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Abstract. The assessment of trends in climatology and hy-
drology still is a matter of debate. Capturing typical proper-
ties of time series, like trends, is highly relevant for the dis-
cussion of potential impacts of global warming or flood oc-
currences. It provides indicators for the separation of anthro-
pogenic signals and natural forcing factors by distinguish-
ing between deterministic trends and stochastic variability.
In this contribution river run-off data from gauges in South-
ern Germany are analysed regarding their trend behaviour by
combining a deterministic trend component and a stochastic
model part in a semi-parametric approach. In this way the
trade-off between trend and autocorrelation structure can be
considered explicitly. A test for a significant trend is intro-
duced via three steps: First, a stochastic fractional ARIMA
model, which is able to reproduce short-term as well as long-
term correlations, is fitted to the empirical data. In a second
step, wavelet analysis is used to separate the variability of
small and large time-scales assuming that the trend compo-
nent is part of the latter. Finally, a comparison of the overall
variability to that restricted to small scales results in a test
for a trend. The extraction of the large-scale behaviour by
wavelet analysis provides a clue concerning the shape of the
trend.

1 Introduction

Within the climate change debate it is common sense that the
hydrological cycle would intensify as a consequence of an
enhanced greenhouse effect. This has led to the accompany-
ing assumption that also extreme events, such as heavy rain,
droughts, or floods , will increase in frequency and/or mag-
nitude (IPCC, 2001). However, an improved knowledge of
the impacts of climate change on river discharges is urgently
needed, since floods are among the costliest natural haz-
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ards in both economic and human terms (Mileti , 1999; DFO,
2004). Recent examples, such as the river Elbe/Danube flood
in Europe in summer 2002 (≈20 billion EUR losses and 55
deaths) or South Asia’s worst monsoon flood for almost a
decade in summer 2004 (Ganges/Bramaphutra/Irrawady; In-
dia, Bangladesh, Burma) with≈1600 causalties and millions
of displaced people, again bring the hazardousness of floods
to public attention. Taking into account that climate change
already induces slight impacts on the hydrological cycle, the
actual pattern is ambiguous.Kundzewicz et al.(2004), for
instance, could not find evidence of a general growth in flood
flows when analysing 195 long time series of maximum an-
nual river flows located world-wide. Similar results are pub-
lished byZhang et al.(2001) who found no increasing trend
for Canadian rivers, but in some cases a decreasing devel-
opment. For U.S. riversDouglas et al.(2000) found no
trends in flood flows, but evidence for an upward trend in
low flows. Analysing streamflow data in Switzerland, the re-
sults ofBı̂rsan et al.(2003) indicate an increase of run-off in
winter and a decrease in summer.

This situation shows the need for methods which are able
to provide an improved knowledge on the mechanisms that
produces a series, their seasonal variations, internal correla-
tions, and possible trends. The most common technique used
to assess the significance of trends in hydro-meteorological
times series data is the rank-based Mann-Kendall test (Mann,
1945; Kendall, 1975). It accepts or rejects the null hypothesis
of randomness against the alternative of a monotonic trend.
The advantage of the Mann-Kendall test is that it relies only
on a few assumptions: the potential trend may be either lin-
ear or nonlinear, and no assumptions are made regarding the
underlying statistical distribution. Nevertheless, it is well
recognised that the Mann-Kendall test is not robust against
autocorrelation in the sense that false positive trend identi-
fications get more likely (Fleming and Clarke, 2002). This
effect depends on the sample size as well as on the magni-
tude of the trend to be identified. Prewhitening techniques
introduced to remove effects induced by autocorrelation may



202 M. Kallache et al.: Trend assessment

also bias the Mann-Kendall test result (Yue and Wang, 2002).
Therefore we propose a semi-parametric approach to analyse
correlated data.

Different potential driving forces have to be considered
when analysing hydrological or meteorological time series,
for example, anthropogenic influences and natural variabil-
ity. The distinction of such components is still a matter of re-
search. Our approach is based on the rather simple assump-
tion that anthropogenic influences can be represented by a
deterministic trend component, whereas natural variability is
modelled by a stochastic process. It is desirable to distin-
guish between these components, because the former is ex-
pected to continue in the future whereas the latter changes
direction in a more or less unpredictable manner.

However, smoothly varying trends are difficult to distin-
guish from natural variability on large scales caused e.g. by
autocorrelation. This exchangeability implies that the eval-
uation of a possible deterministic trend inherently needs as-
sumptions about the natural variability: trends of small mag-
nitudes will less often be considered significant in a system
which is known to be highly variable anyway. This fact is
reflected by the selection of the stochastic model capturing
the natural variability. The choice has an important influ-
ence on the sigma interval estimated for the trend parameters
and therefore on the significance of the trend estimate. This
is taken into account when an adequate goodness-of-fit test
and model selection criteria are employed to choose suitable
models.

