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Abstract. In a recent study, a new method for assimilat-
ing observations has been proposed and applied to a small
size nonlinear model. The assimilation is obtained by con-
fining the analysis increment in the unstable subspace of the
Observation-Analysis-Forecast (OAF) cycle system, in order
to systematically eliminate the dynamically unstable com-
ponents, present in the forecast error, which are responsi-
ble for error growth. Based on the same ideas, applications
to more complex models and different, standard and adap-
tive, observation networks are in progress. Observing Sys-
tem Simulation Experiments (OSSE), performed with an at-
mospheric quasi-geostrophic model, with a restricted “land”
area where vertical profiles are systematically observed, and
a wider “ocean” area where a single supplementary observa-
tion is taken at each analysis time, are reviewed. The adaptive
observation is assimilated either with the proposed method
or, for comparison, with a 3-D VAR scheme. The perfor-
mance of the dynamic assimilation is very good: a reduc-
tion of the error of almost an order of magnitude is obtained
in the data void region. The same method is applied to a
primitive equation ocean model, where “satellite altimetry”
observations are assimilated. In this standard observational
configuration, preliminary results show a less spectacular but
significant improvement obtained by the introduction of the
dynamical assimilation.

1 Introduction

Data assimilation in meteorology and oceanography deals
with high-dimensional chaotic systems. In such systems, er-
rors which are present in the initial condition grow in time,
due to instability. Other errors are of course introduced along
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the Observation-Analysis-Forecast (OAF) cycle. Model er-
rors of various origin are introduced along the forecasting
integration, and observation errors (including errors in the
observation operator) are introduced at analysis time. Any-
how all these errors eventually increase or decrease depend-
ing on the action of the dynamical instabilities of the system.
A relevant point, then, is observability (Ghil, 1997): how
many perfect observations, under perfect model conditions,
are necessary to exactly determine the state of the system?
The answer depends on the number of independent unstable
directions.

The OAF cycle is seen as a dynamical system, subject to
observational forcing. Its perturbations (tangent linear) dy-
namics is, for analysis states:

δxa
k+1 = (I − KH ) Mδxa

k , (1)

where K is the assimilation matrix (Kalman gain),H is
the linearized observation operator,M is the tangent linear
model andI is the identity matrix. It is the stability of such
a system that characterizes the tendency of the sequence of
analysis states (or the sequence of forecast states at assimi-
lation times) to approach or depart from the trajectory of the
real system, at least when the two trajectories are sufficiently
close to each other. As a consequence, what is of concern
is the dimension of the unstable subspace of such a forced
system.

Generally, but depending on the specific implementation
choices of each assimilation scheme, the forcing due to the
assimilation of observations results in a reduction of the di-
mension of the unstable subspace. As a consequence, the
order of the problem is reduced, and only few supplemen-
tary observations are in some cases sufficient to control the
system. The method we propose is intended to focus on this
mechanism of order reduction.

Given the generality of the premises, it seems natural to
apply the method to a variety of models and observational
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configurations. Its first application to a small size nonlinear
model (Lorenz and Emanuel, 1998), together with a mathe-
matical description of the method, can be found inTrevisan
and Uboldi(2004), hereafter TU. Results obtained with the
proposed assimilation scheme were compared with an exper-
iment in which an Optimal Interpolation type of analysis was
used to assimilate the adaptively located observations. Er-
rors, both in the analysis state and in forecasts based on it,
were significantly and systematically reduced. A strong in-
crease in the stability of the OAF system was achieved, mea-
sured by a strong decrease of the dominant exponent; this
is a further indication of the successful control of instabili-
ties. Readers are referred to the paper for further details. A
brief description of the method and its implementation can be
found in Sect.2 of the present work. Results obtained with
targeted observations in the context of a quasi-geostrophic
atmospheric model are described in Sect.3. Presently, work
is being devoted to extending the proposed method to a prim-
itive equation ocean model, and some preliminary results
with a standard (i.e. non-targeted) observation network are
described in Sect.4.

2 Assimilation within the unstable subspace

In order to confine the assimilation in the unstable subspace,
a reliable estimate of the most unstable directions has to be
made available at each assimilation time. In principle, the
unstable subspace should be formed by the Lyapunov vec-
tors with corresponding positive exponents. In practice, these
vectors are estimated by breeding on the data assimilation cy-
cle, as extensively discussed in Carrassi et al. (under review,
20051), hereafter CTU. The breeding technique introduced
by Toth and Kalnay(1997) has been modified to estimate
the unstable vectors of the forced OAF system. To estimate
the unstable subspace of the OAF system, observations are
assimilated in each perturbed trajectory as it is done in the
control trajectory. Because the unstable vectors are only ap-
proximate estimates of the forecast error, a further step is
necessary in order to make them better proxies of the true
forecast error structure. At analysis time, a regionalization
procedure is used in order to select and isolate, from each
bred vector of the current set, one or more “structures”, iden-
tified as local maxima or minima. This is obtained by means
of a Gaussian-shaped modulating function, centered in each
maximum or minimum, and applied to the bred vector by
point-by-point multiplication. TheN vectors obtained in this
way have the local structure of one of the current bred vec-
tors and are stored in theN columns of a matrix,E, whose
number of rows,I, is the state dimension. More details on
the regionalization procedure are given, with regard to the

1Carrassi, A., Trevisan, A., and Uboldi, F.: Deterministic Data
Assimilation and Targeting by Breeding on the Data Assimilation
System, J. of Atmos. Sci., under review, 2005.

specific implementations, in Sects.3 and4. The matrixE is
used to estimate the forecast error covariance matrix:

Pf
= E0ET (2)

or, in other words, the analysis increment is confined in
the estimated unstable subspace:

xa
= xf

+ Ea . (3)

Here the (N,N) matrix0 represents the forecast error covari-
ance in the subspace spanned by the columns ofE, while the
vector of coefficientsa is the control variable, i.e. the analy-
sis increment in that subspace. The mathematical expression
of the analysis solution has then the same form as that of En-
semble Kalman Filters (Evensen, 2003), hereafter EnKF, the
difference being in howE is built:

xa
= xf

+ E0 (HE)T
[
(HE) 0 (HE)T + R

]−1

·

(
yo

− H
(
xf

))
(4)

or, equivalently, :

xa
= xf

+ E
[
0−1

+ (HE)T R−1 (HE)
]−1

(HE)T

·R−1
(
yo

− H
(
xf

))
, (5)

where the vectoryo contains the observations,R is the ob-
servation error covariance matrix andH is the (possibly non-
linear) observation operator, whose Jacobian isH.

In the case of targeted observations, one observation is lo-
cated in the proximity of the maximum component of each
unstable vector, so that the number,M, of observations must
be at least equal toN.

In the case of standard observations, that is to say a fixed
observation network, the important question is the follow-
ing. If we are able to provide a correct estimate of the un-
stable structures, are these structures located in geographical
regions where routine observations are available? If they are,
they can be effectively used. Even if, occasionally, the unsta-
ble structures go undetected, they might migrate into a more
densely observed region, then be detected at a later assimi-
lation time, so that our ability to control the solution is not
compromised. In both cases, there are two important points:
how large is the number of the unstable structures, and how
fast they grow compared to the frequency with which we are
able to observe and eliminate them.

The possibility of taking advantage of an existing “stan-
dard” fixed observation network is investigated in Sect.4, in
the context of a primitive equations ocean model. It should
be pointed out that if the assimilation in the unstable sub-
space spanned by few bred vectors used at a given analysis
time is really efficient, those components of the error are vir-
tually eliminated. If this is the case it becomes necessary to
introduce new perturbations. Further comments on this “re-
freshing” procedure are given in Sects.3 and4.
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Fig. 1. QG model. Data-dense “land” on longitudes 0-50E. One
adaptive observation is located in the data-void “ocean”, longitudes
50E-160E. Level and time averaged RMS analysis error, when the
adaptive observation is assimilated with 3-D VAR.

3 Application to a Quasi-Geostrophic atmospheric
model

The method has been applied to an atmospheric quasi-
geostrophic model (Rotunno and Bao, 1996; Morss, 1999).
Results presented in this section are included in CTU, where
an extended theoretical discussion, complete results with per-
fect and noisy observations and a detailed stability analy-
sis can be found. The domain is a periodic channel, with
64 longitude, 33 latitude gridpoints (16 000 km×8000 km).
Potential vorticity is defined on 5 inner vertical levels, and
potential temperature is defined at top and bottom bound-
aries. Observations are assimilated every 12 h. Here we
chose perfect model conditions, and perfect observations are
assimilated: a long reference model trajectory represents the
“true” state evolution, from which observations are taken.

