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Abstract. Three different potential predictors of forecast
error – ensemble spread, mean errors of recent forecasts
and the local gradient of the predicted field – were com-
pared. The comparison was performed using the forecasts of
500 hPa geopotential and 2-m temperature of the ECMWF
ensemble prediction system at lead times of 96, 168 and
240 h, over North America for each day in 2004. Ensemble
spread was found to be the best overall predictor of abso-
lute forecast error. The mean absolute error of recent fore-
casts (past 30 days) was found to contain some information,
however, and the local gradient of the geopotential also pro-
vided some information about the error in the prediction of
this variable.

Ensemble spatial error covariance and the mean spatial er-
ror covariance of recent forecasts (past 30 days) were also
compared as predictors of actual spatial error covariance.
Both were found to provide some predictive information, al-
though the ensemble error covariance was found to provide
substantially more information for both variables tested at all
three lead times.

The results of the study suggest that past errors and local
field gradients should not be ignored as predictors of fore-
cast error as they can be computed cheaply from single fore-
casts when an ensemble is not available. Alternatively, in
some cases, they could be used to supplement the informa-
tion about forecast error provided by an ensemble to provide
a better prediction of forecast skill.

1 Introduction

It is now accepted that the potential value of weather fore-
casts can be greatly enhanced if some information concern-
ing the uncertainty of the prediction is also available (Zhu
et al., 2002; Palmer, 2002). This information may take the
form of a classification of forecasts into “low” and “high”
predictability (Ziehmann, 2001), or a quantitative estimate of
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the likely error in the forecast of a continuous quantity, or a
fully probabilistic prediction that provides an estimate of the
probability distribution of a weather variable. Whatever the
exact form of the information, the meteorological commu-
nity now increasingly subscribes to the mantra ofTennekes
et al.(1987) that“No forecast is complete without a forecast
of forecast skill!” There is now a widespread appreciation
that providing forecasts without acknowledgement, let alone
quantification, of uncertainty is not tenable.

Probably the most straightforward method to estimate the
likely error of a quantitative forecast is to base the esti-
mate on past forecast errors. This method was used by An-
dersÅngstr̈om to produce probabilistic frost forecasts in the
1920s (Liljas and Murphy, 1994). This approach can be re-
fined by conditioning the error statistics on such things as
time of year, or even meteorological conditions. Such con-
ditioning cannot be carried too far, however, or one ends up
calculating the statistics based on too few cases.

In the 1960s, it was recognized that the atmosphere is a
chaotic system – its evolution is sensitive to its initial state
– and also that the predictability of the atmosphere isstate
dependent, changing from day-to-day depending on atmo-
spheric conditions (Lorenz, 1963, 1965, 1968). This dis-
covery motivated the development ofensemble forecasting
in which multiple simulations are made using a numerical
weather prediction model (Epstein, 1969; Leith, 1974). The
simulations differ in their initial conditions and/or the details
of the model used. These perturbations are made in an ef-
fort to estimate the impact of errors in the initial condition
or in the model on the accuracy of the final forecast (Palmer,
2000). Model error can make a significant contribution to
forecast error (Orrell et al., 2001) and this has motivated the
development ofmulti-model ensembles(Palmer et al., 2005).
Several different ensemble systems have been shown to have
“spread-skill relationships”, that is the spread of the ensem-
ble defined using a measure such as standard deviation or
mean absolute deviation, is correlated with the variance of
error between the verification and the mean of the ensemble
(e.g.Whitaker and Loughe, 1998).
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While ensemble forecasts have become a standard tool
at several operational forecasting centres (Houtekamer and
Derome, 1995; Molteni et al., 1996; Toth and Kalnay, 1997;
Stensrud et al., 1999), other potential predictors of forecast
error should not be neglected. This paper presents a compar-
ison of three predictors: the spread of an ensemble, the mean
error of past forecasts, and the local gradient of the predicted
field in the ensemble control member. The latter two predic-
tors are, in terms of computation, much cheaper than calcu-
lating the ensemble spread as they do not require multiple in-
tegrations of an NWP model. Also, the mean error of recent
forecasts provides a baseline level of error predictability as
it should capture persistent spatial structure in the error field
as well as smoothly varying temporal structure – such as any
seasonal variation in errors. This baseline error predictabil-
ity should also be captured by the ensembles but in addition
the ensembles should also capture day-to-day temporal varia-
tions in predictability if the extra computational expense is to
be justified. This analysis is then extended to the problem of
predicting spatial error covariances. A prediction of how the
forecast errors at two different locations are likely to be cor-
related is potentially valuable information to a forecast-user
whose risk or utility depends upon the weather at both loca-
tions. Ensemble error covariances and past error covariances
are compared as potential predictors of error covariance.

