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Abstract. We compare coupled nonlinear climate models
and their simplified forced counterparts with respect to pre-
dictability and phase space topology. Various types of uncer-
tainty plague climate change simulation, which is, in turn, a
crucial element of Earth System modelling. Since the cur-
rently preferred strategy for simulating the climate system,
or the Earth System at large, is the coupling of sub-system
modules (representing, e.g. atmosphere, oceans, global vege-
tation), this paper explicitly addresses the errors and indeter-
minacies generated by the coupling procedure. The focus is
on a comparison of forced dynamics as opposed to fully, i.e.
intrinsically, coupled dynamics. The former represents a par-
ticular type of simulation, where the time behaviour of one
complex systems component is prescribed by data or some
other external information source. Such a simplifying tech-
nique is often employed in Earth System models in order to
save computing resources, in particular when massive model
inter-comparisons need to be carried out. Our contribution
to the debate is based on the investigation of two representa-
tive model examples, namely (i) a low-dimensional coupled
atmosphere-ocean simulator, and (ii) a replica-like simulator
embracing corresponding components.

Whereas in general the forced version (ii) is able to mimic
its fully coupled counterpart (i), we show in this paper that
for a considerable fraction of parameter- and state-space,
the two approaches qualitatively differ. Here we take up a
phenomenon concerning the predictability of coupled versus
forced models that was reported earlier in this journal: the
observation that the time series of the forced version display
artificial predictive skill. We present an explanation in terms
of nonlinear dynamical theory. In particular we observe an
intermittent version of artificial predictive skill, which we
call on-off synchronization, and trace it back to the appear-
ance of unstable periodic orbits. We also find it to be gov-
erned by a scaling law that allows us to estimate the proba-
bility of artificial predictive skill. In addition to artificial pre-
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dictability we observe artificial bistability for the forced ver-
sion, which has not been reported so far. The results suggest
that bistability and intermittent predictability, when found in
a forced model set-up, should always be cross-validated with
alternative coupling designs before being taken for granted.

1 Introduction

In the climate modelling community it is common practice to
establish a modular structure, consisting of ecosphere, bio-
sphere, vegetation, ocean, atmosphere, etc., that builds up an
Earth System Model (cf. the Climate System Model project
CSM Boville and Gent, 1998). Some of these components
are also modelled by external forcing, described from ob-
served data. This is done e.g. in the Atmospheric Model
Intercomparison Project AMIP (Gates et al., 1992), where
an atmospheric general circulation model (AGCM) is con-
strained by realistic sea surface temperature and sea ice and
the output is used for diagnostic research. Although this ex-
periment is not meant to be used for climate change predic-
tions, diagnostic subprojects have been established, though
it is not quite clear to what extent the forced AGCM output
is comparable to the system with complex ocean-atmosphere
feedbacks. These coupled systems are investigated e.g. in
the Coupled Model Intercomparison Project CMIP (Meehl
et al., 2000; Covey et al., 2003a). The comparison of coupled
ocean-atmosphere models with simulations using prescribed
sea surface temperatures shows that there are indeed some
important differences concerning e.g. temperatures near the
pole and tropical precipitation (Covey et al., 2003b). Other
publications mention a strong effect of the coupling on the
midlatitude variability of the ocean-atmosphere system (Bar-
sugli and Battisti, 1998) or on the decadal variability of
oceanic variables in the North Pacific (Pierce et al., 2001).

Hence, the subject of investigation is the effect of prescrib-
ing a module through data instead of implementing the dy-
namical module. This has already been investigated byWit-
tenberg and Anderson(1998), but here we will focus on po-
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tential constraints preventing the consistency of forcing and
coupling. With this paper we want to emphasize that when
forcing one module by another instead of coupling the two
components, one has to keep in mind that inherently nonlin-
ear phenomena can occur that lead to qualitatively different
features than expected. This type of analysis that we are un-
dertaking can be assigned to many other cases of investigat-
ing forced versus coupled model runs.

For our study we use a conceptual model which, com-
pared to more sophisticated climate models like GCMs, has
the advantage that the model itself as well as the output can
transparently be analysed along the lines of dynamical sys-
tems’ theory. This makes it easier to realise path continua-
tion of solutions in parameter space. The results presented
in this paper reveal the underlying mechanisms for certain
artificial phenomena produced in forced systems. From the
knowledge of the mechanism we then conclude that those
shortfalls of forced models are generic. Therefore we do
not so much suggest to perform path continuation for GCMs
as well (although it has successfully been implemented also
for GCMs (Dijkstra, 2000)) but we understand the following
chapters as a motivation to cross-validate a certain class of
forced GCM results by alternative coupling designs in quite
a classical manner.

The structure of the paper is as follows: The coupled
ocean-atmosphere model we are analysing is described in
section 2 and the phenomenon of locking for coupled and
forced trajectories is presented. In section 3 the mathemati-
cal background for replica systems is introduced. In section
4 we analyse the model in dependence on its parameters and
highlight some fundamental differences between forcing and
coupling. The role of unstable periodic orbits concerning the
locking phenomenon is also investigated. In section 5 we de-
termine the statistics of the locking and deduce a power law
scaling for the length of the locking phases. The paper will
finish with the conclusions in section 6.

2 Coupled and forced model

To investigate the difference between a forced and a fully
coupled set-up, a coupled atmosphere-ocean system is cho-
sen because the predictability of the Earth’s climate de-
pends strongly on the variability induced by the interaction of
these two components. As a very instructive example of the
coupled atmosphere-ocean system, the following low-order
model is examined:
��������	�
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Fig. 1. Comparison of the fully coupled system (top) and the forced
system (bottom). A fully coupled run is taken as reference trajec-
tory. Additional to the reference trajectory, in each subfigure there
are runs from slightly varying initial conditions in atmospheric co-
ordinates. In the upper figure the curves are from a fully coupled
run. In the lower figure, the trajectories are forced by the ocean
from the reference trajectory. In this figure, we have reproduced a
major finding by Wittenberg and Anderson (1998).

This model is taken from Wittenberg and Anderson
(1998). The atmosphere system model (Eq.(1)-(3)) is a
potentially chaotic Lorenz system (Lorenz, 1984), that de-
scribes the midlatitude quasi-geostrophic flow. While $ rep-
resents the time, the variable � represents the intensity of the
westerly wind current or the meridional temperature gradi-
ent. The variables � and � are the amplitudes of the sine and
cosine components of a large travelling wave, which trans-
ports heat poleward. � and 2 are forcing terms based on
the average north-south temperature contrast and the earth-
sea temperature contrast, where the seasonal variation of �
is expressed through the sine. The ocean system is a sim-
ple harmonic oscillator, with an oscillation frequency = of
four years, where p and q represent zonal asymmetries in sea
surface temperature. The coupling between ocean and atmo-
sphere proceeds through the interaction of these asymmetries
with the model atmosphere’s eddy field (y and z).

Wittenberg and Anderson (1998) carried out two different
sets of simulations. One set of simulations represents the
outcome of the fully coupled system with little variation in
the initial state vectors. In the other set the output of the
ocean from one special run is used to force the atmosphere.
Again this is undertaken for slightly perturbed initial condi-
tions. So there are two ensembles: one from a fully coupled
system and one from a forced system that includes no feed-
back from the atmosphere to the ocean.

As can be seen from Fig. 1, which was reproduced from
Wittenberg and Anderson (1998), the forced ensemble is
more compact, but does not mirror the true solution. Further-
more, Wittenberg and Anderson (1998) show that the statis-
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forced system (bottom). A fully coupled run is taken as reference
trajectory. Additional to the reference trajectory, in each subfigure
there are runs from slightly varying initial conditions in atmospheric
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major finding byWittenberg and Anderson(1998).
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ear phenomena can occur that lead to qualitatively different
features than expected. This type of analysis that we are un-
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sen because the predictability of the Earth’s climate de-
pends strongly on the variability induced by the interaction of
these two components. As a very instructive example of the
coupled atmosphere-ocean system, the following low-order
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ẋ = −y2
− z2

− ax + a(F + sin(2πγ t)) (1)

ẏ = xy − cy − bxz + G + αp (2)

ż = xz − cz + bxy + αq (3)

ṗ = −ωq − βy (4)

q̇ = ωp − βz (5)

with a=0.125, F=3.5, c=0.5, b=4, α=β=0.1, G=0.25,
γ=10/365.25, ω=2πγ/4, whereγ is a scaling factor with
one unit of system’s time referring to 10 days.

