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Abstract. The assessment of trends in climatology and hy-ards in both economic and human terriléti, 1999 DFO,
drology still is a matter of debate. Capturing typical proper- 2004. Recent examples, such as the river Elbe/Danube flood
ties of time series, like trends, is highly relevant for the dis- in Europe in summer 20020 billion EUR losses and 55
cussion of potential impacts of global warming or flood oc- deaths) or South Asia’s worst monsoon flood for almost a
currences. It provides indicators for the separation of anthrodecade in summer 2004 (Ganges/Bramaphutra/lrrawady; In-
pogenic signals and natural forcing factors by distinguish-dia, Bangladesh, Burma) wita1600 causalties and millions
ing between deterministic trends and stochastic variability.of displaced people, again bring the hazardousness of floods
In this contribution river run-off data from gauges in South- to public attention. Taking into account that climate change
ern Germany are analysed regarding their trend behaviour bglready induces slight impacts on the hydrological cycle, the
combining a deterministic trend component and a stochasti@ctual pattern is ambiguou&Kundzewicz et al(2004), for
model part in a semi-parametric approach. In this way theinstance, could not find evidence of a general growth in flood
trade-off between trend and autocorrelation structure can bows when analysing 195 long time series of maximum an-
considered explicitly. A test for a significant trend is intro- nual river flows located world-wide. Similar results are pub-
duced via three steps: First, a stochastic fractional ARIMAlished byZhang et al(2001) who found no increasing trend
model, which is able to reproduce short-term as well as longfor Canadian rivers, but in some cases a decreasing devel-
term correlations, is fitted to the empirical data. In a secondopment. For U.S. river®ouglas et al.(2000 found no
step, wavelet analysis is used to separate the variability ofrends in flood flows, but evidence for an upward trend in
small and large time-scales assuming that the trend compdew flows. Analysing streamflow data in Switzerland, the re-
nent is part of the latter. Finally, a comparison of the overall sults ofBirsan et al(2003 indicate an increase of run-off in
variability to that restricted to small scales results in a testwinter and a decrease in summer.

for a trend. The extraction of the large-scale behaviour by This situation shows the need for methods which are able
wavelet analysis provides a clue concerning the shape of theéo provide an improved knowledge on the mechanisms that
trend. produces a series, their seasonal variations, internal correla-
tions, and possible trends. The most common technique used
to assess the significance of trends in hydro-meteorological
times series data is the rank-based Mann-Kendall késh(,

1945 Kendall 1975. It accepts or rejects the null hypothesis

Within the climate change debate it is common sense that th@f randomness against the alternative of a monotonic trend.
The advantage of the Mann-Kendall test is that it relies only

hydrological cycle would intensify as a consequence of an . A X X
enhanced greenhouse effect. This has led to the accompan & féw assumptions: the potential trend may be either lin-
ing assumption that also extreme events, such as heavy raiff@" Of nonlinear, and no assumptions are made regarding the
droughts, or floods , will increase in frequency and/or mag_underlylng statistical distribution. Nevertheless, it is well
nitude (PCC, 2001). However, an improved knowledge of recognised that the Mann-Kendall test is not robust against

the impacts of climate change on river discharges is urgent|);;_\ut0_correlation in the sense fthat false positive trend _identi-
needed, since floods are among the costliest natural hagications get more likelykleming and Clarke2002. This
effect depends on the sample size as well as on the magni-

Correspondence tayl. Kallache tude of the trend to be identified. Prewhitening techniques
(malaak.kallache@pik-potsdam.de) introduced to remove effects induced by autocorrelation may
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also bias the Mann-Kendall test resitieé and Wang2002). terministic component on large scales. By using wavelet fil-
Therefore we propose a semi-parametric approach to analygers the data are decomposed into variations on large scales
correlated data. (further referred to as trend estimal¢ and variations on

Different potential driving forces have to be considered smaller scalesX). The latter are assumed to be modelled
when analysing hydrological or meteorological time series,adequately by a linear stochastic process. To evaluate the
for example, anthropogenic influences and natural variabil-performance of the models, a goodness-of-fit test is applied.
ity. The distinction of such components is still a matter of re- Selection from among the different models which passed this
search. Our approach is based on the rather simple assumfest, is achieved by applying an Akaike-type model selection
tion that anthropogenic influences can be represented by eriterion. Finally, under assumption of the chosen stochas-
deterministic trend component, whereas natural variability istic model, the time series data are tested for an underlying
modelled by a stochastic process. It is desirable to distin-deterministic trend.
guish between these components, because the former is ex-We have organised the paper as follows: in S2dhe
pected to continue in the future whereas the latter changeapplied methods, i.e. wavelet analysis, trend estimation, the
direction in a more or less unpredictable manner. Whittle estimator for FARIMAp, §, g) models and the trend

However, smoothly varying trends are difficult to distin- testitself, are briefly discussed. Sect®introduces the data,
guish from natural variability on large scales caused e.g. byand in Sects4 and5 the results are presented and discussed.
autocorrelation. This exchangeability implies that the eval-
uation of a possible deterministic trend inherently needs as-
sumptions about the natural variability: trends of small mag-2 Methodological concept
nitudes will less often be considered significant in a system
which is known to be highly variable anyway. This fact is To be able to assess trends in a data-specific manner and
reflected by the selection of the stochastic model capturingo account for the correlation structure of the data, flexible
the natural variability. The choice has an important influ- tools like wavelet analysis and stochastic modelling are cho-
ence on the sigma interval estimated for the trend parametersen. Here wavelet analysis is used to estimate a determinis-
and therefore on the significance of the trend estimate. Thisic trend component from data. Then FARIMAf,q) pro-
is taken into account when an adequate goodness-of-fit testesses are used to model the structure of the remaining fluc-
and model selection criteria are employed to choose suitabléuations whereby the parameters are estimated via Whittle's
models. approximation to the Maximum-Likelihood Estimator. Fi-

Since long-term correlation might cause long excursionsnally, wavelet coefficients are used to establish a test for sig-
from the mean as well as local trend®efan 1994 the is-  nificance of the estimated trend. All three steps are linked
sues described above are particularly challenging when deabnd serve together serve as the trend assessment method.
ing with long-term correlated data. Several authors report
long-term memory being present in river run-off records (e.g.2.1 Wavelet analysis
Lawrence and Kottegogdd977 Montanari et al.1997).

Aspects of the approach we follow in this paper have beenFor the wavelet analysis, we use the discrete wavelet trans-
addressed previouslyBloomfield (1992, Woodward and form (DWT) and the maximum overlap DWT (MODWT).
Gray(1995 and others evaluate trends in global temperatureThe DWT is an orthonormal transform. The time series can
by combining a trend and an ARIMA component in a para- be reconstructed by a linear combination of wavelets, anal-
metric approachBeran(1994 describes the characteristics ogous to a reconstruction by sinusoids in Fourier analysis.
of long-term correlated processes and their effect on trendeach wavelet is essentially non-zero only within a finite in-
estimation, whereakoutsoyiannis(2003 adapts elements terval of time, which allows for time-scale analysis. In this
of hydrological statistics to the Hurst phenomendmith manner information about the variability which is not only
(1993 utilises the standard least squares estimator to tesocal in scale but also local in time is retrieved. The wavelet
for trends under consideration of long-term memdpat- basis is dilated when processing larger scales. Thus, the
tacharya et al1983, Taqqu et al(1995, Bunde et al(2002 problem of under- or over-localisation, which occurs if the
and others address pitfalls when discriminating between dewindowed fourier transformation is used, can be minimised
terministic trends and long-range components and providdseeKaiser, 1994. The DWT operates on dyadic time series
possible ways of distinctionSibbertser(1999 uses kernel and is only computed for scales which are powers of two. It
estimators to assess a trend, wher@ascival and Walden is defined in terms of a wavelet filtgh ; ; : /=0, ..., L ;—1}
(2000 andCraigmile et al.(2004 employ wavelets. They and an associated scaling fil{gr; ;}. Herej denotes the lev-
provide a semi-parametric approach to test for the signifi-els j=1, ..., J, which are associated to the scalds and
cance of a trend under assumption of a §Dfr an AR(1)  L=L1 the width of the wavelet.
model. Let the time seriedY;} be a realisation of a stochas-

In this paper we extend their approach by including moretic process with random variablés, t=0, ..., N—1; N be-
flexible fractional ARIMA models. To account for the pres- ing dyadic. By convolution of the filters withY;}, the
ence of a trend, we also use filtered data for the parametewavelet coefficientsW; , and scaling coefficient¥; ; for
estimation. The trend is considered as a slowly varying dedevel j=0, ..., J and timek=0, .., N;—1 are obtained (with
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the number of coefficients,\fj:NZ—f and wavelet length  ministic trend componenf;} plus a realisation of a stochas-
L;=(2/-1)(L-1)+1 at each levef). The larger the scales, tic process{X;} : Y¥;=T; + X;. Using the DWT, the data
the wider the applied filters. Thus, using an orthogonal transvector Y is decomposed into a compone‘Aht representing
form implies that for larger scales less convolutions are donethe variability on large scales, and a componerior small

i.e. less wavelet coefficients are available: scales:
Li-1
o , _wTw — wT T T
Wik= > hjiYoigsn-1- mody - Y=W'W=WAN+ Wy —AW=T+X (2
1=0
Lj-1 Let Iy be theN xN identity matrix. A contains all non-
Vik = Z 8j1Y2ik+1-1—1 modn - (1)  boundary wavelet coefficients, wherghg —A) contains all
1=0 scaling and boundary coefficients. Daubechies wavelet fil-

The algorithm is implemented efficiently by means ter of lengthL zero out a polynomial trend of ordef in
of a pyramid algorithm Mallat, 1989. Formally, the the nonboundary wavelet coefficientskf<L/2—1. Since
DWT of {¥;} is defined via matrix multiplication that a reconstructioY=W"W gives back the original time se-
yields a vectoW;=[W; o, W, 1, ..., W,/,N,-—l]’ andV; = ries, the trend7;} is captured by the boundary wavelet co-
[Vio, Vi1, ..., Vj,N/._l]’. Let W=[W1, Wo, ..., W;, V, 1. efficients and the scaling cogfficients. The inverse wavelet
The time series is then reconstructedYasWW’ W, where  transform of these coefficientscan be used as an estimate
the DWT matrixV is aN x N matrix with rows constructed Of the trend.T not only contains the deterministic trend com-
from the filters. For a more detailed description of the DWT Ponent but also the stochastic variability on large scales and
we refer to Appendix A. The exact form 3V is provided in N the following is referred to as the trend estimate. The bias
Percival and Walde(2000). in estimatingT by T is zero forK <L/2—1 (cf. Craigmile

The choice of the mother wavelet depends on the data t&t al, 2004 for further details).
be analysed. Possible choices are an orthonormal or non-
orthonormal, a real or complex basis (an overview about the2-2.1  Separating scale
noteworthy aspects is given Ayprrence and Compd 998. ) _ ) )
For our analysis we chose a discrete, orthogonal basis Most reliable results are obtained by selectlng the separating
the Daubechies “least asymmetric” wavelet basis of widthSC@l€/s betweenT andX as the largest scale with a non-zero
eight (LA(8)). The wavelet width comprises smoothing in NUmber of wavelet coefficients (s€aigmile et al. 2004.
time and frequency in an acceptable manner regarding théS Pointed out in Sect2.1, applying a Daubechies scaling
data analysed. When using tHied(-) basis one can also filteris a kmc_j of weighted smoothlng procedure. 'I_'he ch0|_ce
benefit from the advantages of approximately linear filter-Of s determines the amount of variation of the time series
ing. Applying the LA(8) wavelet filter to{Y;} essentially pre;ent in the trgnd estlmate. In the following, all investi-
yields a difference between, and values before and after 9ations are carried out with=6, which corresponds to a
Y,. The LA(8) scaling filter results in a weighted average of S€Parating scale band of 32 to 64 months. So the estimated
a window of length 2+ on scale 2. These scaling filters trends reflect variations of the time series which are larger
are defined through their squared gain functitiw) oper-  than5years.
ating on the Fourier frequencies which they share with .
all other Daubechies filters (for further details we refer to 2-2-2 Boundary conditions

Appendix B). By additionally choosing the transfer function | ffici | : . fth
G()=[G(@)]¥2¢"@ in such a way that the phase function Wa.ve.et coefficients are always a certain aggregation of the
variations of the time series around a time pajnfThe larger

6(-) has the smallest maximum deviation from a linear phase . .
filter, i.e. is as close as possible to that of a linear phase filterthe analysed scale, the_ more points become aggregated, i.e.
the definition of aLA(-) filter is completed. For the cor- the more wavelet coeflicients are affected by the bo!”_‘dary
responding wavelet filters the relationshifiw)=G(w + ) conditions. To be able to calculate these wavelet coefficients,

holds some kind of assumption for the elongation of the time se-

The MODWT (maximum overlap DWT) is a modified ver- ries at both edges has to be made. One alternative is to as-
sion of the DWT. With the MODWT. time series of non- Sume periodicity, i.e. the end of the time series is identified
dyadic length can be analysed. In contrast to the orthonorma‘f"Ith the beglnnmg: _Other ways wou_ld be to expect reflect-
DWT, the MODWT is a highly redundant non-orthogonal N9 boundary conditions, where the time series is reflected at
transi‘orm In this work we use both the DWT and the both edges, or to pad the series at the edges with the mean

MODWT, according to the respective aims (for more details Value (se(?Torrence and Compd 99§ for_more details). In
we refer toPercival and Walder2000). the following we use the latter alternative. As one goes to

larger scales, padding decreases the amplitude of the wavelet
2.2 Trend estimation and scaling coefficients as more zero values enter the anal-

ysis. The trend estimation and the calculation of its sigma
In the following, we assume that the observed time seriedntervals is done on this elongated, padded series, whereas
{Y; : t=0, ..., N—1} can be modelled additively by a deter- the test for trend is applied to the original empirical series
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and its fluctuation estimate without padded parts. When ussense that fo=0 or ¢=0 it recovers the first or the second
ing wavelet filters with widthL>2 as basis, the boundary model, respectively.

coefficients cause a higher variability of the trend estimate at  The model parameters are estimated using Whittle’s ap-
the endpoints of the time series and accordingly wider sigmayroximation to the Maximum-Likelihood Estimator (MLE).
intervals there. The latter is based on minimising

2.3 Parameter estimation

0(©) = }:—fgil
The natural variability present in the records is modelled S(O; w))’
using fractional ARIMA (FARIMA) models Granger and
Joyeux 1980. These models are an extention of the well
studied autoregressive integrated moving average (ARIMA)
models Box and Jenkins1976 incorporating long-range Fourl_er frequencies; =2m;/N and§(® ©j) the spectral
dependence. A process has long-range dependence or IonggnSIty of the FARIMA process with parameter vec@r

range correlation if the autocorrelation functiptk) decays omprising (¢, ..., ¢p, 8, Y1, ..., ¥g)- At the minimum of

©)

where P(w;) denotes the periodogram of the data at the

algebraically in the limit of large time lags 0(©), © is an estimate for the model parameters. The stan-
dard deviation provided for the parameters are based on the
p (k) -1 A3) assumption of a Gaussian process and are calculated from
k—o0 ck—F ’ the asymptotic distribution of parameters in the limit of long
with ¢ being a finite constant. records. As such they are only a first guess for the variability
A FARIMA( p, 8, ¢) process is defined by of the parameters.

An extensive discussion on modelling long-range depen-
_ By, =

¢(B)(1— B)"Y; =y (B)m (4) dence also with respect to FARIMA( S, ¢) models and the

with B denoting the back shift operator B¥Y: 1, Whittle estimator can be found Beran(1994).

n:~WN(0,0), § € R the fractional difference parameter and

2.3.1 Trend influence and filtering algorithm

p
P =1-) 7
i=1 The influence of a deterministic trend component will usually
; bias the parameter estimation, because parameter estimation
V) =1+ 2; vz () onY implies assuming a possible trend to be negligible.
i=

To account for the trend component, we estimate the pa-
are the autoregressive (AR) and moving average (MA) poly-rameters orX, where the trend estimafg has been sub-
nomials of orderp andg, respectively. A FARIMAp, 3, q)  tracted from the data. Although (T—T)=0y holds, the
process is stationary f<0.5 and all solutions 0f(z)=0  parameter estimation oK also is likely to be biased be-
are outside the unit circle. It exhibits long-memory for causeT contains the deterministic trend component as well

0<8<0.5. FARIMA(p, 8, ¢) models withs <0 are called in- a5 stochastic variations on large scales and we have  use
termediate memory or “overdifferenced”. In practice, this instead ofE (T).

case is rarely encountered. For more details, Bemn
(1999 andOoms and Doornik1999.

Three of the most simple models out of the
FARIMA( p, é, ¢) class are:

We studied this influence using low-ordep,g<1)
FARIMA( p, 8, ¢) models and trends with various strengths
(0 to 3 times the standard deviation of the process) and
shapes. The AR parametgras well as the fractional differ-

1. FARIMA(1,0,0) or AR(1) ence parameterare systematically estimated too low on the
filtered seriesX, where the bias decreases for an increasing
1—-¢B)Y; =n;, (6) trend. They are estimated too high on the original seYies
This effect increases with increasing trend (see Ejg.The
2. FARIMA(0,5,0) or FD§) bias caused by a trend or the detrending procedure is negli-
gible for the MA parametey,. The comparison of the trend
(1-B)°’Y, = n,, (7)  testresult obtained by estimating the parameterg and on
X can constructively be used to draw further conclusions (see
3. FARIMA(1,5,0) Sect.4 for more details).
(1-¢B)(1-B)Y, = n. (8)

2.3.2 Goodness-of-fit and model selection

The first model consists of only a short-range correlated com-

ponent with parametep=¢1, the second model of a long- The model choice for the stochastic variability is motivated
range correlated component only with long-memory param-by a goodness-of-fit test and an Akaike-type model selection
eter$. The third model combines the previous two in the criterion.
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A goodness-of-fit test for FARIMAY, §, ¢) models for-
mulated in the spectral domain has been proposefdrgn

