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Abstract. We present a novel technique based on a multi-The Gutenberg-Richter power-law distribution of earthquake
resolutional clustering and nonlinear multi-dimensional scal-sizes (Gutenberg and Richter, 1944) implies that the largest
ing of earthquake patterns to investigate observed and syrevents are surrounded (in space and time) by a large number
thetic seismic catalogs. The observed data represent seisf small events (e.g. Wesnousky, 1994; Ben-Zion and Rice,
mic activities around the Japanese islands during 1997-2003.995; Wiemer and Wyss, 2002). The multi-dimensional and
The synthetic data were generated by numerical simulationsnulti-resolutional structure of this global cluster depends
for various cases of a heterogeneous fault governed by 3-Btrongly on geological and geophysical conditions (Miller
elastic dislocation and power-law creep. At the highest reset al., 1999; Ben-Zion and Lyakhovsky, 2002), past seis-
olution, we analyze the local cluster structures in the datamic activities (Rundle et al., 2000, 2002), closely associ-
space of seismic events for the two types of catalogs byated events (e.g. volcano eruptions) and time sequence of the
using an agglomerative clustering algorithm. We demon-earthquakes forming isolated events, patches, swarms etc.
strate that small magnitude events produce local spatio- Investigations on earthquake predictions are based on the
temporal patches delineating neighboring large events. Seisassumption that all of the regional factors can be filtered
mic events, quantized in space and time, generate the multisut and general information about the earthquake precursory
dimensional feature space characterized by the earthquakgatterns can be extracted (Geller et al., 1997). This extrac-
parameters. Using a non-hierarchical clustering algorithmtion process is usually performed by using classical statisti-
and nonlinear multi-dimensional scaling, we explore thecal or pattern recognition methodology. Feature extraction
multitudinous earthquakes by real-time 3-D visualization andinvolves a pre-selection process of various statistical proper-
inspection of the multivariate clusters. At the spatial resolu-ties of data and generation of a set of seismicity parameters
tions characteristic of the earthquake parameters, all of th¢Keilis-Borok and Kossobokov, 1990; Eneva and Ben-Zion,
ongoing seismicity both before and after the largest eventd997a, b), which correspond to linearly independent coordi-
accumulates to a global structure consisting of a few separatgates in the feature space. The seismicity parameters in the
clusters in the feature space. We show that by combining théorm of time series can be analyzed by using various pat-
results of clustering in both low and high resolution spacestern recognition techniques ranging from fuzzy sets theory
we can recognize precursory events more precisely and urand expert systems (e.g. Wang and Gengfeng, 1996), multi-
ravel vital information that cannot be discerned at a singledimensional wavelets (Enescu et al., 2002; Erlebacher and
resolution. Yuen, 2001, 2003) to neural networks (Joswig 1990; Dowla
1995; Tiira, 1999; Rundle et al., 2002; Anghel et al., 2004).
Prediction of earthquakes is a very difficult and challeng-
ing task (Geller et al., 1997); we cannot operate only at one
level of resolution. The coarse graining of the original data

Understanding of earthquake dynamics and development ofan destroy the local dependences b_etween_ the e\_/ents and the
forecasting algorithms require a sound knowledge and skillSolated earthquakes by, e.g. neglecting their spatio-temporal

in both measurement and analysis spanning various gecJg)calization. In coarse-grain analysis, the subtle correlations
physical data, such as seismic, electromagnetic, gravitabetweenthe earthquakes and preceding patches of events can

tional (Song and Simons, 2003), geodetic, geochemical, etC\_/anish in the background of uncorrelated and noisy data.
Multi-dimensional correlations can produce very distinct

Correspondence tdD. A. Yuen spatio-temporal patterns of seismic events. Tiampo et
(davey@krissy.geo.umn.edu) al. (2002a, b) provide recent evidence of event clustering in

1 Introduction
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Fig. 1. The principal steps of the knowledge extraction process. 3D~ 7D

The data spacé is represented by n-dimensional vectdfs of
measurementX . It is transformed to a new abstract spatef
vectorsY ;. The coordinates; of these vectors represent seismic
parameters, which are nonlinear functions of measuremgpts
The new feature¥; form N-dimensional feature space. The multi-
dimensional scaling procedure is used for visualizing the multi-
dimensional events in 3-D space for a visual inspection ofNhe
dimensional feature space.

Fig. 2. Schematic diagram of multi-resolutional analysis of seismic
events. At the highest level of resolution, a single seismic eivent
is represented as a multi-dimensional data vegtar These vec-
tors contain information about local properties of seismic patterns.
A general knowledge about the data has to be extracted from the
lower resolution feature space by using coarse graining proce-
dure L[®]. The MDS transformationM S [©2]—w maps the 7-D
feature space into its image in a 3-D space.