2 Forecast data

The forecast data used in this study were provided by the
European Centre for Medium Range Weather Forecasting.
The ensemble forecasts were produced by the ECMWF en-
semble prediction system (EPS) (Molteni et al., 1996). Each
ensemble consisted of a control member, initialized with the
best estimate of the current state of the atmosphere obtained
using a 4D-var data assimilation scheme, and 50 other mem-
bers initialized with their initial conditions perturbed in the
space of the leading 25 singular vectors. Two fields, the
500 hPa geopotential and the 2-m temperature, were studied
at three forecast lead times: 96 h, 168 h and 240 h. Although
the ECMWF EPS forecasts are global only the forecasts
over North America were analysed (30◦ N–70◦ N, 130◦ W–
60◦ W). The forecasts issued on the 356 days starting with 1
January 2004 were used in the study. The numerical model
used in the ECMWF EPS is a T255 spectral model but all the
calculations described in this paper were conducted on fore-
casts and analyses projected onto a 1◦

×1◦ latitude-longitude
grid.

The ECMWF operational analysis was used as the veri-
fication. In practice the purpose of numerical weather pre-
diction is to predict actual observed weather conditions at
specific locations. However, even under the assumption that
an NWP model is “perfect” it still only predicts values of
weather variables at scales commensurate with the resolu-
tion of the model. Some type of downscaling scheme, there-
fore, should be applied before the model is compared with
observations. To avoid this additional complexity, and the

possible ambiguity as to whether the origin of forecast errors
lies in the numerical model or in the downscaling scheme,
the model’s own analysis was used for forecast verification.

3 Predictors of forecast error

The forecast error in this study is defined as the absolute error
of the control (unperturbed) member of the ensemble. When
using ensemble forecasts the forecast error is often defined as
the error of theensemble mean. This definition was not used
in this study because part of the motivation for the investi-
gation was to determine the usefulness of other predictors of
forecast error that are available even in the absence of an en-
semble forecast, and obviously if no ensemble is available
then an ensemble mean cannot be calculated.

The three predictors of forecast error analysed in this study
are described below.

– Ensemble spread: If φk is the value of the forecast vari-
able in thekth member of the ensemble then the ensem-
ble spread of anN -member ensemble is defined, in this
study, as the standard deviation of the ensemble, given
by

SPREAD=
1

N − 1

√√√√ N∑
k=1

(
φk −

1

N

N∑
k=1

φk

)2

(1)

“Spread-skill” relationships normally refer to the rela-
tionship between ensemble spread and the error of the
ensemble mean, not the control forecast which is a sin-
gle ensemble member. However, since the ensemble
control, or indeed any ensemble member, is an estima-
tor of the ensemble mean, a relationship between the en-
semble mean and the error of any single member should
also exist.

– Mean past error: The average past error used was the
mean absolute error of the control forecast averaged
over the most recent 30 daily forecasts for which verifi-
cations would be available. The average was calculated
for each gridpoint. This predictor should reflect any
persistent dependencies of error on location and also to
some extent, the seasonality of forecast errors. For the
forecast issued on dayT with a lead time ofL days, the
mean past error is defined as

PAST=
1

30

T−L−1∑
t=T−L−30

|verificationt − controlt| (2)

Note that the most recent forecast used to calculate this
quantity is the one issuedL+1 days ago, as this is the
most recent forecast for which a verification is available.
The choice of 30 days was made as a trade off to obtain
a reasonably representative estimate of the mean error
while still allowing smoothly varying temporal varia-
tions in error variation that might be associated with the
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seasonal cycle to be captured. Error histories ranging
from 10 to 60 days were also tried as predictors. His-
tories of less than 30 days yielded inferior predictions –
a 10 day history typically explains about one-third less
variability in error magnitudes, while histories of 40 to
60 days offered no improvement over 30 days.