(1992. The test statistic — linear trend
— bolic trend —
A i =
Tp = — (10) —— data with trend
B 2 I filtered data
with °
4 Pw;) \2
A= & (ﬁ) and .
N = S(wj; ©) .
4 Plw;
B = _7T & (11)
N = S(wj; ©)
is asymptotically normal with meanr, =7~ and variance =g

of =27 2N~ It has been shown that this test is equivalent
to the Portmanteau test (seercival et al.2007) for uncorre- -
lated residuals in the time domain. The smallest significance

level for which the null hypothesisHp: the empirical data is e i

compatible with being a realisation of the model” is rejected 05 10 15 20 25 20

fa|se|y, is denoted by max deviation from zero in terms of standard deviation of the process

Ooir =1 — &(Th) for Th = Tp — 11y (12) Fig. 1. Results of a Monte Carlo simulation to assess the bias due
B B oTy ’ to a trend or to filtering when estimating the long-term paramsgter

where® (-) is the cumulative distribution function for a stan- of a FARIMA(1.4,1) model.

dard normal random variable.
The dynamics of the system, recorded in finite time series,;, is now: 7,=0 vs=0, ..., N—1 versusHy: not Hy. For

cannot be rggqnstrugtgd ungmbiguously, Which correspond{sm - {0}, p. should be largeHy is rejected at a level of sig-
to the possibility (_)f flttmg different stochastic models rea- pificancew if Pe(empirica Of Y exceeds. (), wherebyp, (o)
sonably well to a time series. _ _ is the upper 108%-quantile of simulateg, values. The dis-

As criteria for the model selection we employ different yripytion of the test statistic is estimated via Monte Carlo sim-
versions of the Akaike Information Criterion, defined by ulation with 4000 realisations of the chosen stochastic model
AIC ;(k) = —210gL(®; Y) + fx, (13) with optimised parameters and without trend component.

whereL(0®; Y) denotes the likelihood of the parameter vec- 2.4.1 Power of the trend test

tor ®. The factor f weights the influence of the penalty

term due to the number of parametars If f is setto 10 determine the power of the trend test, a Monte Carlo study
2 we get the Akaike Information Criterion (AICAkaike, s performed on realisations of an AR(1) and a F)lrtodel
1973 1979, for f=IlogN the Bayesian Information Cri- With diverse parameter choices and deterministic trends su-
terion (BIC) Schwarz 1978 and for f=2cloglogN the perimposed. The amplitude of the deterministic trend has
Hannan-Quinn Information Criterion (HIC), in which we use been increased in small steps from 0 té fmes of the stan-
¢=1.0001. The model to select is that with the smallestdard deviation of the process. The following results were
AIC ;. For FARIMA(p, 5,0) models BIC and HIC are shown obtained:

to yield consistent estimators for the autoregressive gpder
(Beran et al. 1998, for some low order FARIMAg, 8, q)
models Bisaglia (2002 performed simulation studies and
recommends BIC and HIC as selection criteria. In the fol-
lowing the HIC was used.

(a) Analysing linear trends, where the trend startg-ad
and the endpoint=N —1 is varied from 0 to Glo, the
power of the trend test is slightly lower than the power
of a standard linear regression test (see @lsagmile

et al, 2004.
2.4 Test for significance of trend (b) The power of the trend test does not weaken signifi-
cantly when the linear trend starts in a later part of the
A test for trend is provided by comparing the variability¥n time series. This was tested for a starting point as late
andX. Let ast=(5/6)N.
NE (c) Thetrend testitself is robust against changes in variance
Pe= "= (14) of the time series, which cancels out in Ef4)
IXI (d) It is vulnerable against jumps in the data. This was
be the test statistic, whele| denotes the Euclidian norm. tested by including a jump point in the middle of the

Without loss of generality, we assumé has zero mean. series with amplitude 0 to.8». So the occurrence of
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discharge anomalies (monthly maxima) (A)
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Fig. 2. (A) River discharge anomalies (monthly maxima) for the river Erms at Riederic{Baricend estimate and linear fit with its standard
deviation intervals for a F3j model §=0.252,02=2.465) and an AR(1) modely=0.328,02=2.443).

jump points should be excluded. To deal with this prob- Examining the character of the influence of the chosen
lem Craigmile et al.(2004 proposed an extension to model on the trend we find that the sigma intervals for the
the methodology: by adopting the wavelet coefficientstrend estimate obtained under an assumption of long-range
to the jump points the trend test can still be applied.  dependence can be considerably larger than those obtained

(e) The power does not only depend on the choice of theunder a short-range correlated model. This is in accordance
stochastic model, but also on the magnitude of the paWith Smith(1993 andBeran(1994).

rameters. For an FDY model, e.g. it reaches a power
of one faster for smal.