seismicity catalogs. In Dzwinel et al. (2003), we proposed
a new approach employing clustering for multivariate anal-amplification of their characteristic features, and suppres-
ysis of seismic data. The method can extract local spatiosjon of both the noise and other random components. The
temporal clusters of low magnitude events and recognize corew features; form an N-dimensional feature space. We
relations between the clusters and the large earthquakes. Wgse multi-dimensional scaling procedures for visualizing the
showed that these clusters could reflect clearly the short-terriulti-dimensional events in 3-D space. The Sammon’s non-
trends in seismic activities followed by isolated large events.|inear transformation (Jain and Dubes, 1988) (multidimen-
However, local clustering of seismic events is not sufficientsjonal scaling), transforms into a 3-DZ space of extracted
to extract an overall picture concerning the precursory patfeatures, assuming that this dimensionality reduction mini-
terns. mizes the distortions between thé-dimensional structure
Our analysis procedure does not use a standard softwaref Y ; vectors and its 3-D image i# space. This transfor-
package. Our goal is to construct an interactive system fomation allows for a visual inspection of thé-dimensional
data mining (Mitra and Acharya, 2003), which allows one to feature space. The visual analysis helps greatly in detecting
match the most appropriate clustering schemes for the strucsubtle cluster structures, not recognized by classical cluster-
ture of actual seismic data. As shown in Figs. 1 and 2, ouring techniques, selecting the best pattern detection procedure
data-mining techniques include not only various clusteringused for data clustering, classifying the anonymous data and
algorithms but also feature extraction and visualization techformulating new hypotheses.
niques. This present approach is more general than the work We used our methodology for analyzing the observed (Ito
of (Dzwinel et al., 2003). and Yoshioka, 2002; Toda et al., 2002) and synthetic (Ben-
In this paper we propose a novel muti-resolutional ap-ZiOﬂ, 1996) earthquake data. The observed data represent
proach, which combines local clustering techniques in theseismic activity of the Japanese islands in the 1997-2003
data space with a non-hierarchical clustering in the featurdime interval. The synthetic catalogs correspond to various
space. The raw data are represented timensional vec- ~cases of a large heterogeneous fault zone in an elastic half-
tors X; of measurementX;. The data space can be searchedSpace.
for patterns and be visualized by using local or remote pat- The reminder of the paper is constructed as follows. First,
tern recognition and advanced visualization capabilities. Thewve provide background material on multi-resolutional and
data spacg is transformed to a new abstract spdcef vec-  visual clustering and data-mining. Then we describe the
torsY ;. The coordinate$; of these vectors represent non- clustering and multi-dimensional scaling methods we use for
linear functions of measurementg, which are averaged in  recognition of seismic anomalies. This is followed by re-
space and time in given space-time windows. This transforsults of data analysis both for the observed and the synthetic
mation allows for coarse graining of data (data quantization) seismic catalogs. We show that the multi-resolutional ap-
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proach can indeed improve greatly the accuracy of followingcomputed as time and spaceX averages in a given time
the evolution of earthquake dynamics. Finally, we discuss[zy, tenp] and space intervals X[o, Xenp]=[x0, xenp] U

the conclusions and future prospects. [zo0, zenp] — epicentral coordinates and depth, respectively)
within a sliding time window with a lengtiA T and time step
dt,i.e.

2 Methodologies

IEND

2.1 Multi-resolutional analysis of multidimensional seis- «; = / / a(t,X)-H@o+i-dt,t)dtdX (1)

mic data 10 Xe[Xo,Xenpl

In Fig. 2, we show that the seismic data can be analyzed _AT _ AT

S : : ) : H(t.7) = 1for-5- <t -t <55 @
in diverse resolutions, associated with two different types of 7 (Z, 7) = 0 otherwise ,

spaces:

o . wherea represents one of the following seismicity param-
1. The first is the data spac® with data vectorsf; eters: NS, NL.CD,SR,AZ.TI, MR. The value ofds
(i=1,...,N) — which correspond to the data describing a \yas assumed to be equal to the average time difference be-
single seismic event. tween two recorded consecutive events whil& is equal
2. The second one, more abstract, is the feature spacEeO ab_out 1710 of the average tlme_dlstance between two suc-
cessive large events (for synthetic data6, for real data

Q of time eventsF; (j=1,...M) and M<KN — an ab- . .
stract space resulting from a non-linear transformation”>>)- Larger values oflr and AT give smoother time se-

L [®]—Q representing the feature generation proce-rles due to bettgr _statistics. Hoyve_ver, by increasingind
dure. AT poorer prediction characteristics can be expected. The
seismicity parameters are defined as follows (Eneva and Ben-
At the highest level of resolution, a single seismic everan 210N, 1997, b):
be represented as a multi-dimensional data vegtefm;, Degree of spatial non-randomness at shafS) and at
long distances N L) — represents the differences between

Zi, Xi, t;] wherem; is the magnitude ang;, z;, t; — its epi- S . .
central coordinates, depth and the time of occurrence regilstnbunons of event distances and distances between ran-

spectively. As shown in (Dzwinel et al., 2003), we can an- domly dist'ributed p'oints. NS.anq NL reprgsent the portions
alyze these data locally by looking for clusters with similar Of €vents involved in anomalies in short distances and long
(or dissimilar) events using the agglomerative clustering pro-distances, respectively (0-5km and 60-65km for the syn-
cedures (Andenberg, 1973: Gowda and Krishna, 1978: Jaiff'€lic catalogs, Eneva and Ben-Zion, 1997).

and Dubes, 1988; Theodoris and Koutroumbas, 1998). The
search for similar data is limited to successive time stripes
with the same widthAt. We are seeking neighbors of event

1. Spatial correlation dimensiorC(D) - calculated on the
basis of correlation integrals based on interevent dis-

i only in 7, and the previoug_1 time intervals. The poinj tances.

