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Abstract. We present a nonparametric approach based on
local polynomial regression for ensemble forecast of time se-
ries. The state space is first reconstructed by embedding the
univariate time series of the response variable in a space of
dimension(D) with a delay time(τ ). To obtain a forecast
from a given time pointt , three steps are involved: (i) the
current state of the system is mapped on to the state space,
known as the feature vector, (ii) a small number(K = α ∗ n,
α=fraction (0,1] of the data,n=data length) of neighbors (and
their future evolution) to the feature vector are identified in
the state space, and (iii) a polynomial of orderp is fitted to
the identified neighbors, which is then used for prediction.
A suite of parameter combinations (D, τ , α, p) is selected
based on an objective criterion, called the Generalized Cross
Validation (GCV). All of the selected parameter combina-
tions are then used to issue a T-step iterated forecast starting
from the current timet , thus generating an ensemble forecast
which can be used to obtain the forecast probability density
function (PDF). The ensemble approach improves upon the
traditional method of providing a single mean forecast by
providing the forecast uncertainty. Further, for short noisy
data it can provide better forecasts. We demonstrate the util-
ity of this approach on two synthetic (Henon and Lorenz at-
tractors) and two real data sets (Great Salt Lake bi-weekly
volume and NINO3 index). This framework can also be used
to forecast a vector of response variables based on a vector
of predictors.

1 Introduction

It has been always intriguing to forecast various natural and
physical processes (e.g. rainfall, runoff, lake volumes, etc.),
which appear as a result of coupling of different components
of the Earth system. Theoretically, it is possible to forecast
many of these natural processes using first principles given
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their basic mechanisms, but, unfortunately, it is not practi-
cally possible, since it is associated with the following prob-
lems: a) measurements taken at discrete locations of space
and time, b) initial conditions are associated with significant
uncertainty, c) many of the natural processes are dynamic,
nonlinear, and extremely complex, and are affected by sev-
eral interconnected physical variables, d) heterogeneity of
the model variables on space and time scales, and e) noisy
and finite amount of real data. Additionally, another major
concern is the unavailability of an appropriate mathematical
model. These problems, and the fact that the dependent and
independent variables are coupled, limit the forecast success
for many variables via the development of physical models.
Consequently, time series methods that model the response
variable statistically have become increasingly popular.

The theory of traditional statistical forecasting views the
time series of a response variable as a realization of a ran-
dom process (e.g. Pandit and Yu, 1983), and it is appropriate
only if effective randomness arises from complicated motion
involving many independent and irreducible degrees of free-
dom (Farmer and Sidorowich, 1987). As a result, their pre-
dictability is limited. An alternative cause of randomness
is deterministic chaos, which can occur even in very sim-
ple deterministic systems. It suggests that complex and un-
predictable processes are not necessarily of high degrees of
freedom but might be result of low dimensional dynamical
systems. In a simple way, deterministic chaos or chaotic
systems appear as random processes but internally have a
definite relationship among the variables. Though chaotic
systems result from deterministic phenomenon, have funda-
mental limit on long-term forecasting because its future evo-
lutions are unstable. Nonlinear time series methods exploit
this recognition and reconstruct the dynamics of the system,
thereby developing the potential for short and long-lead fore-
cast.

Much research using geophysical time series (i.e. precipi-
tation, streamflow, etc.) demonstrated the existence of lower
order chaotic behavior on different scales (e.g. Rodriguez-
Iturbe et al., 1989; Sharifi et al., 1990; Jayawardena and
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Lai, 1994; Porporato and Ridolfi, 1996, 1997; Sangoyomi
et al., 1996; Sivakumar et al., 1998, 1999a, 2002; Wang and
Gan, 1998; Krasovskaia et al., 1999; Stehlik, 1999, 2000;
Elshorbagy et al., 2002; Regonda et al., 2004), but there have
been limited efforts in using this information for short term
forecasts. Notable among them are the attempts at forecast-
ing the Great Salt Lake (GSL) bi-weekly volumes (Abar-
banel and Lall, 1996; Abarbanel et al., 1996; Lall et al.,
1996), daily rainfall (e.g. Jayawardena and Lai, 1994), flood
(Laio et al., 2003), and streamflow on daily and monthly
scales (e.g. Jayawardena and Lai, 1994; Porporato and Ri-
dolfi, 1996, 1997, 2001; Liu et al., 1998; Sivakumar et al.,
2001, 2002). However, in other fields, especially, medical,
there are widespread forecast applications (e.g. Kantz and
Schreiber, 1997, 1998; Richter and Schreiber, 1998).