2.5 Variance of the trend

The chosen model also influences the distribution of the
test statistic given in Eq1@) and may lead to an acceptance
of the hypothesis that no trend exists in the case of long-
term correlations, whereas this hypothesis is rejected in the

) . case of short-term correlations. Thus, correctly identifying
For a selected separating scaléne choice of the model and e correlation structure is crucial for a reliable trend test.
the magnitude of its parameters do not affect the shape of
the trend estimate. However, reorganising Ejjréveals the
connection betweeh andX, namely
3 Data

T = WIAWY = RT + RX (15)

For the analysis, river discharge records from several catch-
Therefore holds cq\T)chov(X)RT, i.e. the variance of the men_ts near the river Neckar in Southern G(_armany were n-
vestigated. The series were selected according to their length

trend estimate involves the covarianceXofSo if X is a real- q I Th 7 vsed for th
isation of a stationary stochastic process, the autocovarianc@'® comp eteness. e run-off data was analysed for the

sequencee (k) of X can be used to calculate the variance ofJOimly covered time period from November 1940 to Dece'm-.
q Po k) ber 2003. All data sets used are affected by a strong periodic

with R = WTAW.

the trend e :
component due to the annual cycle. This is approximately
N N-1 removed by calculating the average and variance of each day
var(7;) = Z pe (k)r; k (16)  of the year over all years (missing values are replaced by
k=—(N-1) the average for the specific day). The daily run-off anoma-

lies are obtained by subtracting the average and dividing by
with r, z= vaz_ol_“cl R: iR i+k- R:,i denotes théz, i) ele-  the standard deviation. The latter removes the seasonal peri-
ment ofR (for further details se€raigmile et al.2004). odicity in the variance, see e.Hipel and McLeod(1994).

This relation implies that the choice of the stochastic FARIMA(p, 8, g) models do not reflect heteroscedasticity,
model as well as its estimated parameters have an impact aimerefore the results for the series normalised in this way are
the width of the sigma interval of the trend estimate. For anexpected to be more reliable. Finally the daily measurements
example see FigR. Here fluctuations in the sigma interval have been aggregated to monthly average and monthly max-
due to the choice of the wavelet basis have been averaged oithum values. Records containing April to September and
and the sigma intervals have been calculated for the padde@ctober to March data are used to study the summer and
series. The range of influence of the boundary conditions canvinter seasons separately and in the following are referred
be estimated analytically (s&ercival and Walder2000. to as summer and winter data.
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Monthly Maxima Monthly Maxima Filtered
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Fig. 3. (A) Fitted parameters for the FE)(and the AR(1) model an(B) the FARIMA(15,0) model for the monthly maximum data and the

monthly maximum filtered data, respectively &ndD). River Gauges: 1 Josbachilzlebruck, 2 Ammer/Réffingen, 3 Erms/Riederich, 4
Glatt/Hopfau, 5 Wiese/Zell, 6 Dreisam/Ebnet, 7 Rems/Neustadt, 8 Fils/Plochingen, 9 Neckar/Horb, 10 Neckar/Plochingen.

4 Results and discussion estimates for the two one-parametric models do not change
qualitatively. The magnitude af ands is lower for the fil-

The examined time series are assumed to be composed ¢#red data. For the more complex FARIMA{D) model,

a deterministic trend component and a stochastic part (seltering causes the short-term correlation parameter get

Sect.2.2). larger, whereas the long-term correlation paramétgets
The obtained trend estimates help to assess linear trend b&éMaller; in some cases it becomes compatible with zero.
haviour in the data. As shown e.g. in FR.the run-off data As discussed in Sec?; 3.1a possible trend biases the pa-

of the river Erms at Riederich (monthly maxima) is charac- rameter estimatio®  on Y, i.e. under assumption of no
terised by an increase. Nevertheless a general tendency of itrend. To account for the bias the parameter estimation is
crease or decrease cannot be found for the investigated rivgrerformed under consideration of a determlnlstlc trend com-
run-off data sets. ponent, represented by the trend estimbtee. ©” is esti-

In spite of these results the shape of the trend estimaté&ated on the filtered serié& T not only contains the de-
and therefore the trend test result is influenced by the use¢erministic trend component but also stochastic variations on
wavelet filters (see Sec2.1) and the choice of the separat- large scales. Therefora is likely to be biased in the other
ing scalel; (see Sect2.2.1). The latter may be compared to direction thar®'. Using both estimates for the analysis helps
the selection of a window size when smoothing data to get atO interprete trend test results. A more reliable parameter set
trend estimate. © could be obtained by extracting a best trend gl]éssmt

