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Abstract. In a recent study, a new method for assimilat- the Observation-Analysis-Forecast (OAF) cycle. Model er-
ing observations has been proposed and applied to a smalbrs of various origin are introduced along the forecasting
size nonlinear model. The assimilation is obtained by con-integration, and observation errors (including errors in the
fining the analysis increment in the unstable subspace of thebservation operator) are introduced at analysis time. Any-
Observation-Analysis-Forecast (OAF) cycle system, in ordethow all these errors eventually increase or decrease depend-
to systematically eliminate the dynamically unstable com-ing on the action of the dynamical instabilities of the system.
ponents, present in the forecast error, which are responsiA relevant point, then, is observabilityshil, 1997): how
ble for error growth. Based on the same ideas, applicationsnany perfect observations, under perfect model conditions,
to more complex models and different, standard and adapare necessary to exactly determine the state of the system?
tive, observation networks are in progress. Observing SysThe answer depends on the number of independent unstable
tem Simulation Experiments (OSSE), performed with an at-directions.
mospheric quasi-geostrophic model, with a restricted “land” The OAF cycle is seen as a dynamical system, subject to
area where vertical profiles are systematically observed, andbservational forcing. Its perturbations (tangent linear) dy-
a wider “ocean” area where a single supplementary observaramics is, for analysis states:
tion is taken at each analysis time, are reviewed. The adaptiv(?xa — (I — KH) M8x )
observation is assimilated either with the proposed method *+1 ke
or, for comparison, with a 3-D VAR scheme. The perfor- where K is the assimilation matrix (Kalman gainH is
mance of the dynamic assimilation is very good: a reduc-the linearized observation operatt, is the tangent linear
tion of the error of almost an order of magnitude is obtainedmodel and is the identity matrix. It is the stability of such
in the data void region. The same method is applied to @ system that characterizes the tendency of the sequence of
primitive equation ocean model, where “satellite altimetry” analysis states (or the sequence of forecast states at assimi-
observations are assimilated. In this standard observationa#tion times) to approach or depart from the trajectory of the
configuration, preliminary results show a less spectacular buteal system, at least when the two trajectories are sufficiently
significant improvement obtained by the introduction of the close to each other. As a consequence, what is of concern
dynamical assimilation. is the dimension of the unstable subspace of such a forced
system.

Generally, but depending on the specific implementation
choices of each assimilation scheme, the forcing due to the
assimilation of observations results in a reduction of the di-

Data assimilation in meteorology and oceanography dealdnenston of the unstable subspace. As a consequence, the

with high-dimensional chaotic systems. In such systems, erprder of the problem is reduced, and only few supplemen-

rors which are present in the initial condition grow in time, tary observations are in some cases sufficient to control th_e

due to instability. Other errors are of course introduced anngSyStem' _The method we Propose 1S intended to focus on this
mechanism of order reduction.

Correspondence td=. Uboldi Given the generality of the premises, it seems natural to

(uboldi@magritte.it) apply the method to a variety of models and observational
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configurations. Its first application to a small size nonlinear specific implementations, in Sec&and4. The matrixE is
model Lorenz and Emanugl998, together with a mathe- used to estimate the forecast error covariance matrix:

matical description of the method, can be foundievisan f T

and Uboldi(2009), hereafter TU. Results obtained with the P =EIE @)
!oropoged a;similation_ scheme were compared with an €Xper- or in other words, the analysis increment is confined in
imentin wh|(_:h an Optimal Intgrpolatlon type of analy5|s Was {ha estimated unstable subspace:

used to assimilate the adaptively located observations. Er-

rors, both in the analysis state and in forecasts based on ik* = x/ + Ea. 3)

were significantly and systematically reduced. A strong in- ) )
crease in the stability of the OAF system was achieved, meatiere the N,N) matrixI' represents the forecast error covari-
sured by a strong decrease of the dominant exponent; thignce in the subspace spanned by the columés while the

is a further indication of the successful control of instabili- VEctor of coefficientsis the control variable, i.e. the analy-
ties. Readers are referred to the paper for further details. AiS incrementin that subspace. The mathematical expression
brief description of the method and its implementation can beCf the analysis solution has then the same form as that of En-
found in Sect2 of the present work. Results obtained with Seémble Kalman FiltersHvensen2003, hereafter EnKF, the
targeted observations in the context of a quasi-geostrophiélifférence being in hov is built:

atmospheric model are described in S8ctPresently, work

is being devoted to extending the proposed method to a prim-

1S . et — T TRl
itive equation ocean model, and some preliminary results® = X +EI' (HE) [(HE)F(HE) + R]

with a standard (i.e. non-targeted) observation network are o f
described in Sect. ' (y -H (X )) “)
or, equivalently, :
2 Assimilation within the unstable subspace x=x/ +E [r*l + (HE)T R1 (HE)]_1 (HE)T
-1 _ f
In order to confine the assimilation in the unstable subspace, 'R (yo H (X )) ’ ®)

a reliable estimate of the most unstable directions has to be . . .
. R S where the vectoy’ contains the observationR, is the ob-
made available at each assimilation time. In principle, the

unstable subspace should be formed by the Lyapunov veclsir?;\::;'%r;se’;s;ggxag'ﬁ:‘:;?%&%g:g;gg;;ﬂo;s'bly non-
tors with corresponding positive exponents. In practice, these P ’ : : L
In the case of targeted observations, one observation is lo-

vectors are estimated by breeding on the data assimilation cy- . oS .
. . . . . _“cated in the proximity of the maximum component of each
cle, as extensively discussed in Carrassi et al. (under review;

2005)), hereafter CTU. The breeding technique introducedunStable vector, so that the numbir, of observations must

by Toth and Kalnay(1997 has been modified to estimate be at least equal . . . )
the unstable vectors of the forced OAF system. To estimate In the case of standard observations, that is to say a fixed
the unstable subspace of the OAF system ob:servations aroebservation network, the important question is the follow-
assimilated in each perturbed trajectory as it is done in the"d: If we are able to provide a correct estimate of the un-

control trajectory. Because the unstable vectors are only a stable structures, are these structures located in geographical

proximate estimates of the forecast error, a further step iJegions where routine observations are available? If they are,

necessary in order to make them better proxies of the tru%hey can be effectively used. Even if, occasionally, the unsta-

forecast error structure. At analysis time, a regionalization(:f)Ie structures go undetected, they might migrate into a more

procedure is used in order to select and isolate, from eacl(ﬂJlensely observed region, then be detected at a later assimi-

bred vector of the current set, one or more “structures”, iolen_Iatlon time, so that our ability to control the solution is not

tified as local maxima or minima. This is obtained by meanscompromlsed. In both cases, there are two important points:

of a Gaussian-shaped modulating function, centered in eacFaosvtvtfége :zvtvhc?orr:lqugtr)g(rj (t); ttuz ?rZStl?:rl]i Sm?t%tlxﬁiséhavr\]’g 2?:’
maximum or minimum, and applied to the bred vector by y9 b q y

point-by-point multiplication. Thé\ vectors obtained in this able to observe and eliminate them.

The possibility of taking advantage of an existing “stan-
way have the local structure of one of the current bred vec- e . . . .
. . dard” fixed observation network is investigated in Sdgin
tors and are stored in thé columns of a matrixg, whose

number of rows], is the state dimension. More details on Lhe cqnteét of a ﬁ”m.:ct'vhe equa.ltlc.)lns. ocganhmodel. IE)IShOU:Jd_
the regionalization procedure are given, with regard to the € pointed out that If the assimilation in the un;ta € sub-
space spanned by few bred vectors used at a given analysis

time is really efficient, those components of the error are vir-

carrassi, A., Trevisan, A., and Uboldi, F.: Deterministic Data tually eliminated. If this is the case it becomes necessary to

Assimilation and Targeting by Breeding on the Data Assimilation introduce new perturbations. Further comments on this “re-

System, J. of Atmos. Sci., under review, 2005. freshing” procedure are given in Secdand4.
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Fig. 1. QG model. Data-dense “land” on longitudes 0-50E. One Fig. 2. Same as in Figl, when the adaptive observation is assimi-
adaptive observation is located in the data-void “ocean”, longitudedated with the proposed method.

50E-160E. Level and time averaged RMS analysis error, when the

adaptive observation is assimilated with 3-D VAR.