belongs to the nearest neighbors of eveifta given set of 2. Degree of spatial repetitivenesSK) — contains the
conditions is fulfilled (see Dzwinel et al., 2003). This allows spatio-magnitude. components and represents the ten-
us to identify correlated patches of events that reflect short- dency of events with similar magnitudes to have nearly
term trends in seismic activity initiated by rapid changes gen- the same locations of hypocenters.

erated by strong events. By combining similarity and dis-
similarity measures (Theodoris and Koutroumbas, 1998) be- 3. Average depth4Z).
tween the data vectors, we can extract also the patches of
small magnitude events corresponding to the isolated large
earthquakes. This type of data analysis extracts information
on the local properties of seismic patterns (Dzwinel et al., 5. Ratio of the numbers of events falling into two different
2003). However, this also generates a large number of extra-  magnitude rangesf R=N (m>Mg)/N (m<Mo).
neous clusters, which produce unreliable information over a
long timescale. We have introduced an additional paramé&rwhich is not
With the above procedure, we cannot extract generalused in the data processing and simply displays the maxi-
knowledge about the data, which requires the detection ommum magnitude of events in the moving time window.
long-range spatial and temporal correlations. This knowl- We focus our data analysis on the time series of seven seis-
edge has to be extracted from a global data structure in anicity parameters that create the abstract 7-dimensional fea-
low resolution spac&. We achieve this by using a coarse ture space of time event§ = (NS;, NL;, CD;, SR;, AZ;,
graining procedurd. [®]. This averages out the noise and T'I;, MR;) wheret are discretized values of time. These
detailed modes of the data vector components. events produce clusters, which correspond to similar (or dis-
The coordinates in the low resolution feature space are desimilar) fragments of a 7-dimensional time series. Thus the
fined by means of seismicity parameters. Originally they areclusters have information about the anomalies reflected by

4. Inverse of seismicity ratef{/) — time interval in which
a given (constant) number of events occurs.
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all the 7 parameters in the same moment of time. Becaus&ons. Each new initial configuration is constructed in a spe-
the number of clusters is generally unknown, and most of thecial way from the previous results by using the methods from
clustering methods are not able to extract the clusters of comflsmail and Kamel, 1989; Zhang and Boyle, 1991). The clus-
plicated shapes and densities accurately (Ertoz et al., 2003)er structure with the lowest(w, z) minimum is selected.

we propose to visualize the clustering structure in the feature

space. We use multi-dimensional scaling transformatigh 2.3 Multidimensional scaling (MDS)

[22]—w, which maps the 7-D feature spa@ento its image

in a 3-D space (Jain and Dubes 1988; Siedlecki et al., 1988; The feature extraction methods, called also mapping tech-
Theodoris and Koutroumbas, 1998; Dzwinel, 1994: Dzwinel Niques or multi-dimensional scaling (MDS), represent lin-
and Blasiak, 1999). From high-resolution 3-D visualization, €ar or non-linear transformations of N-dimensional data into
one can discern clearly how strong the clusters are and how-dimensional sets, where<N (Jain and Dubes, 1988;
they are positioned with respect to each other. This allowsSiedlecki et al., 1988; Theodoris and Koutroumbas 1998;
us to fine tune the clustering parameters or select a differeniPzwinel, 1994; Dzwinel and Blasiak, 1999). These meth-
C|ustering a|gorithm that matches better the Clustered strucods a”OW fOI’ ViSUaIiZation Of the mu|tidimensi0l’la| data in

tures. 3-D and for participating interactively the process of cluster
extraction.
2.2 Clustering schemes The MDS algorithm, which is based on the “stress func-

tion” criterion, is one of the most powerful mapping tech-
Clustering analysis is a mathematical concept whose maimiques. The goal is to maintain all the distances between
useful role is to extract the most similar (or dissimilar) sep- points R, cwc®”" in the Euclidean 3-D (or 2-D) space with
arated sets of objects according to a given similarity (or dis-a minimum error. The “stress function” criterion is as fol-
similarity) measure (Andenberg, 1973). This concept haSows:
been used for many years in pattern recognition. Nowadays 4
clustering and other feature extraction algorithms are recog£ (w w’) = Z D" (Dij — ri/j) = min, (4)
nized as important tools for revealing coherent features in j<i
the earth sciences (Rundle et al., 1997, 2000; Freed and Lirwhere:
2001), bioinformatics (Jones and Pevzner, 2004) and in data
mining (Xiaowei et al., 1999; Grossman et al., 2001; Hand’/;= (ri=rj)-(ri=r;), i, j=1 ..M.
et al., 2001; Hastie et al., 2001; Mitra and Acharya, 2003).
Depending on the data structures and goals of classification?:.; — S @ squared distances between pdRitsR; ewch”
different clustering schemes must be applied (Gowda and Krandr, rj.ew/CE3 — coordinates of the respective points in
ishna, 1978; Karypis and Kumar, 1999). 3-D Euclidean space and, d — parameters.