This model is taken fromWittenberg and Anderson
(1998). The atmosphere system model (Eqs.1–3) is a poten-
tially chaotic Lorenz system (Lorenz, 1984), that describes
the midlatitude quasi-geostrophic flow. Whilet represents
the time, the variablex represents the intensity of the west-
erly wind current or the meridional temperature gradient.
The variablesy and z are the amplitudes of the sine and
cosine components of a large travelling wave, which trans-
ports heat poleward.F andG are forcing terms based on
the average north-south temperature contrast and the earth-
sea temperature contrast, where the seasonal variation ofF

is expressed through the sine. The ocean system is a sim-
ple harmonic oscillator, with an oscillation frequencyω of
four years, wherep andq represent zonal asymmetries in sea
surface temperature. The coupling between ocean and atmo-
sphere proceeds through the interaction of these asymmetries
with the model atmosphere’s eddy field (y andz).

Wittenberg and Anderson(1998) carried out two different
sets of simulations. One set of simulations represents the
outcome of the fully coupled system with little variation in
the initial state vectors. In the other set the output of the
ocean from one special run is used to force the atmosphere.
Again this is undertaken for slightly perturbed initial condi-
tions. So there are two ensembles: one from a fully coupled
system and one from a forced system that includes no feed-
back from the atmosphere to the ocean.

As can be seen from Fig.1, which was reproduced from
Wittenberg and Anderson(1998), the forced ensemble is
more compact, but does not mirror the true solution. Further-
more,Wittenberg and Anderson(1998) show that the statis-
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tics of the forced variability, like spatial and temporal dis-
tributions, are significantly different from those of coupled
variability. For modelling issues this means that a prescribed
forcing (e.g. prescribing the sea surface temperature) cannot
emulate the fully coupled system. The interesting effect of
the forcing is that all trajectories sometimes lock on the true
solution for a short time and then separate again, so partial
synchronization, so called “locking” can be observed. One
can conclude from this that on the one hand fully coupled
and forced systems do not show the same behaviour but on
the other hand that in truly forced systems there may exist a
region in phase space, where predictability is very high. The
question to be followed is what mechanism is responsible for
the locking phenomenon and what types of coupling show
such behaviour.

3 Mathematical framework

In order to explain the locking phenomenon, a stability anal-
ysis of the system appears the most natural approach. In the
tradition ofWittenberg and Anderson(1998) andSmith et al.
(1999), one would expect that the local linear stability prop-
erties govern the observed phenomenon. Empirically, how-
ever, we find that the explanation for locking given inWit-
tenberg and Anderson(1998) does not hold. We find that
locking shows no correlation to the trajectory’s residence in
the “locking region” identified inWittenberg and Anderson
(1998) and, in particular, that locking persists an order of
magnitude longer than the trajectory resides in the locking
region. Contrary to a local linear stability analysis, we will
relate the locking period to extended invariant manifolds,
emerging from the nonlinear dynamics of the system. This
will allow us to introduce meaningful time-averaged charac-
teristics. To frame a discussion of potential nonlinear causes
of locking, we follow the concepts ofPecora and Carroll
(1990) andPecora et al.(1997). Different from Fig.1, where
we looked at a set of several forced trajectories, we investi-
gate here just the fully coupled run and one forced run. The
forced system can be written as a so-called replica system
(Pikovsky et al., 2001), where a replica of one or more equa-
tions is made. Together with Eqs. (1)–(5) we have a replica
system of the following form:

ẋ′ = −y′2
− z′2

− ax′
+ a(F + sin(2πγ t)) (6)

ẏ′ = x′y′
− cy′

− bx′z′
+ G + αp (7)

ż′ = x′z′
− cz′

+ bx′y′
+ αq (8)

ṗ′ = −ωq ′
− βy′ (9)

q̇ ′ = ωp′
− βz′, (10)

where the primed systemx′
=(x′, y′, z′, p′, q ′)T is identical

to the original fully coupled systemx=(x, y, z, p, q)T ex-
cept for slightly different initial conditions and the substi-
tuted variablesp and q instead ofp′ and q ′, that emulate
the forcing through prescribed data. In this systemp′ and
q ′ have no influence on the dynamics of the other primed
variables and are only introduced to allow for a closed math-

Knopf et al.: Forced versus Coupled Dynamics 3

tics of the forced variability, like spatial and temporal dis-
tributions, are significantly different from those of coupled
variability. For modelling issues this means that a prescribed
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will allow us to introduce meaningful time-averaged charac-
teristics. To frame a discussion of potential nonlinear causes
of locking, we follow the concepts of Pecora and Carroll
(1990) and Pecora et al. (1997). Different from Fig. 1, where
we looked at a set of several forced trajectories, we investi-
gate here just the fully coupled run and one forced run. The
forced system can be written as a so-called replica system
(Pikovsky et al., 2001), where a replica of one or more equa-
tions is made. Together with Eqs. (1)-(5) we have a replica
system of the following form:
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where the primed system x � � � � ��� � ��� � ��� 4 ��� : � %	� is identi-
cal to the original fully coupled system x � � � � � � � � 4 � :[%
�
except for slightly different initial conditions and the substi-
tuted variables 4 and : instead of 4 � and : � , that emulate the
forcing through prescribed data. In this system 4 � and : � have
no influence on the dynamics of the other primed variables
and are only introduced to allow for a closed mathematical

50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

time / yr

no
rm

 o
f e

rr
or

 v
ec

to
r 

|x
−

x’
|

Fig. 2. Norm of the error vector
�
x ��
 x � x ��
 between the fully

coupled and the forced run; ( ������� ��� ).
form. With this formalization “reality” - prescribed through
data - is being represented through a perfect model scenario
in the model-world.

In Fig. 2 the norm of the error vector � x ��� x � x � � is
plotted. Sometimes the two systems synchronize but then
suddenly the system shows long-lasting bursts where the two
trajectories seem to evolve independently.

Generally, this type of coupling between two identical sys-
tems can be written as
�
x � F � x % �

x � � F � x � %�� K � x � x
� %,E (11)

where K is the coupling function.
By transforming Eq. (11) to the transversal coordinates

x � � x � x � and considering only small perturbations, so
that x � x � and F � x � % � F � x % � J � x %7� x � � x % the equation
can be approximated by
�
x � � F � x % � F � x � % � K � x � % � J � x % x � � K � x � % (12)

where J � x % is the Jacobian matrix of F evaluated on the syn-
chronization manifold. A linearisation of the function K � x %
around zero, where we assume that K � 0 %<� 0 and neglect
higher order terms of x � , leads to

�
x ��� � J � x % ���K % x � � (13)

with

�K � � K� x
!!!! x "$# E (14)

In our case, where we have linear coupling, the matrix �K
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To achieve complete synchronization, it is required that
for $-,/. , x � goes to zero. From the linearised equation
(13) one would expect that the two systems will synchronize
if the transverse Lyapunov exponents, that are the Lyapunov

Fig. 2. Norm of the error vectorδx=|x−x′
| between the fully cou-

pled and the forced run; (a=0.09).

ematical form. With this formalization “reality” – prescribed
through data – is being represented through a perfect model
scenario in the model-world.

In Fig. 2 the norm of the error vectorδx=|x−x′
| is plot-

ted. Sometimes the two systems synchronize but then sud-
denly the system shows long-lasting bursts, where the two
trajectories seem to evolve independently.

Generally, this type of coupling between two identical sys-
tems can be written as

ẋ = F(x) ẋ′ = F(x′) + K(x − x′), (11)

whereK is the coupling function.
By transforming Eq. (11) to the transversal coordinates

x⊥=x−x′ and considering only small perturbations, so that
x≈x′ andF(x′)≈F(x)+J(x)(x′

−x) the equation can be ap-
proximated by

ẋ⊥ = F(x) − F(x′) − K(x⊥) ≈ J(x)x⊥ − K(x⊥), (12)

where J(x) is the Jacobian matrix ofF evaluated on the
synchronization manifold. A linearisation of the function
K(x) around zero, where we assume thatK(0)=0 and neglect
higher order terms ofx⊥, leads to

ẋ⊥ ≈ (J(x) − K̃)x⊥, (13)

with

K̃ =
dK
dx

∣∣∣∣x=0
. (14)

In our case, where we have linear coupling, the matrixK̃
is

K̃ =


0 0 0 0 0
0 0 0α 0
0 0 0 0α

0 0 0 0 0
0 0 0 0 0

 . (15)
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exponents associated with Eq. (13), are all negative. This
criterion was first proposed by Fujisaka and Yamada (1983),
but in contrast to this, e.g. Gauthier and Bienfang (1996)
observe only incomplete synchronization in their model in-
stead of the proposed full synchronization, when the largest
transverse Lyapunov exponent is smaller than zero. Several
criteria for synchronization were developed (Blakely et al.,
2000), but it was also shown there that for their model none
of these criteria exactly predicts the range of the control pa-
rameter where full synchronization can be observed.

In our case the largest transverse Lyapunov exponent is
positive with � � � C5E C��[Q but we also observe partial syn-
chronization. The time $�� after which all information is lost
and the two trajectories are totally independent, reads

$ � � G
�
� �

�
� �;� C
% � (16)

where � is the Lyapunov exponent,
�

denotes the character-
istic length of the attractor and � � ��C
% the error that cannot be
dissolved by a given accuracy (Argyris et al., 1995). Here$ � is found to be about 1.3 years. Nevertheless locking can
be observed over much longer timescales, as can be deduced
from Fig. 2. This demonstrates that in the period of locking,
a non-average, non-standard situation is present. Below we
will link it to phase-space structures of low measure, yet of a
noticeable domain of attraction.

4 Comparison of forced and coupled system

In this section we systematically compare the coupled to the
forced system with respect to time-series properties as well
as phase space topology. As a necessary condition for the
forced system to emulate the coupled one in the time-domain
we require that the forced system shows locking if and only
if its coupled counterpart does.

4.1 System without seasonal cycle

An important structural difference between coupled and
forced systems will be discussed in this chapter. In order
to separate the two forcing effects in this model, namely the
ocean forcing through the variables 4 and : and the seasonal
forcing, the model is firstly investigated without the seasonal
cycle. We analyse the dependence of the relative mean lock-
ing time �	��
 on the coupling strength 3 , see Fig. 3(a),
where

� � $
� ������� ���
� � (17)

where
�

is the length of the whole time series and $ � ������� ��� is
the time, where locking can be observed. This is averaged
over many locking periods. Locking is defined by the norm
of the error vector � x � � x � x � � of the two trajectories x
and x � being smaller than a critical threshold � . For a propper
choice of � see below, here we took � � CFE CFG .

A significant difference in the relative mean locking time
for a fully coupled run and a forced run can be observed.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1E−6

1E−4

1E−2

1

<
τ>

 / 
ar

b.
 u

ni
ts

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.96

0.98

1

1.02

x

stable periodic orbit
unstable periodic orbit

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.94

0.96

0.98

1

1.02

coupling strength α

x′

b.)

stable periodic orbit
unstable periodic orbit

c.)

a.) 
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Fig. 3. Relative mean locking time in relation to the most dominant
invariant sets (periodic orbits) for the system without seasonal cycle
(with a=0.12). (a) Relative mean locking time<τ> (see Eq.17)
in dependence of the coupling strengthα. For every point in this
figure the initial conditions forx were chosen randomly and the tra-
jectories were integrated over 500 years, according to 730 500 time
steps, after they settled down on an attractor. The forced trajectory
was started on the attractor with slightly perturbed initial condi-
tions, chosen from a gaussian distribution with a standard deviation
of 0.01. For every value of the coupling strengthα the integration
was performed several times. As a mean length of zero cannot be
depicted in a logarithmic plot, we added an offset of 10−6; (b) Bi-
furcation diagram for the variablex of the five dimensional (5-D)
driving system; for the periodic orbits, just one point referring to
the maximum of the orbit is plotted;(c) Bifurcation diagram for the
variablex′ of the 8-D combined drive and response system. A filled
circle symbol represents a saddle node bifurcation, an unfilled circle
stands for a torus bifurcation, an upward-pointing triangle denotes a
period doubling bifurcation and a downward-pointing triangle sym-
bolizes a branch point.

To achieve complete synchronization, it is required that
for t→∞, x⊥ goes to zero. From the linearised Eq. (13)
one would expect that the two systems will synchronize if
the transverse Lyapunov exponents, that are the Lyapunov
exponents associated with Eq. (13), are all negative. This
criterion was first proposed byFujisaka and Yamada(1983),
but in contrast to this, e.g.Gauthier and Bienfang(1996) ob-
serve only incomplete synchronization in their model instead
of the proposed full synchronization, when the largest trans-
verse Lyapunov exponent is smaller than zero. Several crite-
ria for synchronization were developed (Blakely et al., 2000),
but it was also shown there that for their model none of these
criteria exactly predicts the range of the control parameter,
where full synchronization can be observed.

In our case the largest transverse Lyapunov exponent is
positive withλ⊥≈0.084 but we also observe partial synchro-
nization. The timet∗ after which all information is lost and

the two trajectories are totally independent, reads

t∗ ≈
1

λ
ln

L

δx(0)
, (16)

whereλ is the Lyapunov exponent,L denotes the character-
istic length of the attractor andδx(0) the error that cannot be
dissolved by a given accuracy (Argyris et al., 1995). Here
t∗ is found to be about 1.3 years. Nevertheless locking can
be observed over much longer timescales, as can be deduced
from Fig.2. This demonstrates that in the period of locking,
a non-average, non-standard situation is present. Below we
will link it to phase-space structures of low measure, yet of a
noticeable domain of attraction.

4 Comparison of forced and coupled system

In this section we systematically compare the coupled to the
forced system with respect to time-series properties as well
as phase space topology. As a necessary condition for the
forced system to emulate the coupled one in the time-domain
we require that the forced system shows locking if and only
if its coupled counterpart does.

4.1 System without seasonal cycle

An important structural difference between coupled and
forced systems will be discussed in this section. In order
to separate the two forcing effects in this model, namely the
ocean forcing through the variablesp andq and the seasonal
forcing, the model is firstly investigated without the seasonal
cycle. We analyse the dependence of the relative mean lock-
ing time<τ> on the coupling strengthα, see Fig.3a, where

τ =
tlocking

T
, (17)

whereT is the length of the whole time series andtlocking is
the time, where locking can be observed. This is averaged
over many locking periods. Locking is defined by the norm
of the error vectorδx=|x−x′

| of the two trajectoriesx and
x′ being smaller than a critical thresholdε. For a propper
choice ofε see below, here we tookε=0.01.

A significant difference in the relative mean locking time
for a fully coupled run and a forced run can be observed.
The fully coupled system consists of two totally independent
systemsx andx′, where the coupling matrix̃K of Eq. (15)
is zero. The forced system is the 8-D combined drive and
response system, consisting of Eqs. (1)–(5) and (6)–(8), the
Eqs. (9) and (10) are neglected in this case as they have no
influence on the system’s dynamics. Whereas in the fully
coupled system the relative mean locking time<τ>, as a
function ofα, is always zero (not plotted in the diagram), in
the forced system there are small parameter ranges, where
the trajectories always show locking (forα∈[0.1, 0.177]), or
where locking never appears, e.g. forα∈[0.277, 0.4]. Addi-
tionally, in the forced system there are also regions, where
we observe intermittent synchronization as shown in Fig.2,
e.g. forα>0.4 – like in the original system which includes a
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exponents associated with Eq. (13), are all negative. This
criterion was first proposed by Fujisaka and Yamada (1983),
but in contrast to this, e.g. Gauthier and Bienfang (1996)
observe only incomplete synchronization in their model in-
stead of the proposed full synchronization, when the largest
transverse Lyapunov exponent is smaller than zero. Several
criteria for synchronization were developed (Blakely et al.,
2000), but it was also shown there that for their model none
of these criteria exactly predicts the range of the control pa-
rameter where full synchronization can be observed.

In our case the largest transverse Lyapunov exponent is
positive with � � � C5E C��[Q but we also observe partial syn-
chronization. The time $�� after which all information is lost
and the two trajectories are totally independent, reads

$ � � G
�
� �

�
� �;� C
% � (16)

where � is the Lyapunov exponent,
�

denotes the character-
istic length of the attractor and � � ��C
% the error that cannot be
dissolved by a given accuracy (Argyris et al., 1995). Here$ � is found to be about 1.3 years. Nevertheless locking can
be observed over much longer timescales, as can be deduced
from Fig. 2. This demonstrates that in the period of locking,
a non-average, non-standard situation is present. Below we
will link it to phase-space structures of low measure, yet of a
noticeable domain of attraction.

4 Comparison of forced and coupled system

In this section we systematically compare the coupled to the
forced system with respect to time-series properties as well
as phase space topology. As a necessary condition for the
forced system to emulate the coupled one in the time-domain
we require that the forced system shows locking if and only
if its coupled counterpart does.

4.1 System without seasonal cycle

An important structural difference between coupled and
forced systems will be discussed in this chapter. In order
to separate the two forcing effects in this model, namely the
ocean forcing through the variables 4 and : and the seasonal
forcing, the model is firstly investigated without the seasonal
cycle. We analyse the dependence of the relative mean lock-
ing time �	��
 on the coupling strength 3 , see Fig. 3(a),
where

� � $
� ������� ���
� � (17)

where
�

is the length of the whole time series and $ � ������� ��� is
the time, where locking can be observed. This is averaged
over many locking periods. Locking is defined by the norm
of the error vector � x � � x � x � � of the two trajectories x
and x � being smaller than a critical threshold � . For a propper
choice of � see below, here we took � � CFE CFG .

A significant difference in the relative mean locking time
for a fully coupled run and a forced run can be observed.
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Fig. 3. Relative mean locking time in relation to the most domi-
nant invariant sets (periodic orbits) for the system without seasonal
cycle (with � � ������� ). (a) Relative mean locking time ��� � (see
Eq. 17) in dependence of the coupling strength ! . For every point
in this figure the initial conditions for x were chosen randomly and
the trajectories were integrated over 500 years, according to 730500
time steps, after they settled down on an attractor. The forced trajec-
tory was started on the attractor with slightly perturbed initial condi-
tions, chosen from a gaussian distribution with a standard deviation
of 0.01. For every value of the coupling strength ! the integration
was performed several times. As a mean length of zero cannot be
depicted in a logarithmic plot, we added an offset of � ��"$# ; (b) Bi-
furcation diagram for the variable % of the five dimensional (5-D)
driving system; for the periodic orbits, just one point referring to
the maximum of the orbit is plotted; (c) Bifurcation diagram for the
variable % � of the 8-D combined drive and response system. A filled
circle symbol represents a saddle node bifurcation, an unfilled circle
stands for a torus bifurcation, an upward-pointing triangle denotes a
period doubling bifurcation and a downward-pointing triangle sym-
bolizes a branch point.
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Fig. 4. Bifurcation diagram for % � in dependence of the coupling
strength ! in the system without seasonal cycle and ����������� .
The fully coupled system consists of two totally independent
systems x and x � , where the coupling matrix K of Eq. (15)

Fig. 4. Bifurcation diagram forx′ in dependence of the coupling
strengthα in the system without seasonal cycle anda=0.12.

seasonal cycle. This suggests that the seasonal forcing is not
the main cause of the observed intermittent behaviour.

The presented result does not depend on the choice of the
thresholdε, provided thatε is not too small. The relative
mean locking time<τ> grows only slowly with theε, so
there would be only a slight shift for the value of<τ> in
Fig. 3a. On the other hand it is important to choose a thresh-
old ε that is not too small (Lai, 1996), because it then takes
a long time until the trajectory falls below the threshold and
therefore one would need very long runs to calculate a reli-
able value for the mean locking time<τ>.

In the remaining part of this section, we empirically corre-
late time-series properties and phase-space topology in order
to explain the locking phenomenon of the forced system. To
get an impression of the phase space topology of the sys-
tem in dependence of the parameterα, a bifurcation analysis
is performed with the bifurcation analysis program AUTO
(Doedel, 1981). In Fig. 3b the bifurcation diagram for the
variablex of the fully coupled system – which simultaneu-
osly plays the role of the forced system’s master trajectory
– is plotted, in Fig.3c the same is done for the variablex′

of the 8-D combined drive and response system. (Remember
that for locking to occur,x andx′ must coincide in the time
series.) Forα<0.177, both diagrams display the identical bi-
furcation diagram that simply consists of one stable periodic
orbit. We propose that locking occurs in the forced system
if both the master and the perturbed trajectory end up on the
same periodic orbit.

Forα>0.177, the difference of the bifurcation diagrams is
amazing: while for anyα<0.4 a stable periodic orbit exists
in both the coupled (Fig. 3b) and the forced system (Fig. 3c),
this orbit either lives on a different branch (forα∈[0.3, 0.4])
or another stable periodic coexists (forα∈[0.177, 0.277]),
born in a saddle node bifurcation atα=0.177. In the lat-
ter situation (α∈[0.177, 0.277]), full synchronization can be
observed if the perturbed trajectory starts in the domain of

Table 1. Overview over the different regions in parameter space.
SPO stands for stable periodic orbit, UPO for unstable periodic or-
bit.

coupling
strength
α ∈

x x′ locking?

[0.1, 0.177] SPO SPO locking

[0.177,
0.277]

SPO two SPOs locking, whenx andx′

are on the same PO;
else no locking

[0.277, 0.3] SPO same SPO
and torus

locking, when x′ is
on the PO; no locking,
whenx′ is on the torus

[0.3, 0.4] SPO (differing)
SPO and
torus

no locking

[0.4, 0.5] UPO UPOs intermittent locking
(on-off synchroniza-
tion)

attraction of that periodic orbit which mimics the orbit of
the master system (upper branch); otherwise the perturbed
trajectory gets trapped by the concurring (lower branch) pe-
riodic orbit and locking never occurs. In the former case (for
α∈[0.3, 0.4]), the attracting orbits differ, hence synchroniza-
tion should be impossible. This is in fact consistent with the
relative mean locking time observed in Fig.3a.

In Fig. 4 another bifurcation diagram forx′ is obtained
by numerical integration to capture the movement on a torus,
that cannot be depicted in the other diagram. In fact, the torus
bifurcation is found in the upper Fig.3c for α=0.277, but
the torus cannot be followed with this method. For each pa-
rameter valueα we let the system settle down to an attractor
and then plotted the forced variablex′, when the trajectory
crosses they′ axis at 0.5. From left to right we see again the
stable periodic orbit and atα=0.177 the generation of a sec-
ond orbit. From these stable periodic orbits a quasiperiodic
motion on a torus emerges atα=0.277. The dynamics on
the torus is sometimes adjourned by the stable periodic orbit
that can be found in Fig.3c for α<0.3. The torus disappears
at α=0.4 through a period doubling bifurcation and passes
into chaotic motion. For the driving systemx no quasiperi-
odic dynamics are found, so that forα∈[0.277, 0.3], before
the branch point atα=0.3 emerges, the system shows locking
whenx′ is on the stable limit cycle or shows no locking when
x′ is on the torus. Which state will be adopted depends on
the initial conditions. Forα larger than the bifurcation value
α=0.3, there is scarcely any locking because the forced sys-
tem is on the torus and the fully coupled system on the stable
periodic orbit. An overview of the different classifications in
dependence on the parameter space is given in Table1.
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note that synchronization effects might be artefacts from the
forced set-up.