A key assumption behind nonlinear time series methods is
that even if the exact mathematical description of the dynam-
ical system is not known, the state space (or phase space) can
be reconstructed from a single observed time series (Packard
et al., 1980). The state space is defined as a multidimen-
sional space in which axes correspond to variables of a dy-
namical system. The state space is reconstructed by embed-
ding the univariate time series of the response variable with
a delay timeτ in a D-dimensional space (this will be de-
scribed in the following section). The dimensionD can be
thought of as the minimum number of state variables required
to describe the system and delay timeτ is the average length
of memory in the system. Two popular methods for esti-
mating the embedding dimension(D) in practice are: the
Grassberger-Procaccia (Grassberger and Procaccia, 1983a,
b) approach (GPA), which estimates the dimension mostly
as “fractal” or “non-integer”, and the False Nearest Neigh-
bor (FNN) method (Kennel et al., 1992), which computes
the integer dimension. The delay time(τ ) is estimated using
the Mutual Information approach (Fraser and Swinney, 1986;
Moon et al., 1995). Once the state space is reconstructed, the
forecasting proceeds as follows: (i) the current state of the
system, say,Xt , at the current time stept is identified in the
state space, (ii) a small number (sayK) of nearest neighbors
of current state, sayXK , and their corresponding successors,
XK+1, are identified in the state space, and (iii) a local func-
tion is fitted to the identified neighbors,XK+1=f (XK ), and
(iv) the fitted function is then used to estimate the forecast.
The functionf (.) can be a simple weighted average (Farmer
and Sidorowich, 1987) or it can be a higher order polyno-
mial (p≥1). The parameters (D, τ , α, p) and the form of the
functionf (.) are typically fixed. This works well if the esti-
mated parametersD andτ capture the dynamics accurately
in the embedded space. In such cases, the forecasts from this
approach will handily outperform linear time series methods,
such as Auto Regressive (AR) models (Casdagli et al., 1990;
Grassberger et al., 1991; Tsonis, 1992; Jayawardena and Lai,
1994; Jayawardena and Gurung, 2000; Lisi and Villi, 2001).

Real data sets, especially geophysical time series, are
short and noisy (due to instrumental and dynamical errors).
Consequently, the estimates of the parameters are not very
reliable, thereby significantly impacting the forecast skills

(Schreiber and Kantz, 1996). Smoothing can reduce the
noise (Schreiber and Grassberger, 1991; Porporato and Ri-
dolfi, 1996, 1997), but then if not done properly it can alter
the underlying dynamics (Sivakumar et al., 1999b). To ad-
dress this, it is intuitive that an ensemble of forecasts has
to be generated from a suite of plausible parameter com-
binations that vary within the state space. This ensemble
approach has several advantages over issuing a single mean
forecast as described above. They are that the ensembles pro-
vide: (i) a natural estimate of the forecast uncertainty, and (ii)
the probability density function (PDF) of the response vari-
able and, consequently, threshold exceedance probabilities
which can be very useful in decision making.

The goal of this paper is to present a new method that pro-
vides a suite of model parameters and, consequently, enables
ensemble forecast of time series. The methodology is first
described. We then demonstrate its utility by applying it to
two synthetic data sets from Henon and Lorenz attractors and
two real data sets, the Great Salt Lake bi-weekly volumes
and the NINO3 (an index of El Niño Southern Oscillation,
ENSO).

2 Methodology

We provide only a limited description of reconstruction of
state space of a dynamical system from a scalar time series of
one of the state variables, and refer the reader to Abarbanel et
al. (1993), Abarbanel and Lall (1996), and Lall et al. (1996)
for background information and details.

A method for state space reconstruction was originally
proposed by Packard et al. (1980), and put on a firm
mathematical basis by Takens (1981). The dynamics
of a time series{x1, x2,........,xn} are fully captured or
embedded in theD-dimensional phase space defined by
Xt={xt , xt+τ , ........, xt+(m−1)τ }. According to the embed-
ding theorem of Takens (1981), to characterize a dynamic
system with an attractor dimensiond, D=2d+1-dimensional
phase space is sufficient, whereas Abarbanel et al. (1993)
suggested that, in practice,D>d may be adequate.

The False Nearest Neighbor (FNN) method proposed by
Kennel et al. (1992) is used in this study to estimate the em-
bedding dimension of the phase space. Other methods such
as the correlation dimension method (Grassberger and Pro-
caccia, 1983a, 1983b) can also be used but the FNN method
is much more robust (Abarbanel and Lall, 1996). FNN
method estimates the minimum embedding dimension of the
phase space by computing the number of false neighbors in
each embedded phase space. The delay timeτ needs to be
appropriately chosen. If the value ofτ is less than the ap-
propriate value then the data values will not be independent,
resulting in a loss of information and characteristics on the
attractor structure. Ifτ is too large, i.e. much larger than the
information decay time, then there is no dynamical correla-
tion between the state vectors and it causes a loss of informa-
tion on the original system (Jayawardena and Lai, 1994). The
choice ofτ is usually made with the help of autocorrelation
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function or mutual information content (Fraser and Swinney,
1986; Jayawardena and Lai, 1994; Moon et al., 1995). Limi-
tations of these methods are discussed in Abarbanel and Lall
(1996) and Porporato and Ridolfi (1996, 1997).

Using a selected value of the embedding dimension and
delay time, the state space is reconstructed (as described
above) and the forecast forT time step into the future is given
as

Xt+T = f (Xt ) + εt . (1)

Xt is the feature vector at timet andf (.) is a function (linear
or nonlinear) that maps current state to a future point in the
state space. Typically, the functionf (.) is estimated locally
within a neighborhood of the feature vector in the state space
(Farmer and Sidorowich, 1987). We use locally weighted
polynomials, also defined as LOCFIT (Loader, 1997) to esti-
mate the function. In this, a polynomial of orderp is fitted to
K(K=α ∗ n, α=(0, 1]) nearest neighbors of the feature vec-
tor in the state space. Clearly, ifK=n (or α=1) andp=1,
then it collapses onto a traditional multiple linear regression.
Since the function is estimated locally, it has the flexibility
to approximate any differentiable functional form appropri-
ate for the data. For theoretical details of this approach, see
Loader (1999). This approach has been widely applied with
good results in ensemble streamflow forecast (Grantz, 2003),
flood frequency analysis (Apipattanavis et al., 20041), en-
semble streamflow simulation (Prairie, 2002), and in spatial
interpolation of hydroclimatic fields (Rajagopalan and Lall,
1998; Owosina, 1992).

General Cross Validation (GCV) is used to guide the se-
lection of optimal parameters,α andp. The optimal com-
bination of parameters is, typically, the one that produces a
minimum GCV. The GCV(α, p) score function is defined
as:

GCV(α, p)=

n∑
i=1

e2
i

n(
1−

m
n

)2
, (2)

whereei is the error,n is the number of data points,m is the
number of parameters.

Because of limited sample size and noise (measurement
noise and internal noise) in the data, there is always uncer-
tainty in the computed embedding dimension of real systems
and in estimated parameters. Hence, a single estimate of
embedding dimension and delay time might not adequately
represent the dynamics of the system, especially for fore-
casting. Therefore, it is intuitive to obtain a suite of plau-
sible parameters of the state space. To this end, we pro-
pose the selection of all the parameters(D, τ, α, p) using
the GCV score function. Thus, the function in Eq. (2) would
be GCV(D, τ, α, p).

1Apipattanavis, S., Rajagopalan, B., and Lall, U.: Local poly-
nomial technique for flood frequency analysis, J. Hydro. Eng., in
review, 2004.

2.1 Forecast algorithm

The algorithm for implementation is as follows:

1. Compute the embedding dimension and delay time us-
ing the standard methods (e.g. FNN and MI). Using this
as reference, choose a suitable range of values ofD and
τ .

2. Reconstruct the phase space for a selectedD andτ com-
bination.

3. Calculate the GCV for the reconstructed phase space by
varying the smoothing parameter of local polynomial
function (i.e. neighborhood size) and the order of local
polynomial.

4. Repeat steps 2 and 3 for all combinations ofD, τ , α and
p.

5. Select a suite of “best” parameter combinations that is
within 5% of the lowest GCV.

6. Each selected “best” combination is then used to gener-
ate a forecast.

7. The suite of “best“ combination forecast then provides
an ensemble of conditional mean forecast that reflect
parameter/model selection uncertainty.

3 Description of test cases

As mentioned earlier, we applied the ensemble forecast
methodology on synthetic data from Henon and Lorenz at-
tractors and on two geophysical time series (Great Salt Lake
bi-weekly volume and NINO3 index). The data sets are de-
scribed below. In all the cases, the model is fitted (i.e. suite
of parameters obtained) on a subset of the data and blind pre-
dictions (no data outside the fitting subset is used for predic-
tions) are made forT time steps ahead. The forecasts are
made from several starting points to show the change in the
predictability – one of the aspects of nonlinear systems.

3.1 The Henon system

The Henon system is described by the following coupled
equations (Henon, 1976):

xt+1 = 1 − a ∗ x2
t + yt

yt+1 = b ∗ xt
.

Values ofa=1.4, b=0.3, and initial observation(x0, y0) as
(0, 0) are chosen to generate a time series of 4000 observa-
tions using the above equations. Figure 1a shows the times
series of thex variable of the Henon system.
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Figure 1.  Time series of the synthetic and real data sets: (a) Henon x coordinate, (b) Lorenz x 

coordinate, (c) Standardized bi-weekly volumes of Great Salt Lake, and (d) monthly NINO3 

index.  

Fig. 1. Time series of the synthetic and real data sets:(a) Henon
x coordinate,(b) Lorenzx coordinate,(c) Standardized bi-weekly
volumes of Great Salt Lake, and(d) monthly NINO3 index.

3.2 The Lorenz system

The Lorenz System is described by the following equations
(Lorenz, 1963):

ẋ = −σ(x + y)

ẏ = −x ∗ z + r ∗ x − y

ż = x ∗ y − b ∗ z

.

Here we takeσ=16,r=45.92,b=4,1t=0.05 and initial ob-
servation(x0, y0,z0) as (1, 0, 0) to generate a time series of
6000 observations. Figure 1b shows the times series of thex

variable of the Lorenz system.

3.3 The Great Salt Lake time series

The Great Salt Lake of Utah is located at approximately
40◦ to 42◦ N and 110◦ to 112◦ W and is the fourth largest,
perennial, closed basin, saline lake in the world. The GSL
drains an area of 90 000 km2 and its water level has been
recorded since 1847 at 15 days (bi-weekly) interval. San-
goyomi (1993) compiled biweekly data sets of GSL time se-
ries and reported variability on annual, interannual, and, in-
terdecadal scales. The time series is shown in Fig. 1c. Of
particular interest is the fall and rise of the lake in the mid
1920s and 1980s, which had tremendous implications to the
regional economy (James et al., 1979). Large scale ocean-
atmospheric features over the Pacific Ocean have been shown
to modulate the interannual and interdecadal variability of
the Lake volumes (Mann et al., 1995; Lall and Mann, 1995;
Moon, 1996; Moon and Lall, 1996) and fluctuations in the
GSL are related with patterns in regional precipitation, tem-
perature, and streamflow over quasi-periodic interannual and
interdecadal scales (Sangoyomi, 1993; Mann et al., 1995;

Abarbanel et al., 1996; Lall et al., 1996; Moon and Lall,
1996; Sangoyomi et al., 1996).

Dynamical characteristics of the GSL, stochastic or de-
terministic chaos, dimensionality and predictability are de-
scribed in Sangoyomi et al. (1996), which indicate the GSL
to be a low dimensional chaotic system (i.e. dominated by a
few degrees of freedom). Being a closed lake of arid region
and having a large surface area, long-term average evapora-
tion rate exceeds the average precipitation; and it integrates
the basin hydrologic response by filtering out the noisy pro-
cesses into a few dominant processes, thus supporting the
low dimensional characteristics. Here, we forecast the lake
volumes from several starting points of fall (1925–1930) and
rise (1983–1987) of the GSL.

3.4 NINO3

NINO3 is a widely used index of the tropical Pacific ocean-
atmospheric phenomenon, ENSO. It is a time series of av-
eraged monthly Sea Surface Temperature (SST) anomalies
in the tropical Pacific covering the domain of 4◦ N–4◦ S
and 90◦–150◦ W. This time series starts from 1856 and is
shown in Fig. 1d. Details of data prior to the modern ob-
servational period can be found in Kaplan et al. (1998).
ENSO has significant implications to global climate (e.g. Ro-
pelewski and Halpert, 1986) and, consequently, to the global
socio-economy. Hence, understanding its dynamics and pre-
dictability is crucial to improve seasonal climate forecast.
There are several approaches to ENSO forecasting – statisti-
cal (e.g. Barnett et al., 1988; Barnston and Ropelewski, 1992;
Balmaseda et al., 1994; Latif et al., 1994; Xue et al., 1994;
Mason and Mimmack, 2002) and dynamical (e.g. Cane et
al., 1986; Zebiak and Cane, 1987; Barnett et al., 1993; Bal-
maseda et al., 1994; Latif et al., 1994; Chen et al., 1995,
1997, 2004; Tziperman et al., 1995; Xue et al., 1997). Zebiak
and Cane (1987) were the first to develop a simple model for
ENSO and successfully predicted the El Niño of the 1986–
1987.