Since long-term correlation might cause long excursions
from the mean as well as local trends (Beran, 1994) the is-
sues described above are particularly challenging when deal-
ing with long-term correlated data. Several authors report
long-term memory being present in river run-off records (e.g.
Lawrence and Kottegoda, 1977; Montanari et al., 1997).

Aspects of the approach we follow in this paper have been
addressed previously.Bloomfield (1992), Woodward and
Gray(1995) and others evaluate trends in global temperature
by combining a trend and an ARIMA component in a para-
metric approach.Beran(1994) describes the characteristics
of long-term correlated processes and their effect on trend
estimation, whereasKoutsoyiannis(2003) adapts elements
of hydrological statistics to the Hurst phenomenon.Smith
(1993) utilises the standard least squares estimator to test
for trends under consideration of long-term memory.Bhat-
tacharya et al.(1983), Taqqu et al.(1995), Bunde et al.(2002)
and others address pitfalls when discriminating between de-
terministic trends and long-range components and provide
possible ways of distinction.Sibbertsen(1999) uses kernel
estimators to assess a trend, whereasPercival and Walden
(2000) andCraigmile et al.(2004) employ wavelets. They
provide a semi-parametric approach to test for the signifi-
cance of a trend under assumption of a FD(δ) or an AR(1)
model.

In this paper we extend their approach by including more
flexible fractional ARIMA models. To account for the pres-
ence of a trend, we also use filtered data for the parameter
estimation. The trend is considered as a slowly varying de-

terministic component on large scales. By using wavelet fil-
ters the data are decomposed into variations on large scales
(further referred to as trend estimatêT) and variations on
smaller scales (̂X). The latter are assumed to be modelled
adequately by a linear stochastic process. To evaluate the
performance of the models, a goodness-of-fit test is applied.
Selection from among the different models which passed this
test, is achieved by applying an Akaike-type model selection
criterion. Finally, under assumption of the chosen stochas-
tic model, the time series data are tested for an underlying
deterministic trend.

We have organised the paper as follows: in Sect.2 the
applied methods, i.e. wavelet analysis, trend estimation, the
Whittle estimator for FARIMA(p, δ, q) models and the trend
test itself, are briefly discussed. Section3 introduces the data,
and in Sects.4 and5 the results are presented and discussed.

2 Methodological concept

To be able to assess trends in a data-specific manner and
to account for the correlation structure of the data, flexible
tools like wavelet analysis and stochastic modelling are cho-
sen. Here wavelet analysis is used to estimate a determinis-
tic trend component from data. Then FARIMA(p,δ,q) pro-
cesses are used to model the structure of the remaining fluc-
tuations whereby the parameters are estimated via Whittle’s
approximation to the Maximum-Likelihood Estimator. Fi-
nally, wavelet coefficients are used to establish a test for sig-
nificance of the estimated trend. All three steps are linked
and serve together serve as the trend assessment method.

2.1 Wavelet analysis

For the wavelet analysis, we use the discrete wavelet trans-
form (DWT) and the maximum overlap DWT (MODWT).
The DWT is an orthonormal transform. The time series can
be reconstructed by a linear combination of wavelets, anal-
ogous to a reconstruction by sinusoids in Fourier analysis.
Each wavelet is essentially non-zero only within a finite in-
terval of time, which allows for time-scale analysis. In this
manner information about the variability which is not only
local in scale but also local in time is retrieved. The wavelet
basis is dilated when processing larger scales. Thus, the
problem of under- or over-localisation, which occurs if the
windowed fourier transformation is used, can be minimised
(seeKaiser, 1994). The DWT operates on dyadic time series
and is only computed for scales which are powers of two. It
is defined in terms of a wavelet filter{hj,l : l=0, ..., Lj−1}

and an associated scaling filter{gj,l}. Herej denotes the lev-
els j=1, ..., J , which are associated to the scales 2j−1, and
L≡L1 the width of the wavelet.

Let the time series{Yt } be a realisation of a stochas-
tic process with random variablesYt , t=0, ..., N−1; N be-
ing dyadic. By convolution of the filters with{Yt }, the
wavelet coefficientsWj,k and scaling coefficientsVj,k for
level j=0, ..., J and timek=0, .., Nj−1 are obtained (with
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the number of coefficientsNj=N2−j and wavelet length
Lj=(2j−1)(L−1)+1 at each levelj ). The larger the scales,
the wider the applied filters. Thus, using an orthogonal trans-
form implies that for larger scales less convolutions are done,
i.e. less wavelet coefficients are available:

Wj,k ≡

Lj−1∑
l=0

hj,lY2j (k+1)−1−l modN ,

Vj,k ≡

Lj−1∑
l=0

gj,lY2j (k+1)−1−l modN . (1)

The algorithm is implemented efficiently by means
of a pyramid algorithm (Mallat, 1989). Formally, the
DWT of {Yt } is defined via matrix multiplication that
yields a vectorWj≡[Wj,0,Wj,1, . . . ,Wj,Nj−1]

′ and Vj ≡

[Vj,0, Vj,1, . . . , Vj,Nj−1]
′. Let W=[W1,W2, . . . ,WJ ,VJ ]

′.