A “land” area is defined, in the western third of the domain
(longitudinal grid-points 1–20), where fixed observations are
located at each grid-point and assimilated with the 3-D VAR
scheme described inMorss(1999). The remaining part of the
domain is a wider “ocean” area (longitudes 21–64), on the
east in the figures. The fixed observations consist of vertical
profiles, measuring temperature and the two components of
the horizontal wind. In the wide ocean area, at each analysis
time, just one observation is adaptively located (targeted) in
the maximum of one unstable vector, bred for 10 days, so
that, here,M=N=1 .

For the reasons discussed at the end of the previous sec-
tion, the “current” bred vector, that is used in the assimila-
tion, is discarded afterwards, and a new random perturbation
starts its breeding cycle. A new bred vector will be ready at
the next analysis time (+12 h), because it has been introduced
(9 days and 12 h) earlier.

Two different experiments, of 2 years simulated time, are
performed, with the same trajectory representing the truth.

Fig. 2. Same as in Fig.1, when the adaptive observation is assimi-
lated with the proposed method.

The adaptive observation is assimilated with the 3-D VAR
scheme in experiment (1), and with the proposed method in
experiment (2), while 3-D VAR is used in both experiments
for assimilating the fixed observations over land. Moreover,
in experiment (1) the adaptive observation consists of a
complete vertical profile (temperature and wind components
on 7 levels), while in experiment (2) the adaptive observation
consists of a single scalar temperature observation. In both
cases the adaptive observation is located in the maximum of
the “current” perturbation, so the main difference is in how
the adaptive observation is assimilated.

TU noted, in the small model context, the necessity of
regionalizing the correction made by using the unstable
structure. As explained there, this is basically due to the
possible occurrence of regions oppositely correlated, with re-
spect to the main maximum, in the forecast error and in the
perturbation used in the assimilation. The forecast error is
the superposition of different modes, that can show separate
maxima and minima having different amplitude, occasion-
ally opposite sign, with respect to those of the bred vector.
So, while the assimilation of the observation effectively elim-
inates the main error structure, the presence of a secondary
one could lead to a correction with the wrong sign. The re-
gionalization is obtained here in the same way as in TU, by
means of a modulating function, point-by-point multiplying
the “assimilating” perturbation. The choice is a Gaussian
function, with (e−1) decay scale of 2500 km, much larger
than the typical scale of single structures.

The maps in Figs.1 and 2 show the time and height
averaged root-mean-square analysis error in the two ex-
periments. The horizontal distribution of the error is quite
similar in the two figures, where the maximum of the error
is located in the eastern “ocean”, affecting the western coast
of the “continent”. The important feature, anyhow, is the
reduction in the error values, which is of about an order of
magnitude.
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Fig. 3. QG model. RMS analysis error versus time, measured by
total enstrophy and normalized by natural variability. 3-D VAR:
dotted line. Proposed method: continuous line.
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Fig. 4. Ocean model. Forecast (continuous line) and Analysis (dot-
ted line) total energy error (normalized to natural variability) for the
standard Cooper-Haines assimilation scheme, starting from a ran-
domly chosen initial “Forecast” state.

Figure3 shows the analysis error, plotted versus time, for
comparison of the results obtained by assimilating the adap-
tive observation with 3-D VAR (dotted line) or with the pro-
posed method (continuous line).

A detailed stability analysis can be found in CTU. Syn-
thetically, the 3-D VAR experiment shows a positive average
growth rate, indicating instability, while with the proposed
method a negative growth rate, that is to say stabilization,
has been obtained. The value of the average growth rate de-
pends essentially on how the unstable structures develop in
the wide ocean area and on how successfully they are con-
trolled by the assimilation of the adaptive observations.

4 Preliminary results with a primitive equation ocean
model

The method is currently being applied to a primitive equation
ocean model, the isopycnal model MICOM (Bleck, 1978;
Baraille and Filatoff, 1995), in a simplified configuration: a
flat bottom basin, with a 180×140 horizontal grid and 4 lay-
ers, with constant surface wind forcing. The typical dynamic
situation is that of a double gyre, cyclonic in the northern
half of the domain, anticyclonic in the southern half, with an
eastward stream detaching from the western boundary and a
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Fig. 5. Same as Fig.4, but starting from an initial Forecast state
whose error has been rescaled to 0.1 of variability.