– Local gradient: If φ0(x, y) is the forecast variable in the
control member of the ensemble then the local gradient
of the predicted field is given by

GRADIENT =

√(
∂φ0

∂x

)2

+

(
∂φ0

∂y

)2

(3)

The rationale behind this predictor is that some forecast
errors can be characterized as distortions or displace-
ments of the forecast field (Hoffman et al., 1995). In
such cases, the error at a given location is likely to be
larger if the local spatial gradient of the predicted field
is large. This predictor shares a similar philosophy to
the idea of “neighbourhood ensembles” used byTheis
et al. (2005) for precipitation forecasting. The neigh-
bourhood ensemble approach essentially creates an en-
semble by using predictions from a neighbourhood of
gridpoints defined in both space and time. This ap-
proach is also an attempt to account for spatial displace-
ments and timing errors in the forecast. The numerical
value of the GRADIENT predictor was estimated using
midpoint finite differencing on a 1◦ grid, taking into ac-
count latitudinal differences in gridpoint size.

Figure1 is a density estimate of absolute forecast errors
of the ECMWF control member of 500 hPa geopotential, at a
lead time of 96 h, plotted against each of the three predictors
described above. The density plot was calculated by aggre-
gating each of the 41×71 gridpoints over North America,
for each of the 322 days in the dataset (the first 34 days of
2004 were required to calculate the mean past error of 30
verified 96 h forecasts leading up to February 4). The coef-
ficients of linear correlation between the forecast error and
the ensemble spread, the past errors and the local gradient
respectively are 0.43, 0.27 and 0.25. These correlations may
not appear to be particularly high but it must be remembered
that the predictors are not predicting the actual magnitude of
the forecast error butthe width of the distribution from which
the error will be drawn. As Houtekamer(1993) has pointed
out, even under highly idealized circumstances spread-skill
relationships are unlikely to show correlations greater than
about 0.8.

A better idea of the relationship between the predictors of
forecast error and the forecast error itself can be obtained
if the mean absolute errors of many forecasts with similar
values of the relevant predictor are calculated and plotted
against the value of the predictor. Such plots are shown in
Figs. 2–4 for the 500 hPa geopotential at lead times of 96,
168 and 240 h and in Figs.5–7 for 2-m temperature, also at
lead times of 96, 168 and 240 h. These plots were constructed

by sorting the forecasts at each of the 2911 gridpoints, and
for each day of the 326-L days starting on 31 January 2004 +
L days (whereL is the lead time of the forecast in days) into
ascending order of the value of the predictor variable under
examination. The mean absolute forecast errors of succes-
sive blocks of 1000 forecasts were then calculated. These
mean errors are plotted against the mean value of the predic-
tor for the 1000 forecasts in the block. The horizontal bars
in Figs.2–7 denote the range of the predictor values in each
block of 1000 forecasts. The vertical bars represent the stan-
dard error in the mean forecast error for those 1000 forecasts.

Examination of Figs.2–7 indicates that all three predictors
provide some information about the expected magnitude of
the forecast error. The ensemble spread generally exhibits the
cleanest, most linear, relationship over the largest range of
forecast error. This ability to predict a larger range of forecast
error suggests that is has the most predictive power, although
it is difficult to assess relative predictive power from graph-
ical plots alone. A more quantitative analysis is provided in
the next section. The slope of the ensemble spread-mean er-
ror line is sometimes close to, or even less than, unity. This
is not necessarily an indication that the ensemble is overdis-
persive. If the errors are normally distributed the expected
value of theabsolute errorwill be

√
2/π times the standard

deviation of the distribution, so even if the ensembles were
perfect the slope of the lines in Figs.2–7 would be about
0.80. In addition, the spread of the ensemble is not exactly
equal to the spread of the underlying distribution from which
the ensemble is drawn, sometimes it will be less than the
spread of the “true” distribution. To produce the plots the
ensemble spreads are sorted into ascending order and thus,
by construction, those forecasts where the ensemble spread
underestimated the true spread of the ensemble distribution
will tend to be at the low end, while the cases when the en-
semble spread overestimated the true spread will tend to be
at the high end.