Several researchers explored the ENSO dynamics and ex-
plained some of its attributes, e.g. onset, termination, and
cyclic nature to seasonal cycle (see references in Tziperman
et al., 1994, 1995), whereas attributes irregularity and par-
tial locking to seasonal cycle are unexplained because of its
complexity (Rasmusson and Carpenter, 1982). Lower or-
der chaotic dynamics (e.g. Vallis, 1986, 1988; Munnich et
al., 1991; Chang et al., 1994; Tziperman et al., 1994, 1995)
was shown to be a plausible reason for irregularity. In fact,
Tziperman et al. (1994, 1995) and Jin et al. (1994) proposed
a model that presumed ENSO dynamics as low order chaotic
and explained all the attributes of ENSO dynamics. Tziper-
man et al. (1994) suggested ENSO as a chaotic system with
few (i.e.≤9) dominated degrees of freedom.
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Figure 2. Ensemble forecasts of Henon x coordinate (a) Blind prediction starts from index 
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Fig. 2. Ensemble forecasts of Henonx coordinate(a) Blind pre-
diction starts from index 3701, and(b) Blind prediction starts from
3711. The inter quartile range of the ensembles are shown as dashed
lines, the 5th and 95th percentiles are as dotted lines, the true values
as points connected by solid lines, and the best AR forecast shown
as solid line.

4 Results

As mentioned in the previous section, the ensemble forecasts
are generated using the methodology developed earlier in the
paper. For all the cases, the inter quartile range of the ensem-
bles are shown as dashed lines, the 5th and 95th percentiles
are as dotted lines, and the true values shown as points con-
nected by solid lines. Forecasts from the best AR models
that use Akaike Information Criterion (AIC) (Brockwell and
Davis, 2002; Chatfield, 2003), are also shown as solid lines
for comparison with traditional linear time series methods.

4.1 The Henon system

This system has two variables (i.e.x andy), and so the true
embedding dimension is 2; the estimates from FNN and GPA
methods also confirm this. Plottingx [i] vs.x [i+1] unfolds
the attractor in a two-dimensional phase space (not shown),
suggesting the phase space dimension and delay time as 2
and 1, respectively (Henon, 1976; Kennel et al., 1992). Con-
sidering these values as reference, we search overD=1 to
5 andτ=1 to 10 for the best combination of state space pa-
rameters. We compute GCV for each of these combinations
by varying neighbor size(α) and degree of local polynomial
fit (p). The “best” combinations with GCV values within
the 5% range of the lowest value are selected, resulting in 15
combinations. These combinations are used to generate fore-
casts for 100 time steps into the future. Interestingly, all the
selected combinations exhibit the same parameter values of
D=2, τ=1 andp=2 but with various neighborhood sizes (i.e.
α). Note that theD andτ values are equal to the true values
of the system.

Blind predictions start from index 3701. Each of the se-
lected combinations is used to obtain a forecast for 100 steps
into the future. Forecasts from the best AR model fitted to
the data are also generated. The forecasts are shown in Fig. 2.
Notice that the ensemble forecasts predict extremely well the
first 40 to 50 time steps, that they are indistinguishable from
the true values (Fig. 2a). Subsequently, the forecast trajec-
tories start to diverge, i.e. the inter quartile range starts to
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Figure 3: Same as Figure 2 but for Lorenz x coordinate, blind prediction starts from (a) index 

5368, and (b) index 5371.  

Fig. 3. Same as Fig. 2 but for Lorenzx coordinate, blind prediction
starts from(a) index 5368, and(b) index 5371.

expand. Unlike this, the best AR forecast is barely able to
predict correctly the first∼5 to 10 time steps and, subse-
quently, stays flat at the mean value. Similar observations
can be seen with forecasts starting from index 3711 shown in
Fig. 2b.

4.2 The Lorenz system

For the Lorenz system, there are three variables and, hence,
the embedding dimension is 3. GPA and FNN methods in-
dicate a dimension of 2.06 and 3, respectively. GCV scores
are computed for the same ranges ofD and τ as with the
Henon system. Here too, 15 “best” combinations have their
GCV values within 5% of the least GCV combination. These
combinations haveD=2 and 3,τ=1 and 2, andp=2 with
various neighbor sizes. Blind forecasts are issued from in-
dices 5368 and 5371. Forecasts starting from index 5368
(Fig. 3a) show a wide inter quartile range indicative of large
uncertainty. This is consistent with the fact that the region
(x=0) is the unstable part of the attractor and, hence, low
predictability. On the other hand, forecasts issued from index
5371 (Fig. 3b) which is quite away fromx=0 has a tighter
inter quartile range for the first∼35 points and then starts
to expand significantly just when the true value crosses the
(x=0) region. The best AR predictions barely capture the
first 3 points indicating their inadequacy and incapability to
provide good forecasts even in the part of the system that
has good predictability. Notice that the Lorenz system ex-
hibits less predictability compared to Henon. This is consis-
tent with their Lyapunov exponents (Wolf et al., 1985), i.e.
largest Lyapunov exponent of Lorenz is 2.2 bits/s, whereas
for Henon it is 0.6 bits/s (larger the Lyapunov exponent lesser
the predictability). However, it should be remembered that
prediction is highly dependent on the position of the initial
point in the phase space, as noted in the above two examples.