Fig. 6. Ocean model, standard Cooper-Haines analysis. RMS error
fields averaged over 6 years: forecast error on thickness of bottom
layer.

wide recirculation region in the eastern part of the domain.
Again we chose to work with perfect model conditions: a
model trajectory represents the “true” trajectory, from which
perfect observations are taken. As anticipated in Sect.2, the
case of a fixed “standard” observation network is considered
here. Observations consist of sea surface height, available on
the whole domain and taken (from the true trajectory) every
10 days. A standard assimilation scheme is also available,
theCooper and Haines(1996) scheme, hereafter CH, based
on conservation of linear potential vorticity, and character-
ized by a homogeneous vertical shift of isopycnals, (inter-
nal layers interfaces in the MICOM case), with no change in
the bottom pressure, and geostrophic adjustment for veloc-
ity. The initial guess of the forecast field is a state chosen
randomly from a model trajectory. As can be seen in Fig.4,
the standard CH assimilation scheme is able to reduce an ini-
tially high error to values oscillating between 0.3 and 0.4 of
the natural variability. In Fig.5 the initial error was rescaled
to 0.1 of natural variability. The standard CH is unable to
keep the error to its initially low value: the error grows and
ends up oscillating again between 0.3 and 0.4.
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Fig. 7. Same as Fig.6, analysis error.

Error structures which are well corrected by the CH
scheme are characterized by an error in the vertical position
of the density gradient, which can be reduced by modify-
ing the thicknesses of the first and bottom layers only, so
that they compensate each other and don’t change the bottom
pressure. On the other hand, error structures are sometimes
compensated internally: there exist surface structures that are
not evident in the bottom layer, and bottom structures that are
not evident at the surface. Figures6 and7 show the 6 years
averaged forecast and analysis root-mean-square error on the
thickness of the deepest layer 4 (that is to say the elevation
from the flat bottom of the interface between layers 3 and
4). It is possible to see that errors present in the forecast are
associated with the eastward stream, which usually detaches
from the western boundary between latitudes 39 N and 42 N,
while other errors are associated with interactions between
the western boundary and the northern cyclonic and southern
anticyclonic gyres. The CH corrections are mostly located in
the stream region, but other errors remain, and at least part of
them affect the bottom pressure, as it can be seen in Fig.8.
Moreover, the analysis error is even larger than the forecast
error in the northwestern part of the domain. These results
support the need for more realistic and flow-dependent verti-
cal covariances in the assimilation of surface height observa-
tions.

Work is at present devoted to implement the proposed as-
similation method with this ocean model and observation
network. The idea is to exploit the information given by the
standard observation network described above. As discussed
in Sect.2, ideally the column vectors of the matrixE are the
Lyapunov vectors of the data assimilation system with cor-
responding positive exponents. To the authors’ knowledge
there is no practically convenient way to estimate the individ-
ual, generally non-orthogonal, Lyapunov vectors (Trevisan
and Pancotti, 1998). In the absence of orthogonalization, the
bred perturbations are likely to display similar structures. In

Fig. 8. Same as Figs.6 and7, bottom pressure error.

the following we describe the procedure we adopted to iden-
tify those structures that are most representative of the unsta-
ble vectors and of the forecast error.

A CH analysis scheme starting from a climatological ini-
tial forecast state reaches in a year its typical error values,
between 0.3 and 0.4 of natural variability. At this point
(day 360), perturbations are initially introduced and bred for
2 months, during which the only assimilation running is still
CH. This is a first result: a breeding time of about 60 days,
which for the ocean is not a long time, is sufficient to produce
perturbations whose structures are correlated with structures
present in the forecast error. At each assimilation time (ev-
ery 10 days) a set of 6 independent perturbations are intro-
duced. Initial perturbations are built randomly as differences
from model states. At the end of the initial 2 months period
(day 420), 36 perturbed states are available. At day 420, the
new assimilation system begins to act. Each of the 6 “cur-
rent” perturbations, the oldest set, is searched for local max-
ima and minima structures, starting from the largest (in ab-
solute value).

In the current implementation, four steps are taken at
analysis time: regionalization, selection, assimilation and re-
fresh.