The mean past error also has a reasonably linear relation-
ship with forecast error, although over a smaller range which
suggests it is less able to predict very large or small forecast
errors. The mean forecast error is also approximately linear
in the local field gradient for the 500 hPa geopotential fields
although not for the 2-m temperature fields. For 2-m temper-
ature the local field gradient is only a reasonable predictor
for relatively small forecast errors. In the case of the 500 hPa
geopotential the slope of the line represents a rough estimate
of the horizontal scale of field displacements and distortions
that are contributing to the local error. For the lead times of
96 h, 168 h and 240 h the slopes are approximately 60 km, 75
km and 100 km, respectively.

4 Multi-predictor analysis

To better quantify the relative amounts of information about
forecast uncertainty provided by the three predictors a simple
linear model was used,

ê = a[SPREAD] + b[PAST] + c[GRADIENT] + d (4)
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Fig. 1. Density estimates of “spread-skill” relationships of the ac-
tual forecast error,|verification−control| against the three predic-
tors of forecast error:(a) ensemble spread,(b) average error of the
most recent 30 daily forecasts for which the verification would be
available and(c) local field gradient. The forecasts used were the
ECMWF ensemble forecasts of the 500 hPa geopotential over North
America at a lead time of 96 h initialized on each of the 322 days
starting with 4 February 2004. Density is given in arbitrary units.

where ê is the estimated magnitude of the forecast error.
Equation (4) is essentially an extension of the models used
by Gneiting et al.(2005) andJewson et al.(2004) to predict
error as a linear function of ensemble spread1. In addition a
simple linear model that used only the mean past error and

1In the present study, ensemble standard deviation was used to
predict error magnitude whereasGneiting et al.(2005) used ensem-
ble variance to predict error variance, so even without the extra pre-
dictors Eq. (4) is slightly different from their equation.Jewson et al.
(2004) used a linear function of standard deviation, as in this study.

Fig. 2. Plots of the mean forecast error,〈|verification−control|〉, of
sets of 1000 forecasts with similar values of the three predictors of
forecast error:(a) ensemble spread,(b) average error of the most
recent daily forecasts for which the verification would be available
and(c) local field gradient. The horizontal bars represent the ranges
of the values of these predictors for each of the 1000 forecasts used
to calculate each mean error (for lower values of the predictors these
ranges are too small to yield visible bars). The vertical bars rep-
resent the standard error in the estimate of the mean forecast er-
ror. The forecasts used were the ECMWF ensemble forecasts of
the 500 hPa geopotential over North America at a lead time of 96 h
initialized on each of the 322 days starting with 4 February 2004.

the local gradient as predictors was also used,

ê′
= b′

[PAST] + c′
[GRADIENT] + d′ (5)

The model coefficients were determined using a least-
squares fit. Table1 shows the percentages of variance of ab-
solute forecast error explained by linear fits to each predictor
individually and also to the linear combination of mean past
error and local gradient (Eq.5) and to all three predictors
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Fig. 3. As Fig. 2 but for a lead time of 168 h. First forecast was
issued on 7 February 2004.

(Eq. 4). These percentages are given by the squares of the
coefficients of linear correlation between the error magnitude
and the predictors, or the combination of predictors. The
percentages given in Table1 are the means obtained from
50 datasets constructed by bootstrap resampling the original
dataset. For the purposes of resampling the dataset was di-
vided into blocks 15◦ in longitude×15◦ in latitude×5 days
in time. The blocks were then randomly resampled with re-
placement to create the 50 datasets. The standard deviations
given in Table1 were also estimated from the 50 resampled
datasets. This bootstrap resampling in blocks was done to
take account of spatial and temporal correlations in the fore-
cast error.