4.3 The Great Salt Lake time series

We present blind predictions (i.e. no data outside the fitting
subset is used for prediction) for two cases: (i) the fall of the
lake volume (during 1925–1930), and (ii) the dramatic rise
and fall (during 1983–1987). The GPA and FNN methods
suggest an embedding dimension of 4 and the mutual infor-
mation (Moon et al., 1995) indicates a delay time of 14. Var-
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Figure 4: Same as Figure 2 but for the standardized bi-weekly volume of GSL. Blind forecasts 
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Fig. 4. Same as Fig. 2 but for the standardized bi-weekly volume of
GSL. Blind forecasts for four years starting from(a) 15 December
1924 (index 1851),(b) 15 April 1925 (index 1859),(c) 1 July 1925
(index 1864), and(d) 15 October 1925 (index 1870).

ious sections of the GSL time series yield similar embedding
dimension and delay time values. These are consistent with
those obtained by Sangoyomi et al. (1996). GCV values are
computed over the range ofD=2 to 6,τ=10 to 20, andp=1
to 2 with various neighbor sizes. Fifteen combinations with
GCV values within 1.2% of the least GCV value are selected.

For the low volume region, we start the blind forecast from
December 1, 1924 (index 1851) and also from three differ-
ent points thereafter, just when the lake was in the process of
undergoing a regime transition (see Fig. 1c) from an “aver-
age” volume to a “low” volume state. In this case, the fifteen
selected combinations have the range of parameters asD=4
and 5,τ=10, 14, and 15,p=1 and 2, andα=0.1–0.5. The
inter quartile range of the ensembles is tight and is able to
capture the transition to the “low” volume regime (for fore-
casts starting from 1 March and 1 June 1925, Figs. 4b and
4c) – the best AR model performs well at the beginning but
then fails to make the transition to the “low” volume regime.
For the other cases, the ensemble forecasts do quite well for
the first 1∼2 years and then the inter quartile range tends to
expand. Note the sensitivity of the predictability to different
starting points (see Figs. 4a, 4b, 4c, and 4d). These results
are qualitatively similar to those reported in Lall et al. (1996).
The difference is that we are now able to offer some uncer-
tainty bounds on the forecast.

The period 1983–1987 covers the dramatic rise of the GSL
and its subsequent decline. Various auto regressive methods
fail to blind forecast this event (Lall et al., 1996). The blind
forecasts are started from index 3264, which corresponds
to October 15, 1983, and from several points along the ris-
ing limb. It can be seen that transition from low-volume to
average-volume regime has already taken place. The best
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Figure 5: Same as Figure 4, blind forecasts starting from (a) October 15, 1983 (index 3264), 

(b) January 15, 1984 (index 3270), (c) September 15, 1984 (index 3286), and (d) January 1, 

1987 (index 3341). 

Fig. 5. Same as Fig. 4, blind forecasts starting from(a) 15 Oc-
tober 1983 (index 3264),(b) 15 January 1984 (index 3270),(c) 15
September 1984 (index 3286), and(d) 1 January 1987 (index 3341).

fifteen combinations based on GCV result in the parameter
range ofD=4 and 5,τ=10 and 14,p=2, andα=0.1–0.4.
Polynomial order two (i.e. quadratic) is selected in all the
combinations, given the rise of the time series a higher order
is intuitive. Ensembles from these combinations for different
starting points are shown in Fig. 5. The ensemble forecasts
generally do a good job performing particularly well in cap-
turing the rise and fall of the Lake volume when the starting
point is slightly along the rising limb (Fig. 5c). The best AR
model performs poorly in almost all the situations, regardless
of the starting point, and it always tends to the mean (which
is 0 in the case of the standardized volume data). Given that
the forecasts in both the cases are blind and almost four years
into the future, the ensemble forecasts’ skill in capturing the
PDFs is impressive.

It could be argued that the high GSL volume in the early
part (1868–1877) of the record is responsible for better fore-
casting the high volume period of the mid 1980s (Fig. 5). To
test this, data for the 1909 to 1984 period is used to select the
model parameters and blind predictions are made for the rise
and fall of the lake volume in the mid 1980s. Interestingly,
the predictions are quite good (figure not shown), albeit with
a decreased lead time in comparison to Fig. 5. This shows
that the embedding of the time series is able to capture the
underlying dynamics and, consequently, can predict features
not observed in the past.