In order to obtain a full understanding of the fundamental
discrepancies between the forced and fully coupled system,
in the following we will focus on the phenomenon of inter-
mittent synchronization that arises for 3 
 CFE Q , where no
stable periodic orbit is detected.

4.2 The role of (un)stable periodic orbits

From the observations in the previous chapter we can con-
clude that if the system is in a region where it is on a stable
periodic orbit, the forced system shows locking all the time,
provided that we are in a region in parameter space where x
and x � show the same bifurcation diagram. The argumenta-
tion reads as follows: as the orbit of the 8-D system is stable,
the trajectories of the driving system and the driven system
end up on the same periodic orbit, but they could still have a
phase shift. If there were a phase shift, then this shift would
also be seen in the ocean coordinates. But this is excluded
through the replica approach, where only the atmosphere co-
ordinates are varied. Contrary to this, for the coupled sys-
tem the ocean coordinates are also subject to the perturba-
tion, hence no synchronizing drive is present and no locking
will occur.

This emphasizes that full synchronization can in this case
be explained by a stable periodic orbit (or a stable equilib-
rium point) that drives the forced system to the same dynamic
behaviour.

After the stability has been lost in a bifurcation point, the
unstable periodic orbit embedded into the attractor influences
the system so that intermittently locking occurs even in a
region where the transversal Lyapunov exponent is positive
and – naively, “on average” – no synchronization is expected.
Therefore the concept of (unstable) periodic orbits seems to
be crucial for the locking phenomenon and the loss of syn-
chronization can be traced back to the transition from stable
to unstable periodic orbits. Ott and Sommerer (1994) call
this a nonhysteretic blowout bifurcation, where for � � ���
the system is on an attractor and for � 
 ��� on-off intermit-
tency can be detected. The role of unstable periodic orbits
(UPOs) for synchronization is also pointed out by Pazó et al.
(2003) and by Pikovsky et al. (1997).

The interpretation with regard to UPOs can be stressed
through Fig. 5, where we analysed the phase space of the
locking regions in comparison to the full attracting set. It can
clearly be seen that the locking region is in good coincidence
with the unstable periodic orbit, whereas the non-locking re-
gion covers a much larger part of the whole phase space.

Just beyond a bifurcation point where a periodic orbit has
become unstable, the Monodromy matrix of the related map-
ping will display a long timescale on the unstable manifold,
and generically shorter time-scales for the remaining stable
manifold. Therefore, the unstable periodic orbit still has a
fair chance to attract on the stable manifold and synchronize
the trajectory. This will reveal itself as locking. After a while,
the long timescale on the unstable manifold manifests itself,
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Fig. 5. Phase space of the full attracting set (non-locking region)
and of two exemplary locking regions (1 and 2), whereas here re-
gion refers to a period in time. For comparison the unstable periodic
orbit for this parameter constellation is plotted.

and the trajectory becomes repelled, reminiscent of intermit-
tency. Hence, we suggest that the intermittent locking can be
traced back to a co-existence of two identical unstable peri-
odic orbits, one in the fully coupled, and one in the combined
8D fully coupled and replica system.

In summary, there are two major differences in the coupled
and the forced system’s dynamics: first, the forced system
displays a richer bifurcation diagram including coexisting
stable invariant manifolds where the coupled system would
not (“artificial bistability”), and even if both the master and
the perturbed trajectory would end up on the same periodic
orbit, the coupled system lacks a synchronizer, hence cannot
display locking. At least the second effect is independent of
the complexity of the model and should occur in GCMs as
well.

One potential practical consequence could be within
weather forecast: if locking occurred already at the begin-
ning of the dynamics, in the “forecast period”, the ensem-
ble error along the trajectory could be vastly underestimated
in forced ensembles. This could imply that e.g., a hurricane
could affect a region on its way much earlier than anticipated.

Furthermore, artificial bistability could bring about that
climate policy becomes overly conservative as society tries
to prevent crossing a threshold which is just an artefact from
the forced model set-up.

4.3 System with seasonal cycle

The assertion of the role of stable and unstable periodic or-
bits can also be endorsed by Fig. 6, where the system with
seasonal cycle in dependence on the coupling strength 3 is
analysed. As before, the bifurcation diagram and the rela-
tive mean locking time are plotted. Again we can detect in-
termittent synchronization and it can be seen that there is a
transition from locking to intermittent locking.

Fig. 6 makes it clear that the presumption that with
stronger coupling the two systems will synchronize, is not

Fig. 5. Phase space of the full attracting set (non-locking region)
and of two exemplary locking regions (1 and 2), whereas here re-
gion refers to a period in time. For comparison the unstable periodic
orbit for this parameter constellation is plotted.

So far we can conclude that if the system is on the same
stable periodic orbit forx andx′, we get full synchroniza-
tion. On the other hand, whenx runs on a periodic orbit
not concurring to the replicate ofx’s periodic orbit, locking
cannot be observed. That means there can be intrinsic ob-
stacles that a forced system performs as the fully coupled
system. For modelling issues this is a crucial outcome, as for
more sophisticated models the calculation of the state space
of the forced and the coupled model is very costly so there
is hardly any way to decide if forcing is suitable, above all
because normally the fully coupled model is not known. For
users of forced models is therefore of central importance to
note that synchronization effects might be artefacts from the
forced set-up.

In order to obtain a full understanding of the fundamen-
tal discrepancies between the forced and fully coupled sys-
tem, in the following we will focus on the phenomenon of
intermittent synchronization that arises forα>0.4, where no
stable periodic orbit is detected.

4.2 The role of (un)stable periodic orbits

From the observations in the previous section we can con-
clude that if the system is in a region, where it is on a stable
periodic orbit, the forced system shows locking all the time,
provided that we are in a region in parameter space, wherex
andx′ show the same bifurcation diagram. The argumenta-
tion reads as follows: as the orbit of the 8-D system is stable,
the trajectories of the driving system and the driven system
end up on the same periodic orbit, but they could still have a
phase shift. If there were a phase shift, then this shift would
also be seen in the ocean coordinates. But this is excluded
through the replica approach, where only the atmosphere co-
ordinates are varied. Contrary to this, for the coupled sys-
tem the ocean coordinates are also subject to the perturba-

tion, hence no synchronizing drive is present and no locking
will occur.

This emphasizes that full synchronization can in this case
be explained by a stable periodic orbit (or a stable equilib-
rium point) that drives the forced system to the same dynamic
behaviour.

After the stability has been lost in a bifurcation point, the
unstable periodic orbit embedded into the attractor influences
the system so that intermittently locking occurs even in a re-
gion, where the transversal Lyapunov exponent is positive
and – naively, “on average” – no synchronization is expected.
Therefore the concept of (unstable) periodic orbits seems to
be crucial for the locking phenomenon and the loss of syn-
chronization can be traced back to the transition from stable
to unstable periodic orbits.Ott and Sommerer(1994) call
this a “nonhysteretic” blowout bifurcation, where fora<ac

the system is on an attractor and fora>ac on-off intermit-
tency can be detected. The role of unstable periodic orbits
(UPOs) for synchronization is also pointed out byPaźo et al.
(2003) and byPikovsky et al.(1997).

The interpretation with regard to UPOs can be stressed
through Fig.5, where we analysed the phase space of the
locking regions in comparison to the full attracting set. It can
clearly be seen that the locking region is in good coincidence
with the unstable periodic orbit, whereas the non-locking re-
gion covers a much larger part of the whole phase space.