From Table1 it can be seen that, in the case of the 500 hPa
geopotential, the ensemble spread alone predicts the error
magnitude almost as well as all three predictors combined
at all three lead time times examined. However, both the
mean past error and the local field gradient contain some in-

Fig. 4. As Fig.2 but for lead time of 240 h. First forecast was issued
on 10 February 2004.

formation about the error magnitude. Furthermore, the com-
bination of these latter two predictors contains an appreciable
amount of information. While the ensemble spread provides
more information than the mean past error and the local gra-
dient it must be remembered that these latter two predictors
are computationally much cheaper and will be available even
when multiple simulations from an NWP model are not. The
ensemble spread is also the best predictor of 2-m temperature
error, but for this variable the mean past error provides an ap-
preciable fraction of information, while the local gradient is
a poor predictor of error magnitude. Although the ensemble
spread explains a larger amount of the variation in the mag-
nitude of the forecast error than the mean past error or the
local gradient, the fact that all three predictors explain more
than either predictor alone indicates that the predictors are,
to some degree, providing independent information about the
magnitude of the error.
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Fig. 5. Plots of the mean forecast error,〈|verification−control|〉, of
sets of 1000 forecasts with similar values of the three predictors of
forecast error:(a) ensemble spread,(b) average error of the 30 most
recent daily forecasts for which verifications would be available and
(c) local field gradient. The horizontal bars represent the ranges of
the values of these predictors for each of the 1000 forecasts used to
calculate each mean error (for lower values of the predictors these
ranges are too small to yield visible bars). The vertical bars rep-
resent the standard error in the estimate of the mean forecast error.
The forecasts used were the ECMWF ensemble forecasts of the 2-m
temperature over North America at a lead time of 96 h initialized on
each of the 322 days starting with 4 February 2004.

Table 1 was calculated by aggregating all gridpoints.
Therefore it describes the ability of the predictors to explain
thespatio-temporalvariation in forecast error. It is conceiv-
able that a predictor might only explain spatial variation –
that the errors at one gridpoint are, on average, smaller than at
another gridpoint – without providing any information about

Fig. 6. As Fig. 5 but for a lead time of 168 h. First forecast was
issued on 7 February 2004.

the temporalvariation – how the error at a given gridpoint
changes from forecast to forecast. While a good ensemble
prediction system should explain such spatial variability in
errors it should also be able to explain temporal variability
because other predictors, particularly the average past errors,
can capture purely spatial variability far more cheaply. The
variability in error explained by the ensemble beyond that
explained by the mean past error provides an approximate
indication of how much of the error variability is temporal,
rather than spatial. In this sense, the mean past error pro-
vides a control that accounts for spatial variability and also,
to some extent, smoothly varying temporal variability, such
as that associated with the seasonal cycle. A more explicit
way of assessing how much purelytemporalvariability in
errors is explained by the different predictors is to exam-
ine the correlations between the different predictors and the
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magnitude of the error at each gridpoint individually. This is
done in Table2. The percentages of variation explained were
obtained by averaging the percentages of temporal variabil-
ity explained at each gridpoint. Therefore in this case spatial
error variation has been removed from the analysis although
the past mean error predictor should still provide information
about smoothly varying temporal error variability.

An examination of Table2 indicates that the ensemble
spread explains significantly more temporal variability in the
forecast error than the other two predictors for both variables
at all three lead times. This suggests that the relatively high
percentage of the error variability explained by the mean past
error in Table1 is due to purely spatial variability in the fore-
cast errors.

5 Predicting spatial error covariance

Forecast products are now available that provide quantitative
information about the uncertainty of predictions of particu-
lar variables at given locations for different lead times. Such
information tells forecast users aboutunivariateerrors, that
is, one dimensional probability distributions. For some de-
cisions, however, more sophisticated decision-making strate-
gies require information aboutmultivariateerrors, or infor-
mation about error covariances. For example, if a power
company has two major power consuming cities in its re-
gion it would be helpful to know the likely magnitude of the
errors in the temperature forecasts for these cities as these
errors will translate into errors in predicted energy demand.
Furthermore, knowