fedele and
Schamel, 2002a; Fedele et al., 2002b), by shifting the variables
therein to our notation as:x → X, s → T , ρm → ρ0, α → 2P ,
q0 → −2PQ, 1 → L, E → �, V0 → u.
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Fig. 5. Bright envelope soliton propagation, at different timest1 < · · · < t5 (arbitrary parameter values): cf.

the structures encountered in satellite observations, e.g. see Fig.??.
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Fig. 5. Bright envelope soliton propagation, at different timest1 <
· · · < t5 (arbitrary parameter values): cf. the structures encountered
in satellite observations, e.g. see Fig.3.
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Fig. 6. Bright envelope soliton profile (centered), at different timest1 < · · · < t5 (arbitrary parameter values).

Contrary to the previous figure, the envelope width here is comparable in order of magnitude to the carrier

wavelength. Notice the variation in the localized packet’sinternal structure, due to the (slow) phase variation

in time.
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Fig. 6. Bright envelope soliton profile (centered), at different times
t1 < · · · < t5 (arbitrary parameter values). Contrary to the previous
figure, the envelope width here is comparable in order of magni-
tude to the carrier wavelength. Notice the variation in the localized
packet’s internal structure, due to the (slow) phase variation in time.
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Fig. 7. Dark-type modulated wavepackets (forPQ < 0) of theblack (left) andgrey (right) kind. See that the

amplitude never reaches zero in the latter case.
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Fig. 7. “Dark”-type modulated wavepackets (forPQ < 0) of (a)
“black” and (b) “grey” kind. See that the amplitude never reaches
zero in the latter case.

5.3 Grey-type envelope solitons

The “grey”-type envelope (also obtained forPQ < 0) is
given by (Fedele and Schamel, 2002a; Fedele et al., 2002b)8:

ψ0 = ψ ′′
0

[
1 − d2 sech2

(
X − ve T

L′′

)]1/2

and

2 =
1

2P

[
V0X −

(
1

2
V 2

0 − 2PQψ ′′2
0

)
T +20

]
−S sin−1 d tanh

(
X−ve T
L′′

)[
1 − d2 sech2

(
X−ve T
L′′

)]1/2
. (19)

Here 20 is a constant phase;S denotes the product
S = sign(P ) × sign(ve − V0). The pulse widthL′′

=

(|P/Q|)1/2/(dψ ′′
0) now also depends on the real parameter

d, given by:

d2
= 1 + (ve − V0)

2/(2PQψ ′′2
0) ≤ 1 .
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(a)

(b)

Fig. 8. The region of positive (negative) values of the productPQ, i.e. related to modulational instability

(stability), are depicted in white (black), in thewavenumberk (horizontal axis) -modulation angleα (vertical

axis) plane. These plots refer toion-acoustic waves: (a) σ = 0 (cold model); (b)σ = 0.05 (warm model)

[Reprinted from (Kourakis and Shukla, 2004b)].
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Fig. 8. The region of positive (negative) values of the productPQ,
i.e. related to modulational instability (stability), are depicted in
white (black), in the “wavenumber”k (horizontal axis) – “modula-
tion angle”α (vertical axis) plane. These plots refer to “ion-acoustic
waves”: (a) σ = 0 (cold model);(b) σ = 0.05 (warm model)
(reprinted from Kourakis and Shukla, 2004b).

The (real) velocity parameterV0 = const. satisfies (Fedele
and Schamel, 2002a; Fedele et al., 2002b)8:

V0 −

√
2|PQ|ψ ′′2

0 ≤ ve ≤ V0 +

√
2|PQ|ψ ′′2

0 .

For d = 1 (thusV0 = ve), one recovers the “dark” envelope
soliton.

(a)

(b)

Fig. 9. Similar to Fig.??, but fordust-ion acoustic waves(see in the text): (a)σ = 0 (cold model); (b)σ = 0.05

(warm model). We have considered anegativedust charge:δ = qd,0/qi,0 = 0.5 [i.e. µ = ne,0/(Zini,0) =

0.5]. The dust presence strongly modifies the stability profile, enhancing instability here [Reprinted from

(Kourakis and Shukla, 2004b)].
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Fig. 9. Similar to Fig.8, but for “dust-ion acoustic waves” (see in
the text):(a) σ = 0 (cold model);(b) σ = 0.05 (warm model). We
have considered a “negative” dust charge:δ = qd,0/qi,0 = 0.5 (i.e.
µ = ne,0/(Zini,0) = 0.5). The dust presence strongly modifies the
stability profile, enhancing instability here (reprinted from Kourakis
and Shukla, 2004b).

6 Explicit examples – known plasma modes

The theory presented here has been recently applied in a
variety of plasma modes, for instance: ion acoustic waves
(Kourakis and Shukla, 2003a, 2004b) and electron-acoustic
waves (Kourakis and Shukla, 2004d). Some previous results
regarding parallel modulation were thus generalized to ac-
count for oblique modulation (with respect to the propaga-
tion direction). In the following, we shall briefly summarize
some of these results.
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Fig. 10. Similar to Fig.??, but for dust-ion acoustic waves in the presence of apositivedust charge: (a)σ = 0

(cold model); (b)σ = 0.05 (warm model). We have takenδ = qd,0/qi,0 = 0.5 [i.e. µ = ne,0/(Zini,0) = 1.5].

The positive dust charge seems to favor stability (cf. to the previous figure) [Reprinted from (Kourakis and

Shukla, 2004b)].
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Fig. 10. Similar to Fig.8, but for dust-ion acoustic waves in the
presence of a “positive” dust charge:(a) σ = 0 (cold model);(b)
σ = 0.05 (warm model). We have takenδ = qd,0/qi,0 = 0.5 (i.e.
µ = ne,0/(Zini,0) = 1.5). The positive dust charge seems to favor
stability (cf. to the previous figure) (reprinted from Kourakis and
Shukla, 2004b).

6.1 Ion-acoustic waves

The main result of previous studies of the parallel modula-
tion of ion-acoustic waves, namely the existence of a critical
wavenumber, saykcr , above which the productPQ becomes
positive (i.e. instability may set in), is reproduced via the for-
malism presented here.

6.1.1 Obliquity effects

Allowing for obliquity (by an angleθ ) between the modula-
tion and propagation directions (cf. the early study by Kako
and Hasegawa, 1976) was shown to modify the wave’s sta-
bility profile rather dramatically: the value ofkcr reduces
for small values ofθ (say, up to 0.4 rad, roughly) and then
increases to infinity (prescribing stability) for higherθ ; IA
waves are globally stable to trasverse modulation (forθ =

π/2): observe the black region in Fig.8a.

6.1.2 Thermal effects

Furthermore, allowing for a finite ion temperature (“warm”
model, i.e.σ 6= 0; see Eqs. (4)–(6) above), one witnesses
a dramatic modification of the stability profile, mainly via
the appearance of a second wavenumber threshold, beyond
which stability is recovered: short carrier wavelengths are
stable in this“warm” description (cf. Figs.8a and8b), as
first suggested by Chhabra and Sharma (1986).

6.2 Dust effects

The oblique modulation of the “dust-ion acoustic” anddust-
acoustic ES plasma modes (Shukla and Mamun, 2002) was
studied in (Amin et al., 1998; Kourakis and Shukla, 2003a,
2004b) and (Tang and Xue, 2003; Kourakis and Shukla,
2004a), respectively. The generic profile outlined above was
here also recovered.

The presence of negative dust particulates was shown to
modify the IA wave stability profile, by slightly favoring in-
stability. In the case of positive dust, on the other side, stabil-
ity was slightly enhanced instead. These results are depicted
in Figs.9 and10 (to be compared to Fig.8). A similar qual-
itative behaviour was witnessed for the DA mode (Tang and
Xue, 2003; Kourakis and Shukla, 2004a).

6.3 Two-temperature effects

The co-existence of distinct electron populations, say “hot”
and “cold” electrons, which is observed in the boundaries
of the Earth’s magnetosphere, has been shown to affect the
modulation behaviour of ion acoustic (Kourakis and Shukla,
2003b) and electron-acoustic waves (Kourakis and Shukla,
2004d). Some of those results are depicted in Figs.11 to 12,
where the presence of the minority electrons appears to yield
an important effect even in regions which would have been
stable otherwise. Notice the appearance of new instability
regions, even for high values of the modulation angle (lateral
modulation).

7 Discussion and conclusion

We have studied the nonlinear mechanism of amplitude mod-
ulation (due to carrier self-interaction) of electrostatic plasma
modes. We have shown that the slow variation of the wave’s
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Fig. 11. Similar to Fig. ??a (σ = 0, i.e. cold model), but for ion acoustic waves in the presence of two

background electron populations (hot andcold electrons; the former are dominant here). Parameter values are:

(a) density ratioν = nh/nc = 100/4 = 25/1, temperature ratioµ = Th/Tc = 10; (b) ν = nh/nc =

100/5 = 20/1, temperature ratioµ = Th/Tc = 10 [reprinted from (Kourakis and Shukla, 2003b)].
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Fig. 11. Similar to Fig.8a (σ = 0, i.e. cold model), but for ion
acoustic waves in the presence of two background electron popu-
lations (“hot” and “cold” electrons; the former are dominant here).
Parameter values are:(a) density ratioν = nh/nc = 100/4 =

25/1, temperature ratioµ = Th/Tc = 10; (b) ν = nh/nc =

100/5 = 20/1, temperature ratioµ = Th/Tc = 10 (reprinted from
Kourakis and Shukla, 2003b).

amplitude in space and time may be modeled via the long-
established multiple scale (“reductive perturbation”) method
(Taniuti and Yajima, 1969; Asano et al., 1969). One thus ob-
tains explicit conditions for the occurrence of “modulational
instability”, which is related to wave collapse, or may possi-
bly result in the formation of “localized envelope structures”.
The criteria thus obtained, in terms of the systems’s physi-
cal parameters, determine the wave’s modulational stability
profile and predict the occurrence of localized envelope ex-
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Fig. 12. A {k − θ}-plane plot qualitatively similar to Fig.??a (for σ = 0, i.e. cold model), but forelectron

acoustic wavesin the presence of two background electron populations. Parameter values are: (a) density ratio

ν = nh/nc = 2/1 (hot electrons dominant); (b)ν = nh/nc = 1/5 (cold electrons dominant) [reprinted from

(Kourakis and Shukla, 2004d)].
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Fig. 12. A {k − θ}-plane plot qualitatively similar to Fig.8a (for
σ = 0, i.e. cold model), but for “electron acoustic waves” in the
presence of two background electron populations. Parameter values
are: (a) density ratioν = nh/nc = 2/1 (hot electrons dominant);
(b) ν = nh/nc = 1/5 (cold electrons dominant) (reprinted from
Kourakis and Shukla, 2004d).

citations of either bright or dark (black/grey) type. These lo-
calized excitations (exact solutions of a nonlinear amplitude
evolution equation) provide an efficient model for the elec-
trostatic envelope structures which are abundantly observed
during satellite missions and also in laboratory experiments.

It may be mentioned that the results presented herein
(and, in particular, the numerical results in the previous Sec-
tion) should be somehow questioned in wavenumber regions
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where the electrostatic mode considered may be subject to
Landau (collisionless) damping. As a matter of fact, this is
not an issue in the case of dusty plasma modes (IAW, DAW),
where the wave’s phase speed lies far from the characteristic
thermal velocities of the constituents (Verheest, 2001; Shukla
and Mamun, 2002). However, this should be taken into ac-
count in the analysis, e.g. with respect to electron-acoustic
waves (see the discussion in Kourakis and Shukla, 2004d),
since it is known that Landau damping effects (obtained via
a kinetic description of ES modes) cannot be predicted by
fluid models.

The methodology employed in this article applies in a vari-
ety of known electrostatic modes, which can be described by
a single fluid model. A generalization of this formalism for
plasma modes in the presence of an external magnetic field
is on the way and will be reported soon.

Appendix A Perturbative analysis – details

A1 Harmonic amplitude evolution equations

By substituting into Eqs. (4)–(6) and (10) and isolating dis-
tinct orders inε, we obtain thenth-order reduced equations

−ilωn
(n)
l + ilk · u(n)l − λ

∂n
(n−1)
l

∂X

+
∂n

(n−2)
l

∂T
+
∂u

(n−1)
l,x
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(l−l′),x

)
= 0, (A3)

and

− (l2k2
+ 1) φ(n)l + s β n

(n)
l

+ 2ilkx
∂φ

(n−1)
l

∂X
+
∂2φ

(n−2)
l

∂X2

+α

∞∑
n′=1

∞∑
l′=−∞

φ
(n−n′)

l−l′
φ
(n′)

l′

−α′

∞∑
n′,n′′=1

∞∑
l′,l′′=−∞

φ
(n−n′

−n′′)

l−l′−l′′
φ
(n′)

l′
φ
(n′′)

l′′

= 0 . (A4)

A2 First order inε: first harmonics and dispersion relation

The first order (n = 2) equations read

− ilωn
(1)
l + ilk · u(1)l = 0 , (A5)

−ilωu(1)l + s ilkφ(1)l + ilσ p
(1)
l k = 0 , (A6)

−ilωp
(1)
l + ilγ k · u(1)l = 0 , (A7)

and

− (l2k2
+ 1) φ(1)l + s β n

(1)
l = 0 . (A8)

For l = 1, these equations determine the first harmonics of
the perturbation. The following dispersion relation is ob-
tained

ω2
=

β k2

k2 + 1
+ γ σ k2 . (A9)

Restoring dimensions, one may easily check that the stan-
dard DAW dispersion relation (Rao et al., 1990; Shukla and
Mamun, 2002) is thus exactly recovered:

ω2
= ω2

p,d

k2

k2 + k2
D

+ γ
kBTd

md
k2

= ≡
c2
D k

2

1 + k2 λD
2
eff

+ γ v2
th,d k

2 . (A10)

The first harmonic amplitudes may now be expressed in
terms of the first order potential correctionφ(1)1 ; we obtain
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the relations

n
(1)
1 = s

1 + k2

β
φ
(1)
1

≡ c
(11)
1 φ

(1)
1 ,

k · u(1)1 = ω n
(1)
1 = s ω

1 + k2

β
φ
(1)
1

≡ c
(11)
2 φ

(1)
1 ,

p
(1)
1 = γ n

(1)
1 = γ s

1 + k2

β
φ
(1)
1

≡ c
(11)
3 φ

(1)
1 ,

u
(1)
1,x =

ω

k
cosθ n(1)1 = s

1 + k2

β

ω

k
cosθ φ(1)1

≡ c
(11)
5 φ

(1)
1 ,

u
(1)
1,y =

ω

k
sinθ n(1)1 = s

1 + k2

β

ω

k
sinθ φ(1)1 , (A11)

retaining, for later use, the (obvious) definitions of the coef-
ficientsc(11)

j (j = 1, ..., 5) relating the state variables to the

1st-order potential correctionφ(1)1 (soc(11)
4 = 1).

A3 Second order inε: group velocity, 0th and 2nd harmon-
ics

The second order (n = 2) equations for the first harmonics
provide the compatibility condition:λ = vg(k) =

∂ω
∂kx

=

ω′(k) cosθ =
k
ω

[ 1
(1+k2)2

+ γ σ
]

cosθ ; the group velocityvg
can be cast in the form

vg(k)=
ω3

k3

β+σγ (1+k2)2

[β+σγ (1+k2)]2
cosθ ≡

ω3

βk3
ν1 cosθ, (A12)

where we have denoted

ν1 = β
β + σγ (1 + k2)2

[β + σγ (1 + k2)]2
. (A13)

Note thatν1 → 1 in the limit σ → 0, recovering exactly
Eq. (43) in (Amin et al., 1998).