In our new approach we use two different classes of clus- The result of mapping depends on the quality of the mini-
tering algorithms for different resolution levels. In data Mum obtained for the criterion function (Eq. 4). The dimen-
space we use agglomerative schemes, such as modified mgtonality of the “stress function” domain is very high and is
tual nearest neighbor algorithm (mnn) (Gowda and Krishna,gdual toN - M (thousands, in typical problems). An increase
1978; Karypis et al., 1999; Boryczko et al., 2003). This type of the number of input data (more than3),0the dimension-
of clustering extracts better the localized clusters in the high-ality of source space and data complexity may cause the re-
resolution data space. sulting 2-D (3-D) patterns to be completely illegible. This is

In the feature space we are searching for global cluster®ften the case with application of standard numerical algo-
of time events comprising similar events from the whole fithms for finding minimum of this multimodal, non-linear
time interval. The non-hierarchical clustering algorithms are@nd complex criterion. To make the non-linear mapping use-
used mainly for extracting compact clusters by using globalful for visualization of greater¢/>10° and N>10?) data
knowledge about the data structure. We use improved kSamples, a new minimization technique extracting global
means based schemes (Theodoris and Koutroumbas, 1998Rinimum of the criterion function is required.
such as a suite of moving schemes (Ismail and Kamel, 1989), We propose to use the molecular dynamics algorithm
which uses the k-means procedure plus four strategies of itéPzwinel and Blasiak, 1999) as a solver, which can be used
tuning by moving the data vectors between k-clusters to obfor finding the global minimum of the criterion function
tain a more precise location of the minimum of the goal func- (EQ- 4). Let us assume that:
ton: 1. an initial configuration of\f mutually interacting “par-
J(2) = Z Z |xi — Zj|2, (3) ticles” is generated i3,

j ieCj

! ' 2. every “particle” corresponds to the respectiveé-
whereZ=(z, ..., ], z; is the position of the center of mass dimensional point fromi™,
of the clusterj, while x; are the feature vectors closestto
To find a global minimum of functiory (), we repeat many 3. the “particles” interact with each other witkd; ;
times the clustering procedures for different initial condi- particle-particle potential where
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Fig. 3. (a) The synthetic raw data (horizontal distanc&’;-depth —) visualized in time by using the Amira visualization packaggp:
Ilwww.amiravis.com for A data set (Ben-Zion, 1996). Large evenig6) are shown as distinctly larger dots on the background of

low magnitude eventsi(<4). There are visualized patches of low magnitude events preceding larger events (Dzwinel et al., 2003). The
patches represent clusters marked in col($ Seismic activities around the Japanese Archipelago within 5 years time period. We use the
hypocentral data provided by the Japan Meteorological Agency (JMA). The magnitude of the earthquakes (JMA magnitude) and their depths
are represented by differences of the radius of the circle and colors, respectively. The red stars symbolize large events such as: Chi-Ch
Taiwan earthquake (21 September 1999 M7.6 latitude 23.8 longitude 121.1) Swarm at Miyakejima (July 2000— August 2000 latitude 34.0
longitude 139.0) Western Tottori earthquake (6 October 2000 M7.3 latitude 35.3 longitude 133.4).

;) = %Di;wm . (Dij _ rl{j)d (5) 3 Description of the data
an_dk isa st_lffnes_s factor._Thus the interaction between eachye analyze the observed and synthetic earthquake catalogs
pair of particles is described by various long range poten<q; gifferent time intervals. The synthetic catalogs (Fig. 3a)
tials, dependent on the separation distance between particl§sare obtained by numerical simulations of seismicity on a
rij and the distanc®;; between respective multidmensional heterogeneous fault governed by 3-D elastic dislocation the-
points in®". To assure the energy dissipation from the SYS-ory, power-law creep and boundary conditions corresponding

tem, an additional friction force is introduced. Using the {4'the central San Andreas Fault (Ben-Zion, 1996).
“leap-frog” numerical scheme (Haile, 1992) the following '

formula for velocities and positions of “particles” can be de-
rived from the momentum equation:

The synthetic seismicity described in (Ben-Zion, 1996;
Eneva and Ben-Zion, 1997) is distributed in space (horizon-
tal distanceX, depthz), time r and magnituden size. A
n+1/2_ (1-9) VL2 aAt . %( " —D~)d71r" large 1857-type event is imposed at the south in the begin-
i T (l+e) ! (1+¢) ij— = ijf- ning of the simulation and a large 1906-type event is imposed

at the north 50 years later. We study catalogs from four dif-

j=1

Pl g Y2 A (6) ferentmodel realizations, representing various levels of fault
' ' ' zone heterogeneities. These are models with statistically uni-
o= f ¢ = > At, form brittle properties (U), with a Parkfield type Asperity
m 2m (A), with fractal brittle properties (F), and with multi-size-
wherev!, r!! —the velocity and position of particigrespec-  heterogeneities (M). The basic characteristics of the data are
tively, n — time-step numberp=1 — particle mass. given in Table 1. These models and various statistical prop-

As it is in molecular dynamics (Haile, 1992), the system erties of the catalogues have been discussed in greater de-
of “particles” described by the discrete Eqgs. (6) evolves intail elsewhere (Ben-Zion, 1996; Eneva and Ben-Zion, 1997).
time according to the Newton equations of motion until the The examined time interval covers every event, which oc-
global (or close to the global) minimum of Eq. (5) is reached. curred during the last 150 years of the simulated fault activity
Only two free parameters, andk, have to be fit to obtain  and this period contains 1=30* events in the magnitude in-
the proper stable state, where the final positions of frozerterval (3.3—6.8). The seismicity parameters were obtained by
“particles” reflect the result of N-D to 3-D mapping. averaging the data using a sliding time window of constant
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Table 1. Data specification.