4.4 NINO3

We apply the method to two El Niño events of 1982 and 1997
and two La Nĩna events of 1984 and 1999. Unlike the GSL
time series, the embedding dimension and the delay time
computed from the FNN and MI methods yield slightly dif-
ferent values for different lengths of the data. This is some-
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Figure 6:  Same as Figure 2 but for the NINO3 index. Blind forecast of 1982-1983 El Nino 

event issued from different starting points (a) November, 1982, (b) December, 1982, (c) 

January, 1983, and (d) February, 1983.  

Fig. 6. Same as Fig. 2 but for the NINO3 index. Blind forecast
of 1982–1983 El Nĩno event issued from different starting points
(a) November 1982,(b) December 1982,(c) January 1983, and(d)
February 1983.

what to be expected, as the NINO3 data is noisier and shorter
than the GSL time series.

Two El Niño events (1982–1983 and 1997–1998) are se-
lected for this study. The data spanning 1856–1981 indicate
an embedding dimension 4 with a delay of 16. For the pe-
riod 1856–1996, they are 5 and 13, respectively. The 1982–
1983 event selected 600 combinations that have GCV values
within the 1.05% of the least GCV with parameters range of
D=2 to 5,τ=11 to 21,p=1 and 2, andα=0.1–1.0. Forecasts
are made at the start of each month from November 1982
(Fig. 6a). Both methods perform similarly at the start but the
ensemble predictions are better for forecasts from Decem-
ber (Fig. 6b). Note that the AR forecast issued from January
(Fig. 6c) quickly tends towards the mean (which is 0, in this
case), while the ensembles indicate a rise and then a gradual
fall. For the forecast issued in February (Fig. 6d), the AR
seems to do better, due to the fact that the AR methods tend
towards the mean value. The ensembles do a slightly better
job but the overall this event is difficult to predict.

For the 1997–1998 event, the combinations have simi-
lar parameter ranges as with the 1982–1883 event, exceptτ

ranges from 8 to 16. Figure 7 shows the forecasts issued at
the start of different months i.e. August, September (Figs. 7a
and 7b), and November, December (Figs. 7c and 7d). Note
that in all the cases the ensemble predictions perform much
better than the AR-model. In particular, it is able to repro-
duce the rise and fall starting from September (Fig. 7b).

The data prior to the 1984 and 1999 La Niña events yield
a dimension and delay time of 5 and 17, respectively. The
“best” combinations have parameters in the range ofD=2
to 5, τ=12 to 22, p=1 and 2, andα=0.1–1.0. For the
1984 event, predictions are issued in September and Decem-
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Figure 7: Same as Figure 6, but blind forecast of 1997-98 El Nino event issued from (a) 

August, 1997, (b) September, 1997, (c) November, 1997, and (d) December, 1997 

Fig. 7. Same as Fig. 6, but blind forecast of 1997–1998 El
Niño event issued from(a) August 1997,(b) September 1997,(c)
November 1997, and(d) December 1997.
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Figure 8: Same as Figure 6 but for blind forecasts of 1984-1985 La Nina event issued from (a) 

September, 1984, (b) December, 1984, (c) January, 1985, and (d) March, 1985.  

Fig. 8. Same as Fig. 6 but for blind forecasts of 1984–1985 La
Niña event issued from(a) September 1984,(b) December 1984,
(c) January 1985, and(d) March 1985.

ber (Figs. 8a and 8b, before La Niña reaches it’s negative
peak), in January (Fig. 8c), and in March (Fig. 8d). For all
the cases, predictions from both the methods perform sim-
ilarly and yield good results during its peak (Fig. 8c) and
after its peak (Fig. 8d). For the 1999 event, predictions
are issued in June (Fig. 9a), November (Fig. 9b), Decem-
ber (Fig. 9c), and in February (Fig. 9d). Here too the meth-
ods perform similarly, with increasing skill of the predictions
when issued closer to the negative peak of the events. Lastly,
we issue forecasts for the recent past starting 1 May 2002
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Figure 9: Same as Figure 6, but for blind forecast of 1999-2000 La Nina event issued from (a) 

June, 1999, (b) November, 1999, (c) December, 1999, and (d) February, 2000.  

Fig. 9. Same as Fig. 6, but for blind forecast of 1999–2000 La Niña
event issued from(a) June 1999,(b) November 1999,(c) December
1999, and(d) February 2000.

and 1 July 2004 for the GSL volumes and NINO3, respec-
tively (Fig. 10). For the ENSO, neutral to weak La Niña
conditions during the coming months are indicated by the
forecasts. This seems to be consistent with the forecasts
issued by the climate centers (http://iri.ldeo.columbia.edu;
http://www.cpc.ncep.noaa.gov) using dynamical and statis-
tical models.