The 2nd-order corrections to the first harmonic amplitudes
are now given by

n
(2)
1 = i s

1

β

[
Ã(1 + k2)− 2k cosθ

] ∂φ(1)1

∂X

≡ i c
(21)
1

∂φ
(1)
1

∂X
,

k · u(2)1 = ωn
(2)
1 − s

1

β
(1 + k2)

(
vg −

ω

k
cosθ

)
∂φ

(1)
1

∂X

≡ i c
(21)
2

∂φ
(1)
1

∂X
,

p
(2)
1 = γ n

(2)
1

≡ i c
(21)
3

∂φ
(1)
1

∂X
,

φ
(2)
1 = i Ã

∂φ
(1)
1

∂X
,

and

u
(2)
1,x = i s

1

ω

[
−1 − 2

γ

β
σ k2 cos2 θ

+

(
vg
ω

k
cosθ − σ γ

)
1 + k2

β

]
∂φ

(1)
1

∂X
,

≡ i c
(21)
5

∂φ
(1)
1

∂X
. (A14)

The choice of the value of̃A is arbitrary; we shall takẽA = 0.
The equations forn = 2, l = 2 provide the amplitudes of

the second order harmonics, which are found to be propor-
tional to the square of the correspondingS(1)1 elements e.g.

in terms ofφ(1)1

n
(2)
2 =

[
1

ω
A +

(1 + k2)2

β2

]
≡ c

(22)
1 φ

(1)
1

2
,

k · u(2)2 =
(1 + k2) ω

6β3k2

[
2s α β2

+ 3β (1 + k2)(1 + 2k2)

+ 2γ 2 σ (1 + k2)2 (1 + 4k2)

]
φ
(1)
1

2

≡ Aφ
(1)
1

2
= c

(22)
2 φ

(1)
1

2
,

p
(2)
2 = γ

[
1

ω
A + γ

(1 + k2)2

β2

]
≡ c

(22)
3 φ

(1)
1

2
,

and

φ
(2)
2 =

1

4k2 + 1

{
s β

[
1

ω
A +

(1 + k2)2

β2

]
+ α

}
φ
(1)
1

2

≡ c
(22)
4 φ

(1)
1

2
. (A15)

Notice that these expressions are “isotropic” i.e. independent
of the value ofθ .

The nonlinear self-interaction of the carrier wave also re-
sults in the creation of a zeroth harmonic, in this order; its
strength is analytically determined by taking into account the
l = 0 component of the three first third-order reduced equa-
tions (i.e. Eqs. (A1)–(A3) for n = 3, l = 0) together with
the corresponding fourth 2nd-order equation (i.e. Eq. (A4)
for n = 2, l = 0). The result is conveniently expressed in
terms of the square modulus of the (n = 1, l = 1) quantities,
e.g. in terms of|φ(1)1 |

2
= (φ

(1)
1 )∗ φ

(1)
1

n
(2)
0 =

−1

β + γ σ − v2
g

1

β

[
1 + 2sαβ + k2

+ 2 cos2 θ

+ γ σ
(1 + k2)2

β
(γ + 2 cos2 θ − 1)

]
|φ
(1)
1 |

2

≡ B |φ
(1)
1 |

2

≡ = c
(20)
1 |φ

(1)
1 |

2 ,

k · u(2)0 =
−1

β + γ σ − v2
g

cosθ

β2

{
2ω (β + γ σ)(1 + k2)2

× cosθ

+k vg
[
β (1 + k2

+ 2sαβ)
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+σ γ (γ − 1)(1 + k2)2
]}

≡ c
(20)
2 |φ

(1)
1 |

2 ,

p
(2)
0 = γ

[
B +

1

β2
(γ − 1) (1 + k2)2)

]
|φ
(1)
1 |

2

≡ c
(20)
3 |φ

(1)
1 |

2 ,

φ
(2)
0 = (s β B + 2α) |φ(1)1 |

2

≡ c
(20)
4 |φ

(1)
1 |

2 , (A16)

and

u
(2)
0,x =

[
vg B − 2

ω (1 + k2)2

β2 k
cosθ

]
|φ
(1)
1 |

2

≡ c
(20)
5 |φ

(1)
1 |

2 . (A17)

It is expected, and indeed verified by a tedious yet straightfor-
ward calculation, that upon settingσ = 0, s = −1 in expres-
sions (A15) and (A16), one recovers exactly Eqs. (44)–(49)
in (Amin et al., 1998) (given Eq. (42) therein).

Notice, for rigor, that for “vanishing obliqueness” i.e. if
θ → 0, one obviously hask · u(n)l → k u

(n)
l (by definition),

implying the condition:c(nl)2 → k c
(nl)
5 (for θ → 0) which is

indeed satisfied for alln, l, by the above formulae.

A4 Derivation of the Nonlinear Schrödinger Equation

Proceeding to the third order inε (n = 3), the equation
for l = 1 yields an explicit compatibility condition to be
imposed on the right-hand side of the evolution equations
which, given the expressions derived previously, can be cast
into the form

A1
dψ

dT
+ i A2

d2ψ

dX2
+ i A3 |ψ |

2ψ = 0 , (A18)

whereψ ≡ φ
(1)
1 denotes the amplitude of the first-order

electric potential perturbation; coefficientsA1,2,3 are to be
defined. Now, multiplying byi A−1

1 , we obtain the familiar
form of the Nonlinear Schrödinger Equation

i
∂ψ

∂T
+ P

∂2ψ

∂X2
+Q |ψ |

2ψ = 0 . (A19)

Recall that the “slow” variables{X, T } were defined in
Sect.2.

The “dispersion coefficient”P = −A2/A1 is related to
the curvature of the dispersion curve as

P =
1

2

∂2ω

∂k2
x

=
1

2

[
ω′′(k) cos2 θ + ω′(k)

sin2 θ

k

]
;

the exact form of P reads

P(k) =
1

β

1

2ω

(
ω

k

)4 [
ν1 − (ν1 + 3

ν2

β
ω2) cos2 θ

]
, (A20)

where we have defined

ν2 = β3 3β + γ σ(3 − k2)(1 + k2)

3 [β + γ σ (1 + k2)]4
. (A21)

Note that, just likeν1 defined above,ν2 → 1 whenσ → 0;
see that relation (51) in (Amin et al., 1998) is recovered from
Eq. (A20) in this case. If, furthermore, we setβ = 1 (in ad-
dition toσ = 0) in all expressions describing our dispersion
law i.e. Eqs. (A9), (A12), (A20) above, we obtain, respec-
tively, Eqs. (3), (11), (4) in (Kako and Hasegawa, 1976).

It seems appropriate, here, to point out the qualitative dif-
ference betweenP given in Eq. (A20) as compared to rele-
vant previous expressions: the existence ofσ may affect the
sign of theP coefficient. For instance, takingσ = 0 (i.e.
ν1 = ν2 = 1), P is readily seen to be negative for parallel
modulation, i.e. settingθ = 0; however, forσ 6= 0 this is no
longer the case, sinceP changes sign at some critical value
of k (to see this, study the sign ofν2 versusk). Furthermore,
a similar remark holds for the effect of an oblique modula-
tion on the sign ofP ; we will come back to this subtle point
in the next subsection.

The “nonlinearity coefficient”Q = −A3/A1 is due to the
carrier wave self-interaction. Distinguishing different contri-
butions,Q can be split into five distinct parts, viz.

Q = Q0 + Q1 + Q2 + Q3 + Q4 , (A22)

reflecting the similar structure ofA3

A3 = A
(0)
3 + A

(1)
3 + A

(2)
3 + A

(3)
3 + A

(4)
3 . (A23)

In order to trace the influence of the various parameters, let
us define all quantities in full detail. First,A(0)3 (as well as

Q0 = −A
(0)
3 /A1) is related to the self-interaction due to the

zeroth harmonic, viz.

A
(0)
3 = −β k2 (c

(11)
1 c

(20)
2 + c

(11)
2 c

(20)
1 )

− s ω 2α k2 c
(11)
4 c

(20)
4 − ω (1 + k2) c

(11)
2 c

(20)
2 ,

(A24)

whileA(2)3 (related toQ2 = −A
(2)
3 /A1) is the analogue quan-

tity due to the second harmonic

A
(2)
3 = −β k2 (c

(11)
1 c

(22)
2 + c

(11)
2 c

(22)
1 )

− s ω 2α k2 c
(11)
4 c

(22)
4 − ω (1 + k2) c

(11)
2 c

(22)
2 .

(A25)

All coefficientsc(nl)j were defined previously. Now,Q1 =

−A
(1)
3 /A1 is simply the nonlinearity contribution from the

cubic term in Eq. (10d) (often omitted in the past)

A
(1)
3 = +3s α′ ω (c

(11)
4 )

3
k2 , (A26)

Finally, A(3)3 (related toQ3 = −A
(3)
3 /A1) is the (σ -related)

result of the third line in Eq. (A2)

A
(3)
3 = −σ k2 (1 + k2)

[
γ c

(11)
2 (c

(20)
3 − c

(22)
3 )

+ 2γ c(11)
3 c

(22)
2 + c

(11)
3 (c

(20)
2

− c
(22)
2 ) + 2c(11)

2 c
(22)
3

]
, (A27)
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whileA(4)3 (andQ4 = −A
(4)
3 /A1) is due to the last two lines

in Eq. (A2)

A
(4)
3 = −ω (1 + k2)

[
(ω c

(11)
2 − sk2 c

(11)
4 ) (c

(22)
1 − c

(20)
1 )

− 2c(11)
1 (ω c

(22)
2 − sk2 c

(22)
4 ) + (c

(11)
2 )2c

(11)
1

]
. (A28)

We note thatA1 is everywhere defined as

A1 = −s
2

β
(1 + k2)2ω2 , (A29)

i.e. by using Eq. (A9)

A−1
1 = −s

1

2β

1

ω2

(
ω2

k2
− γ σ

)2

(A30)

(reducing to:A−1
1 = −s 1

2β
ω2

k4 for σ = 0). Remember that
Q3 andQ4 are plainly absent from the previous results in
(Amin et al., 1998) – i.e. forσ = 0 – and so is, in fact,Q1.

Substituting from the expressions derived above for the co-
efficientsc(nl)j and re-arranging, we obtain

Q0 = +
1

2ω

1

β2

1

(1 + k2)2

1

β + γ σ − v2
g

×{
β k2

[
β

[
3 + 6k2

+ 4k4
+ k6

+2α β
(
s (2k2

+ 3)+ 2α v2
g

)]
+ γ σ

[
(γ + 1) (1 + k2)3

+ 2α β
(
−2αβ + s γ (1 + k2)2

)]
+

[
β (2 + 4k2

+ 3k4
+ k6

+ 2sαβ)

+2γ σ (1 + k2)2 (1 + k2
+ sαβ)

]
cos 2θ

]
+ 2(1 + k2)4 (β + γ σ) ω2 cos2 θ

+ k (1 + k2)

[
βk2

+ ω2 (1 + k2)

]
vg

ω
×[

β (1 + k2
+ 2sαβ) + γ (γ − 1) σ (1 + k2)2

]
× cosθ

}
, (A31)

Q1 =
3α′β

2ω

k2

(1 + k2)2
, (A32)

Q2 = −
1

12β3

1

ω

1

k2 (1 + k2)2
×{

2β k2
[
5s α β2 (1 + k2)2 + 2α2β3

+ 2γ 2 σ (1 + k2)4 (1 + 4k2)

+β (1 + k2)3 (3 + 9k2
+ 2s α γ 2 σ)

]
+ (1 + k2)3ω2

[
β (3 + 9k2

+ 6k4
+ 2sαβ)

+ 2γ 2 σ (1 + k2)2 (1 + 4k2)

]}
. (A33)

Finally, the coefficientsQ3 = −A
(3)
3 /A1 and Q4 =

−A
(4)
3 /A1 can be directly computed from Eq. (A27)–(A29)

above; the lengthy final expressions are omitted here.
Once substituted in Eq. (A22), these expressions provide

the final expression for the nonlinearity coefficientQ. One
may readily check, yet after a tedious calculation, that ex-
pressions (A31) and (A33) reduce to Eqs. (53) and (54) in
(Amin et al., 1998) forσ = 0. However, the remaining coef-
ficientsQ1,Q3,Q4 were absent in all previous studies of the
DA waves, to the best of our knowledge. Their importance
will be discussed in the following. Note thatQ1, Q2 do not
depend on the angleθ .

A5 Behaviour of coefficients for smallk

A preliminary result regarding the behaviour (and the sign)
of the NLSE coefficientsP andQ, at least for long wave-
lengths, may be obtained by considering the limit of small
k � 1 in the above formulae.

The parallel (θ = 0) and oblique (θ 6= 0) modulation cases
have to be distinguished straightaway. For small values ofk

(k � 1),P is negative and varies as

P
∣∣
θ=0 ≈ −

3

2

β
√
β + γ σ

k (A34)

in the parallel modulation case (i.e.θ = 0), thus tending to
zero for vanishingk, while for θ 6= 0,P is positive and goes
to infinity as

P
∣∣
θ 6=0 ≈

√
β + γ σ

2k
sin2 θ (A35)

for vanishingk. Therefore, the slightest deviation byθ of the
amplitude variation direction with respect to the wave prop-
agation direction results in a change in sign of the dispersion
coefficientP . Given the importance of the coefficient prod-
uctPQ (to be discussed in the next Section), one may won-
der whether this is sufficient for the stability characteristics
of the DA wave to change. Let us see what happens with the
Q in the limit of smallk.

For all cases,Q varies as∼ 1/k for smallk � 1; the exact
expression in fact depends on the angleθ . In the general case
(θ 6= 0), the result reads

Q
∣∣
θ 6=0 ≈ −

1

12β3

1
√
β + γ σ

[β (2sαβ + 3)+ 2γ 2σ ]

×[β (2sαβ + 3)+ γ (γ + 1) σ ]
1

k
. (A36)

A careful study shows thatQ is negative, in fact, for all pos-
sible values of the physical parameters of interest (i.e.α, β,
γ , σ – all positive – “and”s ± 1). For vanishingθ , how-
ever, the approximate expression forQ, yet apparently quite
similar, is now “positive”, i.e.

Q
∣∣
θ=0 ≈ +

1

12β3

1
√
β + γ σ

[β (2sαβ + 3)+ 2γ σ ]

×[β (2sαβ + 3)+ γ (γ + 1) σ ]
1

k
. (A37)
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Notice, for rigor, that these formulae are in agreement
with the (known) case of the parallel-modulated ion-acoustic
waves: see Eq. (41) in Shimizu and Ichikawa (1972); as a
matter of fact, the factor 1/3 therein is also exactly recov-
ered here upon setting the appropriate parameter values into
Eq. (A37).

In conclusion, both coefficientsP and Q change sign
when switching on “theta”. Indeed, obliqueness in modu-
lation is expected to influence the stability profile of the sys-
tem; this point seems to confirm (and complete) the general
qualitative arguments put forward in (Kako and Hasegawa,
1976) for the ion acoustic wave in an electron ion plasma
without dust. Nevertheless, at all cases, the product ofP

andQ is negative for smallk, ensuring, as we shall see in
the following section, stability for long perturbation wave-
lengths. As a by-product of this analysis, we see that taking
into accountQ1, Q3 andQ4 does not seem to influence the
dynamics in the low wavenumberk parameter range.
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