Catalog  Total number of events  Time interval (years) Eventswitt6 Earthquake magnitude

JMA data 42370 5 62 3Im<7.90
U 32185 150 32 3.26m<6.68
A 25881 150 30 3.26m<6.73
F 10475 150 16 3.43m<6.73
M 29039 150 20 3.44m<6.81

like clusters in the data space. They precede large earth-
quakes £:>6) and are separated in time by the regions of
quiescence. Similar pattern can be observed in the feature
space.

In Fig. 4 we display the time series for two, out of seven,
seismicity parameters: the maximum magnitude of events in
the moving time windowV and the inverse seismicity rate
T'I, which define the time distribution of events. The seis-
micity parameters were computed both for the raw data set A
from the synthetic data catalog (“original data”) and for the

TIME same data set but randomized in time (“randomized data”).
These two sets of data were searched for clusters in the 7-
Fig. 4. The seismicity paramete#s! andM for the “original” and D feature spac&. For simplicity, only two clusters were
“randomized” synthetic data sets (set A). There is not any correla-considered. They are represented in Fig. 4 by red and white
tions between)/ and7'I for the randomize data. This is a contrast stripes.
to the original data set. As shown in Fig. 4, the and T/ time series from the
“original data” are highly correlated. The periodic occur-

£l . ) he i
days andir=2 days for the Japanese data ariti=10 months rence of large events with>6 is preceded by the increase

: . of the inverse of seismicity rat&/ (the region of quies-
anddt=2 months for the synthetic data. Each parameter in y ( 9 9

the clusteri lized with t to the stand (fence), which drops at the large event time. Similar corre-
deevi;tlijjnermg was normaiized with respect 1o the standarlqyiions can be seen for other seismicity parameters not dis-

. . .played in Fig. 4. The time intervals corresponding to these
. The observed data (;ee Fig. 3b) represents seismic aCt'\gapid changes of seismicity parameters produce one cluster
ities of the Japanese islands collected by the Japan Met

. , E‘('white), while the rest of them belong to the second cluster
orological Agency (JMA). The JMA catalogue consists of d M o , . T

. , th d t t t -

915829 events detected in Japan Islands between 1923 aéée ). Moreover, the periodic stripes representing time in

- ) rvals from the second cluster correspond to the clusters of
31 January 2003. The original catalogue includes also eventévents in the data space displayed in Fig. 3a. This shows that
with magnitudes less then 1.0. The lowest magnitudes wer

determined b . detection level. estimated f th fhe averaged properties of a variety of clusters from the data
etermined by Using a detection level, estimated irom espace (see Fig. 3a) are similar, producing a single superclus-
Gutenberg-Richter frequency-size distribution. For the pur-

oses of this paper we have assumed that the cutoff ma n|ter in the feature space.
P bap 9 It is obvious that clusters can be also found for the “ran-

tude of earthquake is equal to @£ 3). We do not use any : " .
L domized data”, however, they are completely meaningless —
cutoff depth of hypocenter events. The seismic events shown ] ) A
g : L i.e. computed in-cluster average correlations are statistically
in Fig. 3b, were recorded during the 5 years time interval. . . . -
irrelevant. This can be inspected visually in Fig. 4. The cor-
from 1 October 1997 to 31 January 2003. The data set pro-_~ ~ . . .
. A . . relations between seismicity parameters — including the cor-
cessed consists of 42370 seismic events with magnitudes . . N
I : . relation between the inverse of seismicity rdté and the
position in space (latitud&, longitudeY, depthz) and oc-

. - averaged magnitud®/ — do not exist for the “randomized
currence time. Statistical completeness of the earthquakes . . . . o
data”. It is also impossible to extract any distinct proper-

above the detection level assures that no significant events |{1 . :
. o ies separating the two clusters (e.g. by using the Karhunen-
both space and time are missing. . i
Loeve transformation, see e.g. Theodoris and Koutroumbas,
1998).
4 Results of clustering By comparing these results of clustering for original and
randomized data sets, we can conclude that seismic events
As shown in Fig. 3a and in (Dzwinel et al., 2003), the syn- create informative causal patterns, which can be extracted
thetic seismic events with magnitudes<4 produce stripe-  both in the data and feature spaces by using local and global

width AT and shiftdz (see Egs. 1-2). We emplay7=10
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clustering schemes, respectively. These patterns contain in-r=sssrEaisici s e i T2 6 E
formation concerning the correlations between characteris- 4 Al 3) T
tic features of seismic measurements and their temporal se-
quencing. This can be confirmed further by additional anal-
ysis of both the synthetic and observed seismic data.