Just beyond a bifurcation point, where a periodic orbit has
become unstable, the Monodromy matrix of the related map-
ping will display a long timescale on the unstable manifold,
and generically shorter time-scales for the remaining stable
manifold. Therefore, the unstable periodic orbit still has a
fair chance to attract on the stable manifold and synchronize
the trajectory. This will reveal itself as locking. After a while,
the long timescale on the unstable manifold manifests itself,
and the trajectory becomes repelled, reminiscent of intermit-
tency. Hence, we suggest that the intermittent locking can be
traced back to a co-existence of two identical unstable peri-
odic orbits, one in the fully coupled, and one in the combined
8D fully coupled and replica system.

In summary, there are two major differences in the coupled
and the forced system’s dynamics: first, the forced system
displays a richer bifurcation diagram including coexisting
stable invariant manifolds, where the coupled system would
not (“artificial bistability”), and even if both the master and
the perturbed trajectory would end up on the same periodic
orbit, the coupled system lacks a synchronizer, hence cannot
display locking. At least the second effect is independent of
the complexity of the model and should occur in GCMs as
well.

One potential practical consequence could be within
weather forecast: if locking occurred already at the begin-
ning of the dynamics, in the “forecast period”, the ensem-
ble error along the trajectory could be vastly underestimated
in forced ensembles. This could imply that e.g. a hurricane
could affect a region on its way much earlier than anticipated.

Furthermore, artificial bistability could bring about that
climate policy becomes overly conservative as society tries
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Fig. 6. Variation of the coupling strength ! in the system with sea-
sonal cycle with � � � � � � . (a) Relative mean locking time ��� �
(see Eq. 17) in dependence on the coupling strength ! . Again we
added an offset of � � " # to depict a mean length of zero; (b) Bifur-
cation diagram of the system. As for this parameter constellation
% and % � show the same bifurcation diagram, just one bifurcation
diagram is plotted.

valid in this case. The system needs a stable manifold to be-
come fully synchronized. For modelling issues, that means
that it does not depend on the strength of coupling but on the
state in the phase space if forcing can substitute coupling.

A significant difference to the situation without seasonal
forcing is that here the fully coupled system shows lock-
ing when the system is on a stable limit cycle, see Fig. 6(a),
where the relative mean locking time is 1 in the locking re-
gions, which means there is always locking. Intermittent syn-
chronization can also sometimes be observed but less often
than in the forced system (Fig. 6(a)). This is due to the sea-
sonal forcing, that determines the frequency of the periodic
orbit, so this locking bears on an external forcing and not
on the intrinsic phenomenon of locking through prescribed
forcing by variables. But as the seasonal cycle is also a kind
of forcing, the chance of locking through an additional “syn-
chronizer” increases.

4.4 Influence of the type of coupling

The system analysed so far is a system with linear coupling.
As this is a very special case of coupling that is not often
used in truly coupled models, we analyse a system without
a seasonal cycle and with a nonlinear coupling to determine
the influence of the type of coupling. The coupling has the
following form:
��O�(�5�*�.+,����-,�)�8��2���3)4��W� (18)
����(�)�6��+7�1� -/�5�6��3;: � ��E (19)

instead of Eqs. (2) and (3). As 4 and : vary approximately
between -1 and 1, the introduced term bears strong nonlin-
earity.
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Fig. 7. Influence of the parameter � in the system without seasonal
cycle and with nonlinear coupling as described through Eqs. (18)
and (19). (a) Relative mean locking time ��� � (see Eq. 17) in
dependence of the parameter � ; (b) Bifurcation diagram of the 5-
D and the 8-D system. Here % and % � show the same bifurcation
diagram. The unfilled cycle stands for a torus bifurcation.

Instead of analysing the influence of the coupling strength3 , here we focus on the effect of varying the parameter � .
Again we have full locking when the system in on the same
stable limit cycle for � and � � , and transitions to intermittent
locking when an UPO is reached, see Fig. 7. By varying the
coupling strength 3 in a range from 0.0 to 0.65 we discover
a region of artificial bistability for � � (not shown here) as we
have seen before in the system with linear coupling (Fig. 3).

So all features found in the linear coupled system can also
be discovered in the system with nonlinear coupling. This
demonstrates that the type of coupling (linear or nonlinear)
has no decisive influence on the locking phenomenon. Quite
the contrary, as periodic orbits appear frequently in nonlin-
ear systems, locking may occur generically in forced systems
and is much less likely in their fully coupled counterparts.
This stresses that for the locking phenomenon a linear stabil-
ity analysis does not hold.

5 On-off Synchronization

The alternation between regions, where the error between the
forced and coupled trajectory is nearly zero, and between re-
gions with large bursts as shown in Fig. 2, resemble those of
on-off intermittency. On-off intermittency, as introduced by
Platt et al. (1993), refers to a situation where the variables of
a chaotic dynamical system exhibit two distinct states where
at the “off” state the system is nearly constant on an invariant
manifold, and at the “on” state large bursts from these lami-
nar phases occur. The frequency of bursts is controlled by a
characteristic parameter 4 of the system and approaches zero,
when the so-called blowout bifurcation (Ott and Sommerer,
1994) is reached as 4 attains a critical value 4 � . To assign

Fig. 6. Variation of the coupling strengthα in the system with sea-
sonal cycle witha=0.27. (a) Relative mean locking time<τ> (see
Eq. 17) in dependence on the coupling strengthα. Again we added
an offset of 10−6 to depict a mean length of zero;(b) Bifurcation
diagram of the system. As for this parameter constellationx andx′

show the same bifurcation diagram, just one bifurcation diagram is
plotted.

to prevent crossing a threshold which is just an artefact from
the forced model set-up.

4.3 System with seasonal cycle

The assertion of the role of stable and unstable periodic or-
bits can also be endorsed by Fig.6, where the system with
seasonal cycle in dependence on the coupling strengthα is
analysed. As before, the bifurcation diagram and the rela-
tive mean locking time are plotted. Again we can detect in-
termittent synchronization and it can be seen that there is a
transition from locking to intermittent locking.

Figure 6 makes it clear that the presumption that with
stronger coupling the two systems will synchronize, is not
valid in this case. The system needs a stable manifold to be-
come fully synchronized. For modelling issues, that means
that it does not depend on the strength of coupling but on the
state in the phase space if forcing can substitute coupling.

A significant difference to the situation without seasonal
forcing is that here the fully coupled system shows locking
when the system is on a stable limit cycle, see Fig.6a, where
the relative mean locking time is 1 in the locking regions,
which means there is always locking. Intermittent synchro-
nization can also sometimes be observed but less often than
in the forced system (Fig.6a). This is due to the seasonal
forcing, that determines the frequency of the periodic orbit,
so this locking bears on an external forcing and not on the in-
trinsic phenomenon of locking through prescribed forcing by
variables. But as the seasonal cycle is also a kind of forcing,
the chance of locking through an additional “synchronizer”
increases.
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Fig. 6. Variation of the coupling strength ! in the system with sea-
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added an offset of � � " # to depict a mean length of zero; (b) Bifur-
cation diagram of the system. As for this parameter constellation
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diagram is plotted.

valid in this case. The system needs a stable manifold to be-
come fully synchronized. For modelling issues, that means
that it does not depend on the strength of coupling but on the
state in the phase space if forcing can substitute coupling.

A significant difference to the situation without seasonal
forcing is that here the fully coupled system shows lock-
ing when the system is on a stable limit cycle, see Fig. 6(a),
where the relative mean locking time is 1 in the locking re-
gions, which means there is always locking. Intermittent syn-
chronization can also sometimes be observed but less often
than in the forced system (Fig. 6(a)). This is due to the sea-
sonal forcing, that determines the frequency of the periodic
orbit, so this locking bears on an external forcing and not
on the intrinsic phenomenon of locking through prescribed
forcing by variables. But as the seasonal cycle is also a kind
of forcing, the chance of locking through an additional “syn-
chronizer” increases.