5 Summary and discussions

We developed a new framework to generate ensemble fore-
casts of univariate time series. In this, the state space is
first reconstructed by embedding the univariate time series
of the response variable in a space of dimensionD with a
delay timeτ . To obtain a forecast from a given time point
t , three steps are involved: (i) the current state of the system
is mapped on to the state space, known as the feature vector,
(ii) a small number(K) of neighbors and their future evo-
lution to the feature vector are identified in the state space,
and (iii) a polynomial of orderp is fitted to the identified
neighbors, which is then used for prediction. Whereas in tra-
ditional nonlinear dynamical based forecasting approach, the
parametersD andτ are obtained using standard algorithms
and are fixed throughout the forecast period, and so are the
other parametersp andα.

With short noisy data, which is often the case in real life,
the parameters have significant uncertainty; hence, keeping
them fixed does not yield good forecasts. Furthermore, it is
only appropriate to generate ensemble forecasts that can nat-
urally provide the forecast uncertainty. To facilitate this, our
proposed framework entails the use of an objective criterion,
the Generalized Cross Validation. The GCV score is com-
puted for several parameter combinations of(D, τ, α, p).
From this, a suite of parameter combinations with low GCV
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Figure 10: Near term forecast of the real data sets. Blind forecast of  (a) GSL starting at May 

1, 2002 (index 3709), and (b) NINO3 index, issued on July 1, 2004.  

 

Fig. 10. Near term forecast of the real data sets. Blind forecast of
(a) GSL starting at 1 May 2002 (index 3709), and(b) NINO3 index,
issued on 1 July 2004.

scores is selected. Each of the selected combinations is then
used to issue a T-step iterated forecast starting from the cur-
rent timet , thus generating an ensemble forecast. We demon-
strated this method on two synthetic and two real data sets
and the performance was quite good. The unique aspect of
this approach is that the varying parameter combinations at
different points in the state space provide the ability to better
capture the underlying dynamics from noisy data. Another
useful aspect of the proposed methodology is that the con-
fidence intervals provided by the ensembles are wider and
narrower for different forecast starting points, reflecting the
uncertainty at different parts of the state space. However, tra-
ditional time series models (e.g. AR, ARMA, etc.) and even
nonparametric methods tend to provide a fixed confidence
interval that is often narrow and also unrealistic.

The method presented here may be improved in several
ways. First, explicitly accounting for the error in the forecast
model (Eq. 1) should allow the production of more realistic
probabilistic forecasts in situations where there is low pre-
dictability. For example, when the Great Salt Lake is in a
regime transition (Figs. 5a and 5d), the observed time series
lies well outside the forecast ensemble spread – explicitly ac-
counting for forecast model error for each parameter combi-
nation should inflate the ensemble spread in these situations.
Second, assigning weights to different parameter combina-
tions, e.g. based on the Generalized Cross Validation metric,
may also provide more reliable probabilistic forecasts. Third,
smoothing of geophysical time series using wavelet or sin-
gular spectrum analysis may result in further improvements
in probabilistic forecast skill for noisy time series. Rigor-
ous evaluation of these methods using ensemble diagnos-
tics (e.g. the ranked histogram and spread-skill relationships,
Whittaker and Loughe, 1998; Hamill, 2001) and comparison
with physical models (e.g. the Cane-Zebiak ENSO forecast-
ing model, Zebiak and Cane, 1987) is necessary before these
methods can be used in real-time applications.
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casts of El Nĩno, Nature, 321, 827–832, 1986.

Casdagli, M., Eubank, S., Farmer, J. D., Gibson, J., Des Dardins,
D., Hunter, N., and Theiler, J.: Nonlinear modeling of chaotic
time series: theory and applications, Los Alamos National Lab-
oratories, LA-UR-91-1637, 1990.

Chang, P., Wang, B., Li, T., and Ji, L.: Interactions between the sea-
sonal cycle and the southern oscillation-Frequency entrainment
and chaos in a coupled ocean-atmosphere model, Geophys. Res.
Lett., 21, 2817–2820, 1994.

Chatfield, C.: The analysis of time series: an introduction, 6th ed.,
Chapman & Hall/CRC, 2003.

Chen, D., Zebiak, S. E., Busalacchi, A. J., and Cane, M. A.: An
improved procedure for El Niño forecasting – implications for
predictability, Science, 269, 1699–1702, 1995.

Chen, D. K., Zebiak, S. E., Cane, M. A., and Busalacchi, A. J.: Ini-
tialization and predictability of a coupled ENSO forecast model,
Mon. Weath. Rev., 125, 773–788, 1997.

Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E., and Huang, D.
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