– Regionalization
Each of the structures is isolated from the others by
means of a modulating function, in a manner analo-
gous to what has been done with the QG model, as de-
scribed in Sect.3 (and with the small model in TU).
As before, the modulating function is a Gaussian. In
this case, anyhow, an elliptical (with elliptical isolines)
Gaussian is adapted to each structure, so that 5 coef-
ficients (3 for shape and orientation, 2 for center co-
ordinates) are found by resolving a least square prob-
lem. A wider Gaussian is then obtained by multiplying
its width by a factor 1.5 in the two dimensions. It is
necessary to use a wider Gaussian in order to prevent
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an excessive deformation of the structure. Anyhow the
Gaussian must not be too wide, because otherwise it
may include unwanted secondary structures. By means
of this procedure, a (variable) number of “structures”
are extracted from the “current” perturbations. A dif-
ferent “localization” technique, which appears system-
atic, but also computationally expensive (and, perhaps,
still risky in areas where unstable structures are only
marginally detected by observations) has been proposed
by Ott et al.(2004).

– Selection
A smaller number of these structures is then selected for
use in the assimilation, by comparing each of them with
the local structure of the innovation (difference between
the observations and the forecast estimate) and retain-
ing only those that show a regional correlation larger
than 0.8 in absolute value. The correlation is computed
by means of a euclidean scalar product between the sea
surface elevation component of the structure,He, and
the innovation, regionalized with the same Gaussian.
The information content of the innovation is rich (in the
horizontal directions) in this case. In a more realistic
context this comparison could be made with, for exam-
ple, the portion of satellite tracks which cross the struc-
ture. Or, in the case of vertical profiles, by comparing
the vertical structure of the innovation with that of the
structure. The number of selected structures is usually
small, not greater than 8: this is consistent with previ-
ous results, obtained with the QG model in Sect.3 and
with the small model in TU. It is also consistent with
recent studies which show a local low dimensionality of
ensemble structures (Patil et al., 2001; Oczkowski et al.,
2005).

The regionalization and selection procedures are per-
formed by considering the surface elevation only, while
the modulated perturbations enter the assimilation as
full tridimensional fields of state variables.

– Assimilation
The selected structures are stored in the columns of the
matrix E and used in the assimilation. From Eq.5,
by assumingR=σ 2

o I and neglecting the resulting term
σ 2

o 0−1 (perfect observations), the analysis increment is
obtained as:

xa
= xf

+ E
[
(HE)T (HE)

]−1
(HE)T

·

(
yo

− H
(
xf

))
. (6)

Is is interesting to examine the case of many observa-
tions used with a single structure,M>N=1. Then the
matrix E has one column only,E=e, and:

xa
= xf

+ e
(He)T

(
yo

− H
(
xf

))
(He)T (He)

. (7)

This solution minimizes (in this caseHxa
−

Hxf
=H

(
xa

− xf
)

exactly) the expression:

(
H

(
xa

)
− yo

)T (
H

(
xa

)
− yo

)
= MIN (8)

subject to the strong constraint (compare with Eq.3):

xa
= xf

+ ea . (9)

Here it can be seen how the analysis increment, con-
strained by Eq.9 in the direction of the vectore, has the
amplitude that best-fits the observations.

The application of the method is intended here to ac-
count for that part of the forecast error belonging to the
(estimated) unstable subspace, and that is detected by
means of the – supposed unchangeable – standard ob-
servation network. A part of the forecast error is how-
ever present that is outside the estimated unstable sub-
space. For this reason the proposed method is used here
in combination with the standard analysis. The anal-
ysis obtained by means of the described procedure is
then used as a background field for a standard CH anal-
ysis. In this case the standard CH analysis is intended
to be augmented rather than replaced by the proposed
method.

– Refresh
Since (perfect) observations are assimilated in the con-
trol state and in all the perturbed states, too, the struc-
tures which are used in the assimilation are automati-
cally eliminated from all the perturbations (difference
fields). This is the mechanism at the base of the prob-
lem often referred to, in EnKF literature (Whitaker and
Hamill, 2002), as the “rank reduction” of theestimated
analysis error covariance matrix. In our method, the ef-
fective estimate of the unstable component of the cur-
rent analysis error could be obtained by using, rather
than the “just used” set (from which all “observed”
structures were eliminated), the set of vectors that will
be used in the next analysis step. If some kind of re-
freshment is regularly done, this estimate will have a
larger dimension, that is to say more unstable struc-
tures will be found when the vectors set is searched,
than what will be found if no refreshment is done. If,
moreover, no refreshment is ever done, all bred vec-
tors (apart from nonlinearities) will tend, as long as the
OAF sequence proceeds, to approach each other, and
there will be less and less advantage in having sets of
more than one bred vector. With the QG model, as de-
scribed in Sect.3 (and with the small model in TU), the
refreshment is obtained in a drastic way: the ”current”
bred vector is discarded after the assimilation and re-
placed by a new random perturbation. Here, in the case
of the oceanic primitive equation model and with the
standard observation network described above, the cur-
rent bred vectors, from which the structures have been
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Fig. 9. Ocean model. Total energy forecast error (normalized to nat-
ural variability) for the standard CH assimilation alone (continuous
line) and for the proposed “sequential” method (dotted line).

extracted and used in the assimilation, still carry use-
ful information. For example, some other structures are
present in deeper layers, besides those evident at the sur-
face at analysis time: such structures may emerge (and
hopefully be detected) later on. So, the following proce-
dure has been implemented as a trade-off between keep-
ing or discarding the bred vectors altogether. After the
assimilation, one (at turns) of the “current” bred vec-
tors (from which the estimated unstable structures have
been extracted) is added to all the other 5 vectors of the
same set. One new random perturbation is inserted at its
place. The new set of 6 vectors start then to undergo a
new 60-day breeding cycle.

The purpose of these experiments is to show how, in
the presence of a standard, fixed observation network, our
method can be used to eliminate, by means of the assimila-
tion, those unstable structures that are present in the forecast
error and that can be detected from the observations avail-
able in specific geographical regions. In the present case this
means that we can only detect those unstable structures that
have an important component in the sea surface elevation.
There exist unstable structures, confined in deeper layers,
that do not appear in the sea surface elevation field. As long
as they don’t emerge at the surface, those structure cannot
be detected by the fixed observation network used here, but
they could be detected by means of adaptive observations,
as it is the case for the QG model in Sect.3. We have per-
formed experiments in which a variable numberN of struc-
tures are extracted (by regionalization), selected, stored in the
N columns of the matrixE and assimilated by means of Eq.6.
Results of these experiments (not presented here) show some
improvements, that are not, anyhow, systematic. In particu-
lar, the sudden growth that appears at about day 980 in the
standard assimilation forecast and analysis errors of Figs.9
and10(continuous line), is not satisfactorily controlled. This
depends on several factors. One of them is the presence of in-
stabilities in deeper layers that can only be detected by means
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Fig. 10. Same as Fig.9, analysis error.

of adaptive observations. Another problem that has been di-
agnosed is the following. The same local structure (or struc-
tures with very similar features) appears in two bred vectors
of the current set. If the two structures are considered as
independent vectors, and both used in the assimilation, the
analysis increment can be important in the direction of the
difference of the two fields, that, after the regionalization,
is not guaranteed to be a well structured unstable direction.
This problem was only partially overcome in these experi-
ments, by computing the (surface elevation) correlation be-
tween all couples of selected structures, and excluding one
of the two if the correlation is larger than 0.99. A simple way
of accounting for this problem is obtained by using Eq.7
with each structure in a sequence, rather than Eq.6 with all
the selected structures together. The sequence concerns the
regionalization, selection and assimilation steps, on the con-
trol and on all perturbed states. In this way when a structure
is eliminated, it is eliminated from all bred vectors and is as-
similated only once. The two assimilations differ in regions
where structures are overlapping. The results obtained with
this sequential procedure are shown (dotted line) in Fig.9
(forecast error) and Fig.10 (analysis error), in comparison
with the standard CH assimilation (continuous line). It can
be seen that in this way the error peak starting at day 980 is
well controlled, as are other secondary peaks. We inspected
the characteristics of the flow during the period, lasting ap-
proximately six months, when the standard assimilation is
unable to control the instabilities and the errors become very
large. It appears that, during this period, the meanders of
the current are very pronounced and the local structures in
the bred vectors are all concentrated and persist longer than
usual in the region where the current sharply bends on itself.
Such type of a flow appears to be particularly unpredictable
and, when this happens, the need to use the dynamically con-
sistent assimilation becomes imperative.

The results obtained show that the method is successful,
even with a fixed observation network, in eliminating at least
some of the instabilities present in the forecast error, and
that, if still present after the analysis, are responsible for
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subsequent error growth. We expect that the use of adap-
tive observations with this ocean system, by analogy with
QG model experiments, will improve the performance of the
assimilation.