4.4 Influence of the type of coupling

The system analysed so far is a system with linear coupling.
As this is a very special case of coupling that is not often
used in truly coupled models, we analyse a system without
a seasonal cycle and with a nonlinear coupling to determine
the influence of the type of coupling. The coupling has the
following form:
��O�(�5�*�.+,����-,�)�8��2���3)4��W� (18)
����(�)�6��+7�1� -/�5�6��3;: � ��E (19)

instead of Eqs. (2) and (3). As 4 and : vary approximately
between -1 and 1, the introduced term bears strong nonlin-
earity.
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Fig. 7. Influence of the parameter � in the system without seasonal
cycle and with nonlinear coupling as described through Eqs. (18)
and (19). (a) Relative mean locking time ��� � (see Eq. 17) in
dependence of the parameter � ; (b) Bifurcation diagram of the 5-
D and the 8-D system. Here % and % � show the same bifurcation
diagram. The unfilled cycle stands for a torus bifurcation.

Instead of analysing the influence of the coupling strength3 , here we focus on the effect of varying the parameter � .
Again we have full locking when the system in on the same
stable limit cycle for � and � � , and transitions to intermittent
locking when an UPO is reached, see Fig. 7. By varying the
coupling strength 3 in a range from 0.0 to 0.65 we discover
a region of artificial bistability for � � (not shown here) as we
have seen before in the system with linear coupling (Fig. 3).

So all features found in the linear coupled system can also
be discovered in the system with nonlinear coupling. This
demonstrates that the type of coupling (linear or nonlinear)
has no decisive influence on the locking phenomenon. Quite
the contrary, as periodic orbits appear frequently in nonlin-
ear systems, locking may occur generically in forced systems
and is much less likely in their fully coupled counterparts.
This stresses that for the locking phenomenon a linear stabil-
ity analysis does not hold.

5 On-off Synchronization

The alternation between regions, where the error between the
forced and coupled trajectory is nearly zero, and between re-
gions with large bursts as shown in Fig. 2, resemble those of
on-off intermittency. On-off intermittency, as introduced by
Platt et al. (1993), refers to a situation where the variables of
a chaotic dynamical system exhibit two distinct states where
at the “off” state the system is nearly constant on an invariant
manifold, and at the “on” state large bursts from these lami-
nar phases occur. The frequency of bursts is controlled by a
characteristic parameter 4 of the system and approaches zero,
when the so-called blowout bifurcation (Ott and Sommerer,
1994) is reached as 4 attains a critical value 4 � . To assign

Fig. 7. Influence of the parametera in the system without seasonal
cycle and with nonlinear coupling as described through Eqs. (18)
and (19). (a) Relative mean locking time<τ> (see Eq.17) in de-
pendence of the parametera; (b) Bifurcation diagram of the 5-D
and the 8-D system. Herex andx′ show the same bifurcation dia-
gram. The unfilled cycle stands for a torus bifurcation.

4.4 Influence of the type of coupling

The system analysed so far is a system with linear coupling.
As this is a very special case of coupling that is not often
used in truly coupled models, we analyse a system without
a seasonal cycle and with a nonlinear coupling to determine
the influence of the type of coupling. The coupling has the
following form:

ẏ = xy − cy − bxz + G + αp3x (18)

ż = xz − cz + bxy + αq3x. (19)

instead of Eqs. (2) and (3). As p andq vary approximately
between−1 and 1, the introduced term bears strong nonlin-
earity.

Instead of analysing the influence of the coupling strength
α, here we focus on the effect of varying the parametera.
Again we have full locking when the system in on the same
stable limit cycle forx andx′, and transitions to intermittent
locking when an UPO is reached, see Fig.7. By varying the
coupling strengthα in a range from 0.0 to 0.65 we discover
a region of artificial bistability forx′ (not shown here) as we
have seen before in the system with linear coupling (Fig.3).

So all features found in the linear coupled system can also
be discovered in the system with nonlinear coupling. This
demonstrates that the type of coupling (linear or nonlinear)
has no decisive influence on the locking phenomenon. Quite
the contrary, as periodic orbits appear frequently in nonlin-
ear systems, locking may occur generically in forced systems
and is much less likely in their fully coupled counterparts.
This stresses that for the locking phenomenon a linear stabil-
ity analysis does not hold.
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for more than 14,000 locking phases. Curve A is for a parameter
setting as given following Eq. 5 with � � ����� ��� , for curve B the
parameter � is changed to 0.075, being closer to the bifurcation.
The dotted curve indicates a -3/2 power-law for comparison.

the phenomenon of on-off intermittency to our object of in-
terest, intermittency is not seen as laminar phases interrupted
by turbulent bursts but as locking of the fully coupled and
the forced trajectories (off-state) interrupted by non-locking
(on-state), which we will call on-off synchronization. The
transfer from on-off intermittency to on-off synchronization
becomes clearer when the difference between x and x � is un-
derstood as a new variable.

Systems that generate on-off intermittency show charac-
teristic scaling laws for the intermittent phases (Heagy et al.,
1994; Lai, 1996), the distribution of the amplitudes of the
bursts and for the power spectrum of the trajectories (see ref-
erences cited by John et al. (2002)). Heagy et al. (1994) in-
vestigate a certain class of driven systems, that consists of a
discrete map and a random driving variable with a smooth
density. They show that for the probability distribution of the
length of the laminar phases 4 � � % a power law holds with4;� � %�� �����

, where
�

is the length of the laminar phases
and # the scaling exponent that attains a universal value of
3/2 in the vicinity of the threshold for on-off intermittency.

This scaling law with the same exponent can also be ap-
proved for our case of on-off synchronization. The proba-
bility distribution 4 � � % for the length of the locking region �
for the parameter settings given in Fig. 1 (with �B� CFEHGI�
J )
is plotted as curve A in Fig. 8. As the -3/2 power-law dis-
tribution is deduced theoretically exactly only for the critical
point � � , we additionally plotted the probability distribution
for ��� CFE C��[J in curve B. This choice of the parameter is
very close to the bifurcation point from a stable to an un-
stable periodic orbit at ���1� CFE C��"L , that was determined via
bifurcation analysis.

As both curves indicate, when the parameter � is close
to the bifurctation point the probability distribution obey
the predicted scaling law and differs from the exact relation
when the parameter is further away from the critical value.
For the very short locking phases both curves deviate from

the predicted dependence, because one approaches the time
scale of the simulation timestep. For the long locking phases
the distribution for curve A falls off exponentially, whereas
the two regions are connected by a shoulder, which is also
seen in other systems displaying on-off intermittency ((Platt
et al., 1993)). We assume that these imperfections from the
exact scaling law is in our case due to the distance of the
parameter � from the bifurcation point.

In this section we have shown that the scaling law for the
duration of the laminar phases in systems with on-off inter-
mittency also holds for a system with on-off synchronization
and could be extended to continuous systems with a driv-
ing system that is not random but chaotic. This means that
the power law scaling is more universal than proposed when
it was introduced. It can also be interpreted in this regard,
that the underlying mechanisms of on-off intermittency and
on-off synchronization are analogous. Intermittency is often
traced back to the “almost existence” of a stable periodic or-
bit, and in a similar way we discovered stable and unstable
periodic orbits as potential causes for locking.

The knowledge of the above power law does not only
stress the underlying nature of locking but will also help in
applications to estimate the relative importance of the lock-
ing phenomenon.

6 Conclusion

In this paper we consider the effect of module coupling on the
overall dynamical uncertainty for a paradigmatic non-linear
atmosphere-ocean system. We identify phase space as well
as time-series features with respect to which a forced model
set-up qualitatively differs from its fully coupled counterpart,
for systematic reasons. On the one hand, in accordance with
the general belief, the forced and the coupled model version
coincide in various main features, in particular in terms of av-
erage predictive skill and the existence of the same dominant
periodic orbit.