The adaptive observation is assimilated with the 3-D VAR

scheme in experiment (1), and with the proposed method in
3 Application to a Quasi-Geostrophic atmospheric  experiment (2), while 3-D VAR is used in both experiments

model for assimilating the fixed observations over land. Moreover,

in experiment (1) the adaptive observation consists of a
The method has been applied to an atmospheric quasieomplete vertical profile (temperature and wind components
geostrophic modelRotunno and Baol996 Morss 1999.  on 7 levels), while in experiment (2) the adaptive observation
Results presented in this section are included in CTU, whereonsists of a single scalar temperature observation. In both
an extended theoretical discussion, complete results with pelcases the adaptive observation is located in the maximum of
fect and noisy observations and a detailed stability analythe “current” perturbation, so the main difference is in how
sis can be found. The domain is a periodic channel, withthe adaptive observation is assimilated.
64 longitude, 33 latitude gridpoints (16 000 kr&000 km).
Potential vorticity is defined on 5 inner vertical levels, and 1y noted, in the small model context, the necessity of
potential temperature is defined at top and bottom bou”d'regionalizing the correction made by using the unstable
aries. Observations are assimilated every 12h. Here wgcture. As explained there, this is basically due to the
chose perfect model conditions, and perfect observations arBossible occurrence of regions oppositely correlated, with re-
assimilated: a long reference model trajectory represents th§pect to the main maximum, in the forecast error and in the
“true” state evolution, from which observations are taken.  perturbation used in the assimilation. The forecast error is

A*land” area is defined, in the western third of the domain the superposition of different modes, that can show separate
(longitudinal grid-points 1-20), where fixed observations aremaxima and minima having different amplitude, occasion-
located at each grid-point and assimilated with the 3-D VAR ally opposite sign, with respect to those of the bred vector.
scheme described Morss(1999. The remaining partofthe  So, while the assimilation of the observation effectively elim-
domain is a wider “ocean” area (longitudes 21-64), on theinates the main error structure, the presence of a secondary
east in the figures. The fixed observations consist of verticabne could lead to a correction with the wrong sign. The re-
profiles, measuring temperature and the two components ofjionalization is obtained here in the same way as in TU, by
the horizontal wind. In the wide ocean area, at each analysisneans of a modulating function, point-by-point multiplying
time, just one observation is adaptively located (targeted) irthe “assimilating” perturbation. The choice is a Gaussian
the maximum of one unstable vector, bred for 10 days, scfunction, with ¢—1) decay scale of 2500 km, much larger
that, hereM=N=1. than the typical scale of single structures.

For the reasons discussed at the end of the previous sec- The maps in Figsl and 2 show the time and height
tion, the “current” bred vector, that is used in the assimila- averaged root-mean-square analysis error in the two ex-
tion, is discarded afterwards, and a new random perturbatioperiments. The horizontal distribution of the error is quite
starts its breeding cycle. A new bred vector will be ready atsimilar in the two figures, where the maximum of the error
the next analysis time (+12 h), because it has been introduce@ |ocated in the eastern “ocean”, affecting the western coast
(9 days and 12 h) earlier. of the “continent”. The important feature, anyhow, is the

Two different experiments, of 2 years simulated time, arereduction in the error values, which is of about an order of
performed, with the same trajectory representing the truthmagnitude.
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Fig. 3. QG model. RMS analysis error versus time, measured byFig. 5. Same as Fig4, but starting from an_init_igl Forecast state
total enstrophy and normalized by natural variability. 3-D VAR: Whose error has been rescaled to 0.1 of variability.
dotted line. Proposed method: continuous line.
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Figure3 shows the analysis error, plotted versus time, for fields averaged over 6 years: forecast error on thickness of bottom
comparison of the results obtained by assimilating the adaptayer.
tive observation with 3-D VAR (dotted line) or with the pro-
posed method (continuous line).

A detailed stability analysis can be found in CTU. Syn- wide recirculation region in the eastern part of the domain.
thetically, the 3-D VAR experiment shows a positive averageAgain we chose to work with perfect model conditions: a
growth rate, indicating instability, while with the proposed model trajectory represents the “true” trajectory, from which
method a negative growth rate, that is to say stabilization perfect observations are taken. As anticipated in Sethe
has been obtained. The value of the average growth rate dease of a fixed “standard” observation network is considered
pends essentially on how the unstable structures develop ihere. Observations consist of sea surface height, available on
the wide ocean area and on how successfully they are corthe whole domain and taken (from the true trajectory) every
trolled by the assimilation of the adaptive observations. 10 days. A standard assimilation scheme is also available,