The time series is then reconstructed asY=WTW, where
the DWT matrixW is aN×N matrix with rows constructed
from the filters. For a more detailed description of the DWT
we refer to Appendix A. The exact form ofW is provided in
Percival and Walden(2000).

The choice of the mother wavelet depends on the data to
be analysed. Possible choices are an orthonormal or non-
orthonormal, a real or complex basis (an overview about the
noteworthy aspects is given byTorrence and Compo, 1998).
For our analysis we chose a discrete, orthogonal basis –
the Daubechies “least asymmetric” wavelet basis of width
eight (LA(8)). The wavelet width comprises smoothing in
time and frequency in an acceptable manner regarding the
data analysed. When using theLA(·) basis one can also
benefit from the advantages of approximately linear filter-
ing. Applying the LA(8) wavelet filter to{Yt } essentially
yields a difference betweenYt and values before and after
Yt . The LA(8) scaling filter results in a weighted average of
a window of length 2j+1 on scale 2j . These scaling filters
are defined through their squared gain functionG(ω) oper-
ating on the Fourier frequenciesω, which they share with
all other Daubechies filters (for further details we refer to
Appendix B). By additionally choosing the transfer function
G(ω)=[G(ω)]1/2eiθ(ω) in such a way that the phase function
θ(·) has the smallest maximum deviation from a linear phase
filter, i.e. is as close as possible to that of a linear phase filter,
the definition of aLA(·) filter is completed. For the cor-
responding wavelet filters the relationshipH(ω)=G(ω + π)

holds.
The MODWT (maximum overlap DWT) is a modified ver-

sion of the DWT. With the MODWT, time series of non-
dyadic length can be analysed. In contrast to the orthonormal
DWT, the MODWT is a highly redundant non-orthogonal
transform. In this work we use both the DWT and the
MODWT, according to the respective aims (for more details
we refer toPercival and Walden, 2000).

2.2 Trend estimation

In the following, we assume that the observed time series
{Yt : t=0, ..., N−1} can be modelled additively by a deter-

ministic trend component{Tt } plus a realisation of a stochas-
tic process{Xt } : Yt=Tt + Xt . Using the DWT, the data
vector Y is decomposed into a componentT̂, representing
the variability on large scales, and a componentX̂ for small
scales:

Y = WTW = WTAW + WT (IN − A)W = T̂ + X̂ (2)

Let IN be theN×N identity matrix. A contains all non-
boundary wavelet coefficients, whereas(IN−A) contains all
scaling and boundary coefficients. Daubechies wavelet fil-
ter of lengthL zero out a polynomial trend of orderK in
the nonboundary wavelet coefficients ifK≤L/2−1. Since
a reconstructionY=WTW gives back the original time se-
ries, the trend{Tt } is captured by the boundary wavelet co-
efficients and the scaling coefficients. The inverse wavelet
transform of these coefficientŝT can be used as an estimate
of the trend.̂T not only contains the deterministic trend com-
ponent but also the stochastic variability on large scales and
in the following is referred to as the trend estimate. The bias
in estimatingT by T̂ is zero forK≤L/2−1 (cf. Craigmile
et al., 2004, for further details).

2.2.1 Separating scale

Most reliable results are obtained by selecting the separating
scalels between̂T andX̂ as the largest scale with a non-zero
number of wavelet coefficients (seeCraigmile et al., 2004).
As pointed out in Sect.2.1, applying a Daubechies scaling
filter is a kind of weighted smoothing procedure. The choice
of ls determines the amount of variation of the time series
present in the trend estimate. In the following, all investi-
gations are carried out withls=6, which corresponds to a
separating scale band of 32 to 64 months. So the estimated
trends reflect variations of the time series which are larger
than 5 years.

2.2.2 Boundary conditions

Wavelet coefficients are always a certain aggregation of the
variations of the time series around a time pointt0. The larger
the analysed scale, the more points become aggregated, i.e.
the more wavelet coefficients are affected by the boundary
conditions. To be able to calculate these wavelet coefficients,
some kind of assumption for the elongation of the time se-
ries at both edges has to be made. One alternative is to as-
sume periodicity, i.e. the end of the time series is identified
with the beginning. Other ways would be to expect reflect-
ing boundary conditions, where the time series is reflected at
both edges, or to pad the series at the edges with the mean
value (seeTorrence and Compo, 1998, for more details). In
the following we use the latter alternative. As one goes to
larger scales, padding decreases the amplitude of the wavelet
and scaling coefficients as more zero values enter the anal-
ysis. The trend estimation and the calculation of its sigma
intervals is done on this elongated, padded series, whereas
the test for trend is applied to the original empirical series
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and its fluctuation estimate without padded parts. When us-
ing wavelet filters with widthL>2 as basis, the boundary
coefficients cause a higher variability of the trend estimate at
the endpoints of the time series and accordingly wider sigma
intervals there.

2.3 Parameter estimation

The natural variability present in the records is modelled
using fractional ARIMA (FARIMA) models (Granger and
Joyeux, 1980). These models are an extention of the well
studied autoregressive integrated moving average (ARIMA)
models (Box and Jenkins, 1976) incorporating long-range
dependence. A process has long-range dependence or long-
range correlation if the autocorrelation functionρ(k) decays
algebraically in the limit of large time lagsk:

lim
k→∞

ρ(k)

ck−β
= 1, (3)

with c being a finite constant.
A FARIMA(p, δ, q) process is defined by

φ(B)(1 − B)δYt = ψ(B)ηt (4)

with B denoting the back shift operator BYt=Yt−1,
ηt∼WN(0,σ ), δ ∈ R the fractional difference parameter and

φ(z) = 1 −

p∑
i=1

φiz
i

ψ(z) = 1 +

q∑
j=1

ψjz
j (5)

are the autoregressive (AR) and moving average (MA) poly-
nomials of orderp andq, respectively. A FARIMA(p, δ, q)
process is stationary ifδ<0.5 and all solutions ofφ(z)=0
are outside the unit circle. It exhibits long-memory for
0<δ<0.5. FARIMA(p, δ, q) models withδ<0 are called in-
termediate memory or “overdifferenced”. In practice, this
case is rarely encountered. For more details, seeBeran
(1994) andOoms and Doornik(1999).

Three of the most simple models out of the
FARIMA(p, δ, q) class are:

1. FARIMA(1,0,0) or AR(1)

(1 − φB)Yt = ηt , (6)

2. FARIMA(0,δ,0) or FD(δ)

(1 − B)δYt = ηt , (7)

3. FARIMA(1,δ,0)

(1 − φB)(1 − B)δYt = ηt . (8)

The first model consists of only a short-range correlated com-
ponent with parameterφ≡φ1, the second model of a long-
range correlated component only with long-memory param-
eter δ. The third model combines the previous two in the

sense that forδ=0 orφ=0 it recovers the first or the second
model, respectively.

The model parameters are estimated using Whittle’s ap-
proximation to the Maximum-Likelihood Estimator (MLE).
The latter is based on minimising

Q(2) =

∑
j

P(ωj )
S(2;ωj )

, (9)

whereP(ωj ) denotes the periodogram of the data at the
Fourier frequenciesωj=2πj/N andS(2;ωj ) the spectral
density of the FARIMA process with parameter vector2

comprising(φ1, ..., φp, δ, ψ1, ..., ψq). At the minimum of
Q(2̂), 2̂ is an estimate for the model parameters. The stan-
dard deviation provided for the parameters are based on the
assumption of a Gaussian process and are calculated from
the asymptotic distribution of parameters in the limit of long
records. As such they are only a first guess for the variability
of the parameters.

An extensive discussion on modelling long-range depen-
dence also with respect to FARIMA(p, δ, q) models and the
Whittle estimator can be found inBeran(1994).

2.3.1 Trend influence and filtering algorithm

The influence of a deterministic trend component will usually
bias the parameter estimation, because parameter estimation
onY implies assuming a possible trend to be negligible.

To account for the trend component, we estimate the pa-
rameters on̂X, where the trend estimatêT has been sub-
tracted from the data. AlthoughE(̂T−T)=0N holds, the
parameter estimation on̂X also is likely to be biased be-
causêT contains the deterministic trend component as well
as stochastic variations on large scales and we have to useT̂
instead ofE(̂T).

We studied this influence using low-order (p, q≤1)
FARIMA(p, δ, q) models and trends with various strengths
(0 to 3 times the standard deviation of the process) and
shapes. The AR parameterφ as well as the fractional differ-
ence parameterδ are systematically estimated too low on the
filtered serieŝX, where the bias decreases for an increasing
trend. They are estimated too high on the original seriesY.
This effect increases with increasing trend (see Fig.1). The
bias caused by a trend or the detrending procedure is negli-
gible for the MA parameterψ . The comparison of the trend
test result obtained by estimating the parameters onY and on
X̂ can constructively be used to draw further conclusions (see
Sect.4 for more details).

2.3.2 Goodness-of-fit and model selection

The model choice for the stochastic variability is motivated
by a goodness-of-fit test and an Akaike-type model selection
criterion.
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A goodness-of-fit test for FARIMA(p, δ, q) models for-
mulated in the spectral domain has been proposed byBeran
(1992). The test statistic

TB =
A

B2
(10)

with

A =
4π

N

∑
j=1

(
P(ωj )
S(ωj ; 2)

)2

and

B =
4π

N

∑
j=1

P(ωj )
S(ωj ; 2)

(11)

is asymptotically normal with meanµTB=π−1 and variance
σ 2
TB

=2π−2N−1. It has been shown that this test is equivalent
to the Portmanteau test (seePercival et al., 2001) for uncorre-
lated residuals in the time domain. The smallest significance
level for which the null hypothesis “H0: the empirical data is
compatible with being a realisation of the model” is rejected
falsely, is denoted by

αcrit = 1 −8(T ′

B) for T ′

B =
TB − µTB

σTB
, (12)

where8(·) is the cumulative distribution function for a stan-
dard normal random variable.

The dynamics of the system, recorded in finite time series,
cannot be reconstructed unambiguously, which corresponds
to the possibility of fitting different stochastic models rea-
sonably well to a time series.

As criteria for the model selection we employ different
versions of the Akaike Information Criterion, defined by

AICf (κ) = −2 logL(2;Y )+ f κ, (13)

whereL(2;Y ) denotes the likelihood of the parameter vec-
tor 2. The factorf weights the influence of the penalty
term due to the number of parametersκ. If f is set to
2 we get the Akaike Information Criterion (AIC) (Akaike,
1973, 1979), for f= logN the Bayesian Information Cri-
terion (BIC) (Schwarz, 1978) and for f=2c log logN the
Hannan-Quinn Information Criterion (HIC), in which we use
c=1.0001. The model to select is that with the smallest
AICf . For FARIMA(p, δ,0) models BIC and HIC are shown
to yield consistent estimators for the autoregressive orderp

(Beran et al., 1998), for some low order FARIMA(p, δ, q)
modelsBisaglia (2002) performed simulation studies and
recommends BIC and HIC as selection criteria. In the fol-
lowing the HIC was used.

2.4 Test for significance of trend

A test for trend is provided by comparing the variability inY
andX̂. Let

pc =
‖Y‖

2

‖X̂‖2
(14)

be the test statistic, where‖.‖ denotes the Euclidian norm.
Without loss of generality, we assumeY has zero mean.
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data with trend
filtered data

Fig. 1. Results of a Monte Carlo simulation to assess the bias due
to a trend or to filtering when estimating the long-term parameterδ

of a FARIMA(1,δ,1) model.

H0 is now: Tt=0 ∀t=0, ..., N−1 versusH1: notH0. For
{Tt } 6= {0},pc should be large.H0 is rejected at a level of sig-
nificanceα if pc(empirical) of Y exceedspc(α), wherebypc(α)
is the upper 100α%-quantile of simulatedpc values. The dis-
tribution of the test statistic is estimated via Monte Carlo sim-
ulation with 4000 realisations of the chosen stochastic model
with optimised parameters and without trend component.

2.4.1 Power of the trend test

To determine the power of the trend test, a Monte Carlo study
is performed on realisations of an AR(1) and a FD(δ) model
with diverse parameter choices and deterministic trends su-
perimposed. The amplitude of the deterministic trend has
been increased in small steps from 0 to 0.4 times of the stan-
dard deviation of the process. The following results were
obtained:

(a) Analysing linear trends, where the trend starts att=0
and the endpointt=N−1 is varied from 0 to 0.4σ , the
power of the trend test is slightly lower than the power
of a standard linear regression test (see alsoCraigmile
et al., 2004).

(b) The power of the trend test does not weaken signifi-
cantly when the linear trend starts in a later part of the
time series. This was tested for a starting point as late
ast=(5/6)N .

(c) The trend test itself is robust against changes in variance
of the time series, which cancels out in Eq. (14).

(d) It is vulnerable against jumps in the data. This was
tested by including a jump point in the middle of the
series with amplitude 0 to 0.4σ . So the occurrence of
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Fig. 2. (A) River discharge anomalies (monthly maxima) for the river Erms at Riederich and(B) trend estimate and linear fit with its standard
deviation intervals for a FD(δ) model (δ=0.252,σ2

=2.465) and an AR(1) model (φ=0.328,σ2
=2.443).

jump points should be excluded. To deal with this prob-
lem Craigmile et al.(2004) proposed an extension to
the methodology: by adopting the wavelet coefficients
to the jump points the trend test can still be applied.

(e) The power does not only depend on the choice of the
stochastic model, but also on the magnitude of the pa-
rameters. For an FD(δ) model, e.g. it reaches a power
of one faster for smallδ.

2.5 Variance of the trend

For a selected separating scalels the choice of the model and
the magnitude of its parameters do not affect the shape of
the trend estimate. However, reorganising Eq. (2) reveals the
connection between̂T andX, namely

T̂ = WTAWY = RT + RX (15)

with R = WTAW .
Therefore holds cov(̂T)=Rcov(X)RT , i.e. the variance of the
trend estimate involves the covariance ofX. So if X is a real-
isation of a stationary stochastic process, the autocovariance
sequenceρ2(k) of X can be used to calculate the variance of
the trend

var(T̂t ) =

N−1∑
k=−(N−1)

ρ2(k)rt,k (16)

with rt,k=
∑N−1−|k|
i=0 Rt,iRt,i+|k|. Rt,i denotes the(t, i) ele-

ment ofR (for further details seeCraigmile et al., 2004).
This relation implies that the choice of the stochastic

model as well as its estimated parameters have an impact on
the width of the sigma interval of the trend estimate. For an
example see Fig.2. Here fluctuations in the sigma interval
due to the choice of the wavelet basis have been averaged out
and the sigma intervals have been calculated for the padded
series. The range of influence of the boundary conditions can
be estimated analytically (seePercival and Walden, 2000).

Examining the character of the influence of the chosen
model on the trend we find that the sigma intervals for the
trend estimate obtained under an assumption of long-range
dependence can be considerably larger than those obtained
under a short-range correlated model. This is in accordance
with Smith(1993) andBeran(1994).

The chosen model also influences the distribution of the
test statistic given in Eq. (14) and may lead to an acceptance
of the hypothesis that no trend exists in the case of long-
term correlations, whereas this hypothesis is rejected in the
case of short-term correlations. Thus, correctly identifying
the correlation structure is crucial for a reliable trend test.

3 Data

For the analysis, river discharge records from several catch-
ments near the river Neckar in Southern Germany were in-
vestigated. The series were selected according to their length
and completeness. The run-off data was analysed for the
jointly covered time period from November 1940 to Decem-
ber 2003. All data sets used are affected by a strong periodic
component due to the annual cycle. This is approximately
removed by calculating the average and variance of each day
of the year over all years (missing values are replaced by
the average for the specific day). The daily run-off anoma-
lies are obtained by subtracting the average and dividing by
the standard deviation. The latter removes the seasonal peri-
odicity in the variance, see e.g.Hipel and McLeod(1994).
FARIMA(p, δ, q) models do not reflect heteroscedasticity,
therefore the results for the series normalised in this way are
expected to be more reliable. Finally the daily measurements
have been aggregated to monthly average and monthly max-
imum values. Records containing April to September and
October to March data are used to study the summer and
winter seasons separately and in the following are referred
to as summer and winter data.
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Fig. 3. (A) Fitted parameters for the FD(δ) and the AR(1) model and(B) the FARIMA(1,δ,0) model for the monthly maximum data and the
monthly maximum filtered data, respectively (C andD). River Gauges: 1 Josbach/Hölzlebruck, 2 Ammer/Pf̈affingen, 3 Erms/Riederich, 4
Glatt/Hopfau, 5 Wiese/Zell, 6 Dreisam/Ebnet, 7 Rems/Neustadt, 8 Fils/Plochingen, 9 Neckar/Horb, 10 Neckar/Plochingen.

4 Results and discussion

The examined time series are assumed to be composed of
a deterministic trend component and a stochastic part (see
Sect.2.2).

The obtained trend estimates help to assess linear trend be-
haviour in the data. As shown e.g. in Fig.2, the run-off data
of the river Erms at Riederich (monthly maxima) is charac-
terised by an increase. Nevertheless a general tendency of in-
crease or decrease cannot be found for the investigated river
run-off data sets.

In spite of these results the shape of the trend estimate
and therefore the trend test result is influenced by the used
wavelet filters (see Sect.2.1) and the choice of the separat-
ing scalels (see Sect.2.2.1). The latter may be compared to
the selection of a window size when smoothing data to get a
trend estimate.

The parameters for the stochastic models representing the
natural variability of the time series are estimated using the
Whittle estimator (see Sect.2.3). We restrict our analysis to
FARIMA(p, δ, q) models with 0≤δ<0.5 andp, q≤2 (q≤1
for the winter and summer data due to the shortness of the
time series). Filtering may produce data which is represented
best by a model withδ<0, because not only the trend com-
ponent but also the stochastic variations on large scales have
been removed there. Such occurrences suggest that the long-
term parameterδ is redundant. The counterpart model with
δ=0 also is considered in the analysis. Therefore we exclude
models with an estimatedδ<0. All models which performed
best in terms of the HIC turned out to be stationary, e.g. do
haveδ≤0.5 and all solutions ofφ(z)=0 outside the unit cir-
cle.

Obtained parameter valuesδ andφ for the FD(δ), AR(1)
and FARIMA(1,δ,0) models are shown in Fig.3 for the
monthly maxima (original data and filtered data, the stations
are ordered according to the increase in catchment size). The

estimates for the two one-parametric models do not change
qualitatively. The magnitude ofφ andδ is lower for the fil-
tered data. For the more complex FARIMA(1,δ,0) model,
filtering causes the short-term correlation parameterφ to get
larger, whereas the long-term correlation parameterδ gets
smaller; in some cases it becomes compatible with zero.

As discussed in Sect.2.3.1a possible trend biases the pa-
rameter estimation̂2

′

on Y, i.e. under assumption of no
trend. To account for the bias the parameter estimation is
performed under consideration of a deterministic trend com-
ponent, represented by the trend estimateT̂, i.e. 2̂

′′

is esti-
mated on the filtered serieŝX. T̂ not only contains the de-
terministic trend component but also stochastic variations on
large scales. Therefore,̂2

′′

is likely to be biased in the other
direction than̂2

′

. Using both estimates for the analysis helps
to interprete trend test results. A more reliable parameter set
2̃ could be obtained by extracting a best trend guessT̃ out
of T̂, e.g. by fitting a polynomial to the trend estimate.̃2

is then estimated on the detrended series, whereT̃ has been
substracted. Another possibility is to use the magnitude ofT̃
in terms of the standard deviation of the process itself to esti-
mate the bias of̂2

′

and2̂
′′

by Monte Carlo simulation (see
Fig. 1). These issues will be the subject of further research.

To evaluate the performance of the models with optimised
parameters, a goodness-of-fit test is applied and an Akaike-
type model criterion is used to select among different models
(see Sect.2.3.2). In Table1 the best performing models in
terms of the HIC have been listed for the monthly averaged
data and the monthly maxima, respectively. The apparently
best HIC models coincide with a goodness-of-fit test failure
in some cases. This either means that no appropriate model
has been found to represent the data reasonably well within
the FARIMA(p, δ, q) model class, or that the presence of a
fairly weak trend is indicated, which biases the parameter
estimation onY as well as on̂X. In most cases a goodness-
of-fit test failure occurs for the original data as well as for the
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Table 1. FARIMA(p,δ,q) models performing best in terms of the HIC for (A) original/filtered monthly averaged data and for (B) origi-
nal/filtered monthly maxima data. By filtering, variations on large scales have been eliminated to exclude a bias due to a possible trend.
Cases where a significant trend has been detected have been underlined. Parameters written in italics refer to models which have been
rejected by the goodness-of-fit test at a 95% level.

(A) monthly averages (B) monthly maxima
best FARIMA(p, δ, q) model (original data/filtered data) best FARIMA(p, δ, q) model (original data/filtered data)

Total Summer Winter Total Summer Winter

Josbach/Ḧolzlebruck (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(0,0,1)
Ammer/Pf̈affingen (2,0,1)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,1)/(1,0,0) (0,δ,0)/(0,δ,0) (0,δ,0)/(0,δ,0) (0,δ,0)/(1,0,0)
Erms/Riederich (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(0,0,1) (1,0,0)/(1,0,0)
Glatt/Hopfau (1,δ,0)/(1,0,0) (0,δ,1)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0)
Wiese/Zell (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0)
Dreisam/Ebnet (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0) (0,δ,0)/(1,0,0) (1,0,0)/(1,0,0)
Rems/Neustadt (1,δ,0)/(1,δ,0) (1,0,0)/(1,0,0) (1,0,1)/(1,0,1) (0,δ,0)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0)
Fils/Plochingen (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,δ,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0)
Neckar/Horb (1,δ,0)/(1,0,1) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0)
Neckar/Plochingen (1,0,1)/(1,0,1) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,1) (1,0,0)/(1,0,0) (0,δ,0)/(1,0,0)

filtered data. For the river Erms at Riederich (averaged sum-
mer data) the best HIC model for the filtered data is rejected
by the goodness-of-fit test, whereas the best HIC model is
accepted for the original data. So the trend test result of not
detecting a significant trend is supported here. In this way
goodness-of-fit results may be utilised to check HIC choices
and trend test results.

The three relatively simple models presented in Sect.2.3
perform best in terms of the HIC in the majority of cases,
which is presented in Table1. By studying these model fits
conclusions about the short and long-term behaviour of the
time series can be drawn. In particular the short-term cor-
related AR(1) model suffices to reproduce the dynamics of
the fluctuations of the data best in a lot of cases. How-
ever, the long-term parameterδ is required more often for the
monthly maxima data than for the monthly averages. The
monthly maxima winter data is even represented best by a
FD(δ) model in half of the cases, whereas a long-term param-
eter is nearly never required for the monthly average winter
data. This may suggest that long-term correlation plays an
important role when examining extreme values.

Regarding the trend behaviour a definitively significant
trend has been found for Dreisam/Ebnet (complete data) and
Ammer/Pf̈affingen (winter data) for the monthly averages
and Erms/Riederich (complete data) and Wiese/Zell (sum-
mer data) for the monthly maxima. In those cases a signifi-
cant trend has been found for parameter estimations onY, as
presented in Table1.

Where a possible trend component is found to be signifi-
cant only under assumption of the trend estimate, i.e. the pa-
rameter values estimated on the filtered data, it cannot be ex-
cluded that this “trend” may be explained as well by stochas-
tic variability. Such a spurious case, e.g. is the monthly aver-
aged complete data for Ammer/Pfäffingen. Part of the vari-
ability of the data may be explained by a larger AR parameter
or by a deterministic trend component. The goodness-of-fit

values also do not provide a distinction here. Regarding the
monthly maxima a classical constellation occurs in several
cases: part of the variability in the data may either be ex-
plained by a long-term correlated model or by a short-term
model in combination with a deterministic trend component
(seeGiraitis et al., 2001). In those cases a refined parameter
estimation by using a trend guessT̃, as described above, may
lead to further conclusions.

In the majority of cases a significant trend was found only
under assumption of an AR(1) model (results not shown).
This emphasises the influence of the model choice on the
trend test result, which has been described in Sect.2.5.

5 Conclusions

A semi-parametric trend test has been applied to dis-
charge anomalies from Southern Germany. We considered
FARIMA(p, δ, q) models optimised by a Whittle estima-
tor with p, q≤2 (see Sect.2.3). For each station the com-
plete data as well as data restricted to the summer (April-
September) and winter (October-March) months have been
investigated separately, both for monthly averaged and max-
imum values.

It is evidenced that simple models seem to represent the
dynamics of the data quite well in terms of the HIC. The
short-term correlated AR(1) model is chosen as best fit in
most cases. However, a long-term parameterδ>0 is fre-
quently required, especially for the monthly maxima data.
Therefore, a trend analysis should take the possibility of
long-term correlated data into account.

The separation of deterministic trend and natural variabil-
ity is of high interest to water management authorities. A
way towards a distinction is the extraction of a trend esti-
mate and the evaluation of the significance of the trend, as
presented here. As described in Sect.2.4, the acceptance or
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rejection of a trend depends on the chosen stochastic model
to represent the natural variability as well as on the magni-
tude of its parameter values. By considering the best per-
forming models in terms of the HIC and by comparing the
trend test results for the original and the filtered data (un-
der consideration of the goodness-of-fit test outcome) reli-
able trend test results can be achieved in a series of cases, as
listed up in Sect.4. For the area under investigation, no gen-
eral trend tendency for river run-off could be found. This is in
line with other results (cf. Sect.1), but nevertheless does not
imply that climate change has no impact on the hydrological
cycle. Actually one has to assume that climate change will
be observable with a time delay and with complex patterns
in hydrology.

By refining the trend estimation procedure (as also de-
scribed in Sect.4) and therefore reducing the bias in the pa-
rameter estimation, the trend test may be improved to handle
not yet determinable cases. This issue will be subject to fur-
ther work.

Summing up, we feel that the results and the applied tech-
nique open a promising road towards more insight in the dy-
namics of river run-off series. A test for trend is ameliorated
by considering the correlation structure of the data. This
might also be relevant for the investigation of extreme val-
ues like floods and droughts.

Appendix A: The discrete wavelet transforms

The DWT operates on dyadic time series and is defined in
terms of a wavelet filter and an associated filter known as the
scaling filter. Formally, a wavelet filter{hj,l : l=0, ..., Lj −

1} (j=1, ..., J running over scale andl over time) is a se-
quence that sums to zero, has unit energy, and is orthogonal
to its even shifts:

∞∑
l=−∞

hj,l = 0 ,

∞∑
l=−∞

hj,lhj,l+2n =

{
1 if n = 0
0 otherwise .

(A1)

Let h1,l≡hl andg1,l≡gl . The most practical wavelet filters
have a finite widthL, which means thathl=0 for l<0 and
l>L−1, whilehl 6=0 for 0≤l<L−1. The associated scaling
filter gl is constructed as follows:gl≡(−1)l+1hL−1−l .

Appendix B: The Daubechies wavelet filters

The squared gain functions (i.e. the squared modulus of the
transfer function) for all Daubechies wavelet filters are given
by the form

H1,L(ω) =

∣∣∣∣∣L−1∑
l=0

hle
−i2πωl

∣∣∣∣∣
2

= 2 sinL
(πω

2

) L/2−1∑
l=0

(
L/2 − 1 + l

l

)
cos2l

(πω
2

)
(A2)

on the first scale andG1,L(ω)=H1,L(π−ω) holds, respec-
tively. The transfer function for the filters is given by the
polar representation

G(ω) =
∣∣G1,L(ω)

∣∣1/2 eiθ(ω) (A3)

andH(ω)=G(ω+π), respectively. For different phase func-
tions θ(ω) distinct Daubechies wavelet filter families are
defined. The least asymmetric (LA) family of Daubechies
wavelet filters has a phase function such that these filters get
as close as possible to a linear phase filter.
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