In Fig. 5 we display the seismicity parameters in time com-
puted for the complete synthetic data catalog A. The time
eventsF,=(NS;, NL;, CD;, SR;, AZ;, TI,, MR,) produce
3 clusters in the feature space: the first cluster symbolized by
green, the second by white and the third by red strips. From
the top plot of Fig. 5 displaying the largest eveMsin the
sliding time window, we may conclude that the white and
red clusters comprise time evenks, which correspond to
post mainshock effects. The white cluster represents the ne';ig_ 5. The seismicity parametefd, NS, NL, CD, SR, AZ, T1
aftershock events while the red one includes the earthquakg,  in time (see Egs. 1-2) for syn{hetié data Ca@og'A. T
effects averaged in the sliding time window. Conversely, the
green cluster contains the time eveRtspreceding the earth-
quakes. The selectivity in time of the seismicity parameters

he widtlAT hif f the sliding ti
depends on the widtA 7" and shiftdr of the sliding time of events of different range of magnitudes differs con-

window. Due to space and time averaging, it is impossi- . - )
ble to correlate precisely the appearance of a given earth§'derably' Therefore, we divide the entire set of data

quake with the rest of the seismicity parameters when two'm0 'three subsets comprising the smal (f""<ma)’
ediumM (ma<m; < max) and the large magnitude events

earthquakes are too close to each other. Therefore, the &
(m;>max). The last ones represent the earthquakes and

guence of green-red-white cluster events can be broken fo% : I
the time domains with many large earthquakes (see Fig. 5):_;1re displayed in Figs. 5a and 5b as !arger spheres. The deep-
As shown in Fig. 5, the occurrence of the largest events coreSt earthquakes>150km are not displayed in the Fig. 5.

relates well with the minima oS, CD, SR, T1 and max- The various shades represent the magnitudes of earthquakes

ima of AZ, M R parameters. This means that the occurrencefrom m=6 (green) tom=7 (red). In Figs. 5a and 5b we

of large earthquakes is preceded by increasing spatial diffuPresent the clustering re_sults in the data sphesf the data
sion of events and increasing inverse of seismicity rate. More/SCtOrSfi €8 (mi <ma) (Fig. 5a) andf; €M (ma<m; < max)
specifically, the results reveal: (Fig. 5b). We have chosgnlarbltranly that=4 anq max:6_.
We look for clusters of similar events as shown in (Dzwinel
1. an increasing spatial randomness of seismic events, etal., 2003). The dots (data vectors), belonging to the same
clusters, have the same color.

2. atThgh spat!{alfclorrelatlon tollmensmn (this drops rapidly As shown in the upper part of Fig. 6a, clusters made of
atthe onset of large events), small size events are located mainly close to the surface (0—
3. adecreasing tendency of events with similar magnitudes30 km deep). They form long disparate stripes along the time

i
N> 0V OTO

-

o=

From the Gutenberg-Richter relationship, the number

to have nearly the same locations of hypocenters, axis. The stripes break-out close to the largest cluster of
. o o earthquakes — the Miyakejima event (Toda et al., 2002; Ito
4. a decreasing average depth of seismic activity, and Yoshioka, 2002) — located in the middle of time interval

. . L and encircled in red in Fig. 6a. The large swarm of earth-
5. anincrease of inverse seismicity rate before large events . ) . .
(it drops rapidly at the onset of large event). quakes (26 June 2000) occurs in the region of Miyakejima,

Honshu, in central Japan (Toda et al., 2002; Ito and Yoshioka,

For the synthetic data the clusters in the feature space refle002). The eruptions of Miyakejima and five large earth-
well both the precursory and post mainshock effects. How-duakes with magnitudes 6.0 and above occurred together
ever, the interpretation of clusters for the real data is moreWith alarge number of 100 000 smaller earthquakes.
complicated and ambiguous. Many other compact and small clusters are strongly corre-
Results of clustering of the observed Japanese seismic calated with this cluster. The second patch of large events en-
alogs both in data and in feature spaces are shown in Fig. &ircled in white in Figs. 6a and 6b — representing large swarm
At the highest resolution level a single seismic everdn be  of earthquakes in the northern part of Japan (see Fig. 2a) —
represented as a multi-dimensional data vegtot[m;, z;, is shown on the left hand side of the largest one. One can
X;, Y;, t;] where: m; is the magnitudeX; — the latitudeY; see clearly two clusters (encircled in blue in Fig. 6a) of simi-
— the longitudez; andy; — the depth and the time of occur- lar depth preceding these two largest patches of earthquakes.
rence, respectively. The seismic events are visualized wittOther clusters, such as the wide one spanned by a blue clus-
the Amira visualization packagéttp://www.amiravis.coym  ter and another smaller one, are located much deeper (larger
in Figs. 5a and 5b as an irregular cloud consisted of coloredhan 100 km) and represent the seismic background for the
dots with ¢,x, t) coordinates. earthquakes occurring at depth up to 200 km. Clusters of the
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Fig. 6. Natural seismic data (Ito and Yoshioka, 2002) analyzed by using multi-resolutional clustering in both the data and the feature spaces
(a)—(c) In panels a and b one can see the results of clustering in the data space for small magritugd)and medium magnitude
(4<m<6) events, respectively, represented by the small shaded dots. The different colors of the dots mean different clusters. Large events
are visualized by the larger spheres. The shades show difference in magnit(ass— the largest, green - the smallest). The clusters in
panels a-b encircled in red and white shows the places of the largest seismic activity, while those in blue probably represent the clusters of
precursory events. The red, white and green stripes in panel ¢ representing 4 (out of 7) seismic parameters and maximumMhagnitude
show the time events belonging to three different clusters. The earthquakes are visualized by using the 3-D Amira visualization package
(http://www.amiravis.com

medium events (4m <6) (Fig. 6b) have completely different feature space becomes more diverse producing several well
structures. They look like stripes, which lie parallel to X—z separated clusters. In Fig. 6¢, we show that by clustering
plane. The borders between clusters roughly correspond tdata in the feature space, we can extract not only Miyake-
the borders of successive showers of the earthquakes. jima event (red cluster in the center) but also the cluster of
By clustering the time events in the feature space ancEVents which are characterized by similar behavior of the
simultaneous inspection of the results by using multi- S€ismicity parameters as the Miyakejima swarm (green clus-
dimensional scaling, we have found 4 distinct clusters. Theter). The remaining data produce the white cluster. As
cluster structure in 7-D feature space is shown in Fig. 7ashown in Fig. 6c, the green cluster comprises time events
which represents the result of its mapping into 3-D. The bluecorresponding mainly to the largest and shallow earthquakes,
cluster forming a long thin rod in Fig. 7a, corresponds to theWhich are characterized by increasing randomness of event
famous Miyakejima earthquake swarm (Toda et al., 2002)Iocati0ns, low spatial correlation dimension which increases
encircled in red on Figs. 6a and 6b. The red and flat clustapidly in the moment of large shock, high spatial repetitive-
ter from Fig. 7a, represent both the largest earthquakes an@ess and high seismicity rate. The last properties are oppo-
corresponding time events. The yellow and blue clusters consite to those observed for the synthetic catalog A. The dif-
tain the rest of the time events. The small blue cluster fromferences are caused by the association of the two data sets
Fig. 6a represents the events at the end of the time intervalvith very different seismic regimes. Comparing the proper-
which are averaged within a shrinking time window. In sum- ties of red, green and white clusters we can conclude that the
mary, clustering of averaged time events in the feature spackrge swarm in the observed data is preceded and followed
does not detect any anomalies reflecting the precursory pafy events of a similar nature but considerably smaller mag-
terns. nitude. We note that the number of aftershocks is greater
In Fig. 6c we display the time series of selected seismic- than the number of precursory effects belonging to the same

ity parameters and in Fig. 7b the 3-D image of the feature9r€eN cluster.

space. Both pictures represent the data pre-selected initially The above results cannot be used yet for earthquake pre-
by clustering the raw seismic events in the data space. Onigliction. It is impossible to forecast earthquakes from just a
small and medium events belonging to the largest cluster§ingle case. However, continuing analysis of this type may
(displayed in Figs. 6a and 6b) were used for computing thehelp to find “dangerous” seismic patterns and predict salient
seismicity parameters. Neglecting the events that do not pro@spects of their evolution.

duce clusters in the data space, we reduce the number of un- The prediction of earthquakes is simpler for the synthetic
correlated events both in space and in time enhancing exdata, due to the simpler associated fault system (a single large
tremes in the time series of seismicity parameters. As showrstrike-slip fault), the completeness of the data and the time
in Figs. 7a and 7b, in comparison to the original data, theinterval covering many large earthquake cycles. Because the
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Fig. 8. Results from visual classification of the synthetic data (from
catalogs A and F, respectively) in the feature space transformed into

Fig. 7. The results of non-linear multi-dimensional scaling of 7-D . S ) ; .
clusters from the feature spaces defined by the seismicity parame% D space by using muilti-dimensional scaling (MDS). The time

ters computed for all the seismic events from the data space to 33\::2:3 :rrnz gMd fg)cz?é?j 2’:}% glrgg;) rSeO:edsaetr?t;i(ri f{g;;ﬁft ::g test
metric spacga) and the same data pre-selected initially by clus- g 0! P 9 9

: . - L .. sets, respectively. The classifier is constructed using teaching set
tering (b). The figures are rendered using the Amira visualization ™ . : ) .
) o of time events, which consists of two groups of events: preceding
package lfttp://www.amiravis.com

the earthquakes (green) and the others (violet). The preceding time
events were taken arbitrarily as the 10 nearest events to the corre-
o ) ) sponding earthquake. In the result of training we obtain two clus-

precursory events produce distinct clusters in both Fig. 4 anqers: green and violet. The same two groups of data are marked in

Fig. 5, we can construct a simple visual classifier (Jain andhe test set (preceding the earthquakes — blue, and the others — red).
Dubes 1988; Theodoris and Koutroumbas 1998) for recogWe see that all the blue points were attracted to the green cluster
nizing the precursory patterns. — taught initially as the cluster consisting of “precursory” events -
The entire time interval in the feature space has been diso all of them can be recognized as “precursory” (€.g. using k-NN
vided into two parts. The events from the first 2/3 of the in- classifier). This is visualized using the authors’ own package and
terval — approximately 700 events — represent the “teaching!® Porders of clusters are drawn manually.
set”, the rest — about 300 events — make up the “test set”.
From the “teaching set” we extract two uneven groups of .
events. The first one consisting of 10 successive time events  Conclusions
preceding each of the earthquakex(6) is shown in green in
Fig. 8. The rest of the events represent the second (pinkJ "€ pProblem of earthquake prediction, based on data extrac-
cluster from Fig. 8. The clusters are visualized by usingtion of precursory phenomena, is a highly challenging task.
multi-dimensional scaling in 3-D. Then, the distances (SeeVarious computational methods and tools are used for de-
Egs. 3—4) between events belonging to the same clusters w4gction of precursors by extracting general information from
multiplied by the factor.<1, while the distances between noisy data. In our opinion, such a generalization is impossi-
events from different clusters remain the same. The value oPle when the data analysis is carried out at a single level of
A is gradually decreasing to the moment when the two clusJesolution. Improved possibilities exist when using a set of
ters separates from each other. For the situations shown iflata-mining tools interactively, allowing for on-line cluster-
Fig. 81 is set to 0.8. The events from the “test set” (the blue ing, feature extraction and visualization of the data on vari-
points) are added to this “teaching” structure, with the de-0Us levels of resolution.
termined coordinates in 3-B space. They are “attracted” We show that by using a common framework of clustering,
or “repelled” from the “teaching” clusters according to their we are able to perform multi-resolutional analysis of seis-
distances to the events from the “teaching set”. Eventuallymic data starting from the raw data events described only by
we obtain the configurations shown in Fig. 8. The precur-their magnitude-spatio-temporal data space. Then we look
sory events from the test set marked in blue (10 events prefor global cluster structure in the feature space, which is de-
ceding the earthquake) were recognized at 100% level fofined by using the seismicity parameters. This global view
synthetic data sets A, U, F. The blue points fall into the areacan also be divided over different levels of resolution in the
occupied by the green cluster representing precursory evenf€ature space defined, e.g. by wavelet analysis (Holschnei-
from the “teaching set”. They can be classified by using sim-der, 1995; Strang and Nguyen, 1996) of the time series of the
ple k-NN (k nearest neighbors) classifier. We see that manyeismicity parameters (Torrence and Compo, 1998) and fur-
other points are also situated in the area of a green clustether classification of wavelet amplitudes by using clustering
However, the choice of precursory events for training wasschemes.
completely arbitrary. By using a more careful analysis of Our present approach is different from that presented ear-
seismicity patterns, such as in (Eneva and Ben-Zion, 1997a)jer (Dzwinel et al., 2003). The fine-grained spatio-temporal
and a better selection of “teaching” patterns, we can improvepatterns of correlated events, extracted by using agglomera-
the classification. tive clustering schemes, can be analyzed further in the coarse
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grained feature space by eliminating the noisy patterns and — data space — the multidimensional space in which the
uncorrelated events. We have developed a new software that data vectors'; exist.

is based on pre-clustering. This allows for the detection of
precursory events with a higher accuracy (e.g. pick-up the
Miyakejima event) and their generalization at the low resolu-
tion level. It also allows us to construct visual classifiers for

— feature space— the multidimensional space in which
the F; vectors are defined. Data and feature vectors
represent multidimensional points in respective spaces.

anonymous data. We believe that a more careful extraction — class — the category to which a given object belongs.
of the precursory events will be needed for constructingmore  The classes can create patterns in a properly defined
accurate classifiers. multidimensional space.

The raw seismic data contain both local and global knowl-
edge of the correlations between the seismic events. Thus,
the two-level approach presented here can still be incom-

cluster — isolated set of multidimensional points (ob-
jects) in data and feature spaces.

plete, since the general knowledge about the seismic back- — clustering — the computational procedure extracting
ground can be buried in the subtle patterns of data events. clusters in multidimensional spaces.

Any coarse graining of the data can destroy some, if not
a majority, of these patterns. Therefore, extracting global
knowledge about seismic patterns corresponding to precur-
sory events involves global clustering of data without any

averaging. This is a very daunting task both methodolog-
ically and computationally. In particular, great difficulties

are associated with the irregular structure of seismic data,

— agglomerative clustering algorithm — the algorithm
of a clustering procedure in which the clusters are built-
up in a hierarchical way. At the start of clustering,
the multidimensional points represent singular clusters.
The procedure repeats the process of gluing-up the clos-
est clusters to the moment when a proper number of
clusters is achieved.

which comprise many noisy events, different accuracy of

measurements, outliers, bridges, clusters of different density — non-hierarchical clustering algorithm - the cluster-
and the large number of data vectors (greater th&pbich ing algorithm in which the clusters are searched for
have to be processed. This problem can be attacked by us- by using global optimization algorithms (unlike in ag-
ing modern non-hierarchical clustering schemes, such as the  glomerative clustering where local search is exploited).
DBSCAN (Sander et al., 1998), CURE (Guha and Rastogi, The most representative algorithms of this type are con-
1998), CHAMELEON (Karypis, 1999) or the shared nearest structed on the base of k-means procedure.

neighbor clustering algorithm (SNNCA) (Ertoz, 2003).

This new methodology can be also used for the analysis
of the data from other geological phenomena, e.g, we can
apply this clustering method to volcanic eruptions (Amelung
et al., 2000; Hong et al., 2004), astrophysical events such as

— k-means clustering (Theodoris and Koutroumbas,
1998) — non-hierarchical clustering algorithm in which
the randomly generated centers of clusters are then im-
proved iteratively. This simple idea is exploited in vari-
ous variants of this algorithm.

dissipation phenomena, occurring in a dispersed stellar popu-

Glossary

lation (Briceno et al., 2001) also in data mining and bioinfor- — multi-resolutional clustering analysis — due to clus-
matics (Kuramochi and Karypis, 2001; Jones and Pevzner, tering a hierarchy of clusters can be obtained. The anal-
2004). ysis of the results of clustering in various resolution lev-

els allows for extraction of knowledge hidden in both
local (small clusters) and global (large clusters) similar-
ity of multidimensional points (objects).

— data mining (Mitra and Acharya, 2003) — algorithms,
— featuresdenotedyf; or F; (i, j —feature indices) — a set tools, methods and systems used in extraction of knowl-
of variables which carry discriminating and characteriz- edge hidden in a large amount of data.
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