On the other hand, in fact we identify a considerable frac-
tion in parameter space for which the phase spaces of the two
model versions fundamentally differ: the phase space of the
fully coupled model is dominated by a single stable periodic
orbit, while the forced set-up allows for the existence of an
additional stable periodic orbit. Since this kind of bistabil-
ity is not found in the fully coupled model, which the forced
set-up is supposed to emulate, we call it “artificial bistabil-
ity”. These finding seems to contradict conventional wis-
dom in the Earth System modelling community stating that
a fully coupled model is more a complicated entity than a
forced derivate, hence the coupled version is expected to dis-
play more complicated features. However, in terms of replica
systems – a point of view we put forward in this paper – we
argue that in fact the forced set-up is the more complex one:
its dynamics are generated in an eight-dimensional (ocean-
dimension plus two times the atmosphere-dimension) state
space, while that of the coupled version resides in a five-
dimensional space.

Fig. 8. Probability distribution of the length of the locking region
for more than 14 000 locking phases. Curve A is for a parameter
setting as given following Eq.5 with a=0.125, for curve B the pa-
rametera is changed to 0.075, being closer to the bifurcation. The
dotted curve indicates a−3/2 power-law for comparison.

5 On-off synchronization

The alternation between regions, where the error between the
forced and coupled trajectory is nearly zero, and between re-
gions with large bursts as shown in Fig.2, resemble those of
on-off intermittency. On-off intermittency, as introduced by
Platt et al.(1993), refers to a situation, where the variables of
a chaotic dynamical system exhibit two distinct states, where
at the “off” state the system is nearly constant on an invari-
ant manifold, and at the “on” state large bursts from these
laminar phases occur. The frequency of bursts is controlled
by a characteristic parameterp of the system and approaches
zero, when the so-called blowout bifurcation (Ott and Som-
merer, 1994) is reached asp attains a critical valuepc. To
assign the phenomenon of on-off intermittency to our object
of interest, intermittency is not seen as laminar phases in-
terrupted by turbulent bursts but as locking of the fully cou-
pled and the forced trajectories (off-state) interrupted by non-
locking (on-state), which we will call “on-off synchroniza-
tion”. The transfer from on-off intermittency to on-off syn-
chronization becomes clearer when the difference betweenx
andx′ is understood as a new variable.

Systems that generate on-off intermittency show charac-
teristic scaling laws for the intermittent phases (Heagy et al.,
1994; Lai, 1996), the distribution of the amplitudes of the
bursts and for the power spectrum of the trajectories (see ref-
erences cited byJohn et al., 2002). Heagy et al.(1994) in-
vestigate a certain class of driven systems, that consists of a
discrete map and a random driving variable with a smooth
density. They show that for the probability distribution of the
length of the laminar phasesp(T ) a power law holds with
p(T )∼T −γ , whereT is the length of the laminar phases and
γ the scaling exponent that attains a universal value of 3/2 in
the vicinity of the threshold for on-off intermittency.

This scaling law with the same exponent can also be ap-
proved for our case of on-off synchronization. The proba-
bility distribution p(τ) for the length of the locking region
τ for the parameter settings given in Fig.1 (with a=0.125)
is plotted as curve A in Fig.8. As the−3/2 power-law dis-
tribution is deduced theoretically exactly only for the critical
point ac, we additionally plotted the probability distribution
for a=0.075 in curve B. This choice of the parameter is very
close to the bifurcation point from a stable to an unstable pe-
riodic orbit atac=0.073, that was determined via bifurcation
analysis.

As both curves indicate, when the parametera is close
to the bifurctation point the probability distribution obey
the predicted scaling law and differs from the exact relation
when the parameter is further away from the critical value.
For the very short locking phases both curves deviate from
the predicted dependence, because one approaches the time
scale of the simulation timestep. For the long locking phases
the distribution for curve A falls off exponentially, whereas
the two regions are connected by a shoulder, which is also
seen in other systems displaying on-off intermittency (Platt
et al., 1993). We assume that these imperfections from the
exact scaling law is in our case due to the distance of the
parametera from the bifurcation point.

In this section we have shown that the scaling law for the
duration of the laminar phases in systems with on-off inter-
mittency also holds for a system with on-off synchronization
and could be extended to continuous systems with a driv-
ing system that is not random but chaotic. This means that
the power law scaling is more universal than proposed when
it was introduced. It can also be interpreted in this regard,
that the underlying mechanisms of on-off intermittency and
on-off synchronization are analogous. Intermittency is often
traced back to the “almost existence” of a stable periodic or-
bit, and in a similar way we discovered stable and unstable
periodic orbits as potential causes for locking.

The knowledge of the above power law does not only
stress the underlying nature of locking but will also help in
applications to estimate the relative importance of the lock-
ing phenomenon.

6 Conclusions

In this paper we consider the effect of module coupling on the
overall dynamical uncertainty for a paradigmatic non-linear
atmosphere-ocean system. We identify phase space as well
as time-series features with respect to which a forced model
set-up qualitatively differs from its fully coupled counterpart,
for systematic reasons. On the one hand, in accordance with
the general belief, the forced and the coupled model version
coincide in various main features, in particular in terms of av-
erage predictive skill and the existence of the same dominant
periodic orbit.

On the other hand, in fact we identify a considerable frac-
tion in parameter space for which the phase spaces of the two
model versions fundamentally differ: the phase space of the
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fully coupled model is dominated by a single stable periodic
orbit, while the forced set-up allows for the existence of an
additional stable periodic orbit. Since this kind of bistabil-
ity is not found in the fully coupled model, which the forced
set-up is supposed to emulate, we call it “artificial bistabil-
ity”. These finding seems to contradict conventional wis-
dom in the Earth System modelling community stating that
a fully coupled model is more a complicated entity than a
forced derivate, hence the coupled version is expected to dis-
play more complicated features. However, in terms of replica
systems – a point of view we put forward in this paper – we
argue that in fact the forced set-up is the more complex one:
its dynamics are generated in an eight-dimensional (ocean-
dimension plus two times the atmosphere-dimension) state
space, while that of the coupled version resides in a five-
dimensional space.

Furthermore, the systematic discrepancies of the two mod-
elling versions extend into the time-domain. At least in-
termittently, the forced set-up displays artificial predictive
skill. This is a direct consequence of the replica-nature of
the forced set-up: we perturb the coordinates of the replica
atmosphere in order to determine the predictive skill. As the
perturbation cannot propagate to the five-dimensional sub-
system driving the replica atmosphere, this five-dimensional
sub-system potentially serves as a synchronizer. In case the
replica atmosphere (“slave”) and the synchronizer (“master”)
run in the vicinity of an identical periodic orbit which pos-
sesses a stable manifold, the ensemble will tend to collapse
onto the master trajectory. Hence we identify the observed
locking phenomenon as an almost-collapse to a periodic or-
bit. If the orbit is stable, locking will continue forever. If the
orbit is unstable, the time-scale of locking is set by the com-
petition of the stable and the unstable manifold of the peri-
odic orbit, giving rise to intermittent locking. We observe a
power law for the distribution of locking duration. Due to the
phenomenological analogy to on-off intermittency, we call
intermittent locking “on-off synchronization”. In any case,
locking implies artificial predictive skill, which we explain
by the existence of a partially attracting invariant set. For
weather forecast this could imply that with a forced set-up,
the ensemble error on the particular time, when a – poten-
tially extreme – weather pattern will hit a certain region, can
become extremely underestimated; hence an endangered re-
gion may prepare too lately.

All analysed features can be observed in the original sys-
tem with seasonal forcing and linear coupling, in the system
without seasonal forcing and finally in the system with non-
linear coupling. As we were able to explain these empirical
findings with a universal theoretical pattern the ingredients
of which just draw on the nonlinearity of the system, we sug-
gest that on-off synchronization and artificial bistability are a
general characteristic of forced systems rather than being re-
stricted to this particular model set-up. While we expect that
bifurcation analysis will be too demanding as a standard pro-
cedure for GCMs over the next years, nevertheless we advise
that at least it is carefully checked with alternative model ver-
sions whether intermittent predictability and also bistability

could not be the result of a forced – instead of the full-fledged
coupled – set-up.
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