the Cooper and Haine€l996 scheme, hereafter CH, based

on conservation of linear potential vorticity, and character-
4 Preliminary results with a primitive equation ocean ized by a homogeneous vertical shift of isopycnals, (inter-

model nal layers interfaces in the MICOM case), with no change in

the bottom pressure, and geostrophic adjustment for veloc-
The method is currently being applied to a primitive equationity. The initial guess of the forecast field is a state chosen
ocean model, the isopycnal model MICONBIéck, 1978 randomly from a model trajectory. As can be seen in Bjg.
Baraille and Filatoff 1995, in a simplified configuration: a the standard CH assimilation scheme is able to reduce an ini-
flat bottom basin, with a 180140 horizontal grid and 4 lay- tially high error to values oscillating between 0.3 and 0.4 of
ers, with constant surface wind forcing. The typical dynamicthe natural variability. In Fig5 the initial error was rescaled
situation is that of a double gyre, cyclonic in the northernto 0.1 of natural variability. The standard CH is unable to
half of the domain, anticyclonic in the southern half, with an keep the error to its initially low value: the error grows and
eastward stream detaching from the western boundary and ends up oscillating again between 0.3 and 0.4.
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Fig. 7. Same as Figs, analysis error. Fig. 8. Same as Fig$ and7, bottom pressure error.

Error structures which are well corrected by the CH the following we describe the procedure we agopted to iden-
scheme are characterized by an error in the vertical positiofily tNOSe structures that are most representative of the unsta-

of the density gradient, which can be reduced by modify-P!€ vectors and of the forecast error. _ o
ing the thicknesses of the first and bottom layers only, so_ A CH analysis scheme starting from a climatological ini-
that they compensate each other and don’t change the bottofift! forecast state reaches in a year its typical error values,
pressure. On the other hand, error structures are sometim&&tween 0.3 and 0_'4 of nat.u.rql va.r|ab|llty. At this point
compensated internally: there exist surface structures that afe®y 3?10)' per_turbart:prr:s :re |n||t|ally !ntﬁOQUced and bred f_ﬁr
not evident in the bottom layer, and bottom structures that aré oMt s, during whic t e only assimilation running is sti
not evident at the surface. Figurésnd7 show the 6 years CH- This is a first result: a breeding time of about 60 days,
averaged forecast and analysis root-mean-square error on tg1ich for the oceanis nota long time, is sufficient to produce
thickness of the deepest layer 4 (that is to say the elevatiof€rturbations whose structures are correlated with structures
from the flat bottom of the interface between layers 3 andPresentin the forecast error. At each aSS|m|Ia_t|on tlme_(ev—
4). Itis possible to see that errors present in the forecast ar&"Y 10 days) a set of 6 independent perturbations are intro-
associated with the eastward stream, which usually detacheé&!ced- Initial perturbations are built randomly as differences
from the western boundary between latitudes 39 N'and 42 nfrom model states. At the end of the |n_|t|al 2 months period
while other errors are associated with interactions betweer(day 420_)’ _36 _perturbed state_s are available. At day 429’ the
the western boundary and the northern cyclonic and southerﬂev"""“Ss'rml""t",)n system begins to act. Each of the 6 "cur-
anticyclonic gyres. The CH corrections are mostly located in"€Nt" Perturbations, the oldest set, is fsearcﬂedl for local max-
the stream region, but other errors remain, and at least part df“f‘ and Irnlnlma structures, starting from the largest (in ab-
them affect the bottom pressure, as it can be seen ingeig. Solute value). _

Moreover, the analysis error is even larger than the forecast In the _current _|mple_me_ntat|0n, f(_)ur StePS are taken at
error in the northwestern part of the domain. These resylt&nalysis time: regionalization, selection, assimilation and re-
support the need for more realistic and flow-dependent verti!"€S"-

cal covariances in the assimilation of surface height observa- _ Regionalization

tions. Each of the structures is isolated from the others by
Work is at present devoted to implement the proposed as- means of a modulating function, in a manner analo-
similation method with this ocean model and observation gous to what has been done with the QG model, as de-