The parameters for the stochastic models representing thef T, e.g. by fitting a polynomial to the trend ¢ estimat®
natural variability of the time series are estimated using theis then estimated on the detrended series, wiidras been
Whittle estimator (see Sec®.3). We restrict our analysis to  substracted. Another possibility is to use the magnitudE of
FARIMA(p, 8, ¢) models with 856<0.5 andp, g<2 (¢<1  interms of the standard deviation of the process itself to esti-
for the winter and summer data due to the shortness of thenate the bias o® and®” by Monte Carlo simulation (see
time series). Filtering may produce data which is representedFig. 1). These issues will be the subject of further research.
best by a model witld <0, because not only the trend com-  To evaluate the performance of the models with optimised
ponent but also the stochastic variations on large scales haysarameters, a goodness-of-fit test is applied and an Akaike-
been removed there. Such occurrences suggest that the longpe model criterion is used to select among different models
term parametes is redundant. The counterpart model with (see Sect2.3.2. In Table1 the best performing models in
§=0 also is considered in the analysis. Therefore we excludgéerms of the HIC have been listed for the monthly averaged
models with an estimatetk0. All models which performed  data and the monthly maxima, respectively. The apparently
best in terms of the HIC turned out to be stationary, e.g. dopest HIC models coincide with a goodness-of-fit test failure
haves <0.5 and all solutions o (z)=0 outside the unit cir-  in some cases. This either means that no appropriate model
cle. has been found to represent the data reasonably well within

Obtained parameter valuésand¢ for the FD@), AR(1) the FARIMA(p, 8, ¢) model class, or that the presence of a
and FARIMA(14,0) models are shown in Fi@ for the fairly weak trend is indicated, which biases the parameter
monthly maxima (original data and filtered data, the stationsestimation onY as well as orX. In most cases a goodness-
are ordered according to the increase in catchment size). Thef-fit test failure occurs for the original data as well as for the
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Table 1. FARIMA( p,8,q) models performing best in terms of the HIC for (A) original/filtered monthly averaged data and for (B) origi-

nal/fitered monthly maxima data. By filtering, variations on large scales have been eliminated to exclude a bias due to a possible trend.
Cases where a significant trend has been detected have been underlined. Parameters written in italics refer to models which have bee

rejected by the goodness-of-fit test at a 95% level.

(A) monthly averages (B) monthly maxima
best FARIMA(p, é, ¢) model (original dataffiltered data) best FARIMA(S, g) model (original data/filtered data)
Total Summer Winter Total Summer Winter

Josbach/@lzlebruck (1,0,0)(1,0,0) (1,0,0)/(1,0,0) (1,0,0)(1,0,0) (1,0,0(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(0,0,1)
Ammer/Paffingen (2,0,1)/(1,0,0) (1,0,0)/(1,0,0) (0,5,1)/(1,0,0) (04,0)/(05,0) (04,0)/(03,0) (04,0)/(1,0,0)
Erms/Riederich (1,0,0)/(1,0,0) (1,0,/0,0) (1,0,0)/(1,0,0) (1,0,0§1,0,0) (1,0,0)(0,0,1) (1,0,0)/(1,0,0)
Glatt/Hopfau (15,0)(1,0,0) (0,4,1)/(1,0,0) (1,0,0)(1,0,0) (1,0,0(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0)
Wiese/Zell (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)(1,0,0) (0,5,0)/(1,0,0) (1,0,0¥(1,0,0) (0,4,0)/(1,0,0)
Dreisam/Ebnet (1,0,1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (0,5,0)(1,0,0) (0,,0)/(1,0,0) (1,0,0)/(1,0,0)
Rems/Neustadt (&,0)/(15,0) (1,0,0)/(1,0,0) (1,0,1)/(1,0,1) @0)/(1,0,0) (1,0,0)/(1,0,0) (®,0)/(1,0,0)
Fils/Plochingen (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) 5,0/(1,0,0) (1,0,0¥(1,0,0) (1,0,0)/(1,0,0)
Neckar/Horb (13,0)/(1,0,1) (1,0,0)/(1,0,0) (1,0,0)/(1,0,0) §M)/(1,0,0) (1,0,0)/(1,0,0) (®,0)/(1,0,0)

Neckar/Plochingen  (1,0,1)/(1,0,1)  (1,0,0)/(1,0,0) (1,0,00(1,0,00  5,@Q(1,0,1) (1,0,00/(1,0,0) (6,0)/(1,0,0)

filtered data. For the river Erms at Riederich (averaged sumvalues also do not provide a distinction here. Regarding the
mer data) the best HIC model for the filtered data is rejectednonthly maxima a classical constellation occurs in several
by the goodness-of-fit test, whereas the best HIC model icases: part of the variability in the data may either be ex-
accepted for the original data. So the trend test result of noplained by a long-term correlated model or by a short-term
detecting a significant trend is supported here. In this waymodel in combination with a deterministic trend component
goodness-of-fit results may be utilised to check HIC choiceg(seeGiraitis et al, 200]). In those cases a refined parameter
and trend test results. estimation by using a trend gueBsas described above, may
The three relatively simple models presented in S2&.  lead to further conclusions.
perform best in terms of the HIC in the majority of cases, In the majority of cases a significant trend was found only
which is presented in Table By studying these model fits under assumption of an AR(1) model (results not shown).
conclusions about the short and long-term behaviour of theThis emphasises the influence of the model choice on the
time series can be drawn. In particular the short-term cortrend test result, which has been described in Sebt.
related AR(1) model suffices to reproduce the dynamics of
the fluctuations of the data best in a lot of cases. How-
ever, the long-term parametgrs required more often forthe 5 Conclusions
monthly maxima data than for the monthly averages. The
monthly maxima winter data is even represented best by & semi-parametric trend test has been applied to dis-
FD(8) model in half of the cases, whereas a long-term paramcharge anomalies from Southern Germany. We considered
eter is nearly never required for the monthly average winterFARIMA( p, §, g) models optimised by a Whittle estima-
data. This may suggest that long-term correlation plays artor with p, g<2 (see Sect2.3). For each station the com-
important role when examining extreme values. plete data as well as data restricted to the summer (April-
Regarding the trend behaviour a definitively significant September) and winter (October-March) months have been
trend has been found for Dreisam/Ebnet (complete data) anthvestigated separately, both for monthly averaged and max-
Ammer/Paffingen (winter data) for the monthly averages imum values.
and Erms/Riederich (complete data) and Wiese/Zell (sum- It is evidenced that simple models seem to represent the
mer data) for the monthly maxima. In those cases a signifi-dynamics of the data quite well in terms of the HIC. The
cant trend has been found for parameter estimation§ @3  short-term correlated AR(1) model is chosen as best fit in
presented in Tablg. most cases. However, a long-term paramétef is fre-
Where a possible trend component is found to be signifi-quently required, especially for the monthly maxima data.
cant only under assumption of the trend estimate, i.e. the pa¥herefore, a trend analysis should take the possibility of
rameter values estimated on the filtered data, it cannot be edong-term correlated data into account.
cluded that this “trend” may be explained as well by stochas- The separation of deterministic trend and natural variabil-
tic variability. Such a spurious case, e.g. is the monthly aver-ty is of high interest to water management authorities. A
aged complete data for Ammer&#fingen. Part of the vari- way towards a distinction is the extraction of a trend esti-
ability of the data may be explained by a larger AR parametemate and the evaluation of the significance of the trend, as
or by a deterministic trend component. The goodness-of-fipresented here. As described in S@c4, the acceptance or
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L . L/2-1
rejection of a trend depends on the chosen stochastic model . Tw L/2—-1+1 Tw
to represent the natural variability as well as on the magni- — 2sint <_) Z l cos’ (_) (A2)
tude of its parameter values. By considering the best per-

forming models in terms of the HIC and by comparing the 5, the first scale angy ;. (w)=M1 . (T—w) holds, respec-

trend test results for the original and the filtered data (Un'tively. The transfer function for the filters is given by the
der consideration of the goodness-of-fit test outcome) reli—p0|ar representation

able trend test results can be achieved in a series of cases, as
listed up in Sect4. For the area under investigation, no gen- 1/2 i0(w)

eral trend tendency for river run-off could be found. This isin & () = |G1L(@)|"e (A3)
line with other results (cf. Sect), but nevertheless does not

imply that climate change has no impact on the hydrological’ S . . .
Py 9 P y g tions 0(w) distinct Daubechies wavelet filter families are

cycle. Actually one has to assume that climate change will’,” . ; . X
be observable with a time delay and with complex patternsdef'ned‘ .The least asymmetric .(LA) family of Daub.ech|es
in hydrology. wavelet filters has a phase function such that these filters get

By refining the trend estimation procedure (as also de®S close as possible to a linear phase filter.

scribed in Sect4) and therefore reducing the bias in the pa- AcknowledgementsThis work is supported by the German

rameter eStlma,‘t'on' the trend te,‘c’t ,may beilmproveq to handl‘Iavlinistry for Education and Research (BMBF) under grant number
not yet determinable cases. This issue will be subject to furgzz39571.
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