5 Conclusions

The experiments described here are based on the new method
proposed in TU, which provides a dynamically consistent
analysis state by confining the analysis increment in the un-
stable subspace of the assimilation system itself. In this
way instabilities which are otherwise responsible for error
growth are eliminated. With this method it is possible to ex-
ploit the observational forcing in the control of instabilities
and consequent reduction of the dimension of the assimila-
tion system unstable subspace. Only few unstable structures
need to be eliminated at each assimilation time: this can be
achieved by means of few adaptively located observations, or
exploiting the existing fixed observation networks.

In a quasi-geostrophic atmospheric model, a significant er-
ror reduction was obtained compared with a 3-D VAR assim-
ilation, when the estimate of the unstable subspace is used to
locate and assimilate adaptive observations

Experiments with a primitive equation ocean model
showed that advantage can be taken from a fixed observation
network to detect and eliminate at least some of the unstable
structures.

Future developments concern the combination of adaptive
and standard noisy observations, the assimilation of observa-
tions distributed in time, and the approach to the assimilation
of real data.

Acknowledgements.We thank R. Morss and M. Corazza for the
QG model and its 3-D VAR system, and R. Baraille for the SHOM
version of MICOM.
Part of this work has been supported by the projects EPSHOM-
UBO: 00.87.118.00.470.29.25 and CA2003/03/CMO.

Edited by: S. Vannitsem
Reviewed by: two referees

References

Baraille, R. and Filatoff, N.: Mod̀ele shallow-water multi-
couches isopycnal de Miami, Tech. rep., Rapport d’étude SHOM
N.003/95, Toulouse, France, 1995.

Bleck, R.: Simulation of Coastal Upwelling Frontogenesis with an
Isopycnic Coordinate Model, J. Geophys. Res., 83C, 6163–6172,
1978.

Cooper, M. and Haines, K.: Altimetric Assimilation with Wa-
ter Property Conservation, J. Geophys. Res., 101C, 1059–1077,
1996.

Evensen, G.: The Ensemble Kalman Filter: Theoretical Formula-
tion and Practical Implementations, Ocean Dynamics, 53, 343–
367, 2003.

Ghil, M.: Advances in sequential estimation for atmospheric and
oceanic flows, J. Meteor. Soc. Japan, 75, 289–304, 1997.

Lorenz, E. N. and Emanuel, K. A.: Optimal Sites for Supplemen-
tary Weather Observations: Simulation with a Small Model, J. of
Atmos. Sci., 55, 399–414, 1998.

Morss, R.: Adaptive observations: idealized sampling strategies
for improving numerical weather prediction., Ph.D. thesis, Mas-
sachussets Institute of Technology, Cambridge, MA, USA, 1999.

Oczkowski, M., Szunyogh, I., and Patil, D. J.: Mechanisms for the
Development of Locally Low Dimensional Atmospheric Dynam-
ics, J. of Atmos. Sci., in print, 2005.

Ott, E., Hunt, B. H., Szunyogh, I., Zimin, A. V., Kostelich, E. J.,
Corazza, M., Kalnay, E., Patil, D. J., and Yorke, J. A.: A Lo-
cal Ensemble Kalman Filter for Atmospheric Data Assimilation,
Tellus, 56A, 415–428, 2004.

Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A., and Ott, E.: Local
Low Dimensionality of Atmospheric dynamics, Phys. Rev. Lett.,
86, 5878–5881, 2001.

Rotunno, R. and Bao, J. W.: A Case Study of Cyclogenesis Using a
Model Hyerarchy, Mon. Wea. Rev, 124, 1051–1066, 1996.

Toth, Z. and Kalnay, E.: Ensemble Forecasting at NCEP: the Breed-
ing Method, Mon. Wea. Rev., 125, 3297–3318, 1997.

Trevisan, A. and Pancotti, F.: Periodic Orbits, Lyapunov Vectors,
and Singular Vectors in the Lorenz System, J. of Atmos. Sci., 55,
390–398, 1998.

Trevisan, A. and Uboldi, F.: Assimilation of Standard and Tar-
geted Observations in the Unstable Subspace of the Observation-
Analysis-Forecast Cycle System, J. of Atmos. Sci., 61, 103–113,
2004.

Whitaker, J. S. and Hamill, T. M.: Ensemble Data Assimilation
without Perturbed Observations, Mon. Wea. Rev., 130, 1913–
1924, 2002.