network. The idea is to exploit the information given by the scribed in Sect3 (and with the small model in TU).
standard observation network described above. As discussed As before, the modulating function is a Gaussian. In
in Sect.2, ideally the column vectors of the matixare the this case, anyhow, an elliptical (with elliptical isolines)
Lyapunov vectors of the data assimilation system with cor- Gaussian is adapted to each structure, so that 5 coef-
responding positive exponents. To the authors’ knowledge ficients (3 for shape and orientation, 2 for center co-
there is no practically convenient way to estimate the individ- ordinates) are found by resolving a least square prob-
ual, generally non-orthogonal, Lyapunov vectofse{isan lem. A wider Gaussian is then obtained by multiplying
and Pancottil998. In the absence of orthogonalization, the its width by a factor 1.5 in the two dimensions. It is

bred perturbations are likely to display similar structures. In necessary to use a wider Gaussian in order to prevent
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an excessive deformation of the structure. Anyhow the
Gaussian must not be too wide, because otherwise it
may include unwanted secondary structures. By means
of this procedure, a (variable) number of “structures”
are extracted from the “current” perturbations. A dif-
ferent “localization” technique, which appears system-
atic, but also computationally expensive (and, perhaps,
still risky in areas where unstable structures are only
marginally detected by observations) has been proposed
by Ott et al.(2004.

Selection

A smaller number of these structures is then selected for
use in the assimilation, by comparing each of them with
the local structure of the innovation (difference between
the observations and the forecast estimate) and retain-
ing only those that show a regional correlation larger
than 0.8 in absolute value. The correlation is computed
by means of a euclidean scalar product between the sea
surface elevation component of the structude, and

the innovation, regionalized with the same Gaussian.
The information content of the innovation is rich (in the
horizontal directions) in this case. In a more realistic
context this comparison could be made with, for exam-
ple, the portion of satellite tracks which cross the struc-
ture. Or, in the case of vertical profiles, by comparing
the vertical structure of the innovation with that of the

structure. The number of selected structures is usually _

small, not greater than 8: this is consistent with previ-
ous results, obtained with the QG model in S8cand
with the small model in TU. It is also consistent with
recent studies which show a local low dimensionality of
ensemble structureR#til et al, 2001, Oczkowski et al.
2009.

The regionalization and selection procedures are per-
formed by considering the surface elevation only, while
the modulated perturbations enter the assimilation as
full tridimensional fields of state variables.

Assimilation

The selected structures are stored in the columns of the
matrix E and used in the assimilation. From Eg.

by assuming?zoazl and neglecting the resulting term
02T~ (perfect observations), the analysis increment is
obtained as:

Xt =x/ +E [(HE)T (HE)]_l (HE)T
(- (<))

Is is interesting to examine the case of many observa-
tions used with a single structur®>N=1. Then the
matrix E has one column onlfg=e, and:

(6)

T (yo
xt = x/ 4% v T_ H (1)) :
(He)" (He)

(7)
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This solution minimizes (in this caseHx? —
Hx/=H (x4 — x/) exactly) the expression:

a 0 T a
(H (x*) —y?) " (H (x*)

—y°) = MIN (8)

subject to the strong constraint (compare with 8q.

x* =x/ +ea. (9)
Here it can be seen how the analysis increment, con-
strained by Eq@9 in the direction of the vectag, has the
amplitude that best-fits the observations.

The application of the method is intended here to ac-
count for that part of the forecast error belonging to the
(estimated) unstable subspace, and that is detected by
means of the — supposed unchangeable — standard ob-
servation network. A part of the forecast error is how-
ever present that is outside the estimated unstable sub-
space. For this reason the proposed method is used here
in combination with the standard analysis. The anal-
ysis obtained by means of the described procedure is
then used as a background field for a standard CH anal-
ysis. In this case the standard CH analysis is intended
to be augmented rather than replaced by the proposed
method.

Refresh

Since (perfect) observations are assimilated in the con-
trol state and in all the perturbed states, too, the struc-
tures which are used in the assimilation are automati-
cally eliminated from all the perturbations (difference
fields). This is the mechanism at the base of the prob-
lem often referred to, in EnKF literatur®hitaker and
Hamill, 2002, as the “rank reduction” of thestimated
analysis error covariance matrix. In our method, the ef-
fective estimate of the unstable component of the cur-
rent analysis error could be obtained by using, rather
than the “just used” set (from which all “observed”
structures were eliminated), the set of vectors that will
be used in the next analysis step. If some kind of re-
freshment is regularly done, this estimate will have a
larger dimension, that is to say more unstable struc-
tures will be found when the vectors set is searched,
than what will be found if no refreshment is done. If,
moreover, no refreshment is ever done, all bred vec-
tors (apart from nonlinearities) will tend, as long as the
OAF sequence proceeds, to approach each other, and
there will be less and less advantage in having sets of
more than one bred vector. With the QG model, as de-
scribed in Sect3 (and with the small model in TU), the
refreshment is obtained in a drastic way: the "current”
bred vector is discarded after the assimilation and re-
placed by a new random perturbation. Here, in the case
of the oceanic primitive equation model and with the
standard observation network described above, the cur-
rent bred vectors, from which the structures have been
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Fig. 9. Ocean model. Total energy forecast error (normalized to nat-rig 10, Same as Fig9, analysis error.

ural variability) for the standard CH assimilation alone (continuous

line) and for the proposed “sequential” method (dotted line).

of adaptive observations. Another problem that has been di-
extracted and used in the assimilation, still carry use_agnoseq is the fgllqwmg. The same Iocallstructure (or struc-
tures with very similar features) appears in two bred vectors

ful information. For example, some other structures are f the current set. If the two structures are considered as
presentin deeper layers, besides those evident at the suff '

face at analysis time: such structures may emerge (anaﬂdependent vectors, and both used in the assimilation, the

hopefully be detected) later on. So, the following proce- analysis increment can be important in the direction of the

dure has been implemented as a trade-off between kee difference of the two fields, that, after the regionalization,

ing or discarding the bred vectors altogether. After the'S not guaranteed to be a well structured unstable direction.

assimilation, one (at turns) of the “current” bred vec- This problem was only partially overcome in these experi-

tors (from which the estimated unstable structures havetrcvirgs’a?ﬁ/ c%%mliitlggstglee)éfeudrfztcrﬁcetluer\éastlOann) dcg)r(rg:i;'ian 2?1-e
been extracted) is added to all the other 5 vectors of the f the two if thg correlation is laraer than 0 99. A simple \?va
same set. One new random perturbation is inserted at itd . . 9 C o mp y
of accounting for this problem is obtained by using Eq.

place. The new S?t of 6 vectors start then to undergo a\‘/vith each structure in a sequence, rather thanégajth all
new 60-day breeding cycle.
the selected structures together. The sequence concerns the

The purpose of these experiments is to show how, inregionalization, selection and assimilation steps, on the con-
the presence of a standard, fixed observation network, outrol and on all perturbed states. In this way when a structure
method can be used to eliminate, by means of the assimilais eliminated, it is eliminated from all bred vectors and is as-
tion, those unstable structures that are present in the forecasimilated only once. The two assimilations differ in regions
error and that can be detected from the observations availwhere structures are overlapping. The results obtained with
able in specific geographical regions. In the present case thithis sequential procedure are shown (dotted line) in Big.
means that we can only detect those unstable structures théforecast error) and FiglO (analysis error), in comparison
have an important component in the sea surface elevationwith the standard CH assimilation (continuous line). It can
There exist unstable structures, confined in deeper layerde seen that in this way the error peak starting at day 980 is
that do not appear in the sea surface elevation field. As longvell controlled, as are other secondary peaks. We inspected
as they don’t emerge at the surface, those structure canndhe characteristics of the flow during the period, lasting ap-
be detected by the fixed observation network used here, buytroximately six months, when the standard assimilation is
they could be detected by means of adaptive observationgjnable to control the instabilities and the errors become very
as it is the case for the QG model in Se&t.We have per- large. It appears that, during this period, the meanders of
formed experiments in which a variable numibeof struc-  the current are very pronounced and the local structures in
tures are extracted (by regionalization), selected, stored in théhe bred vectors are all concentrated and persist longer than
N columns of the matri¥ and assimilated by means of By.  usual in the region where the current sharply bends on itself.
Results of these experiments (not presented here) show son&uch type of a flow appears to be particularly unpredictable
improvements, that are not, anyhow, systematic. In particu-and, when this happens, the need to use the dynamically con-
lar, the sudden growth that appears at about day 980 in thsistent assimilation becomes imperative.
standard assimilation forecast and analysis errors of Bigs.  The results obtained show that the method is successful,
and10(continuous line), is not satisfactorily controlled. This even with a fixed observation network, in eliminating at least
depends on several factors. One of them is the presence of isome of the instabilities present in the forecast error, and
stabilities in deeper layers that can only be detected by mearthat, if still present after the analysis, are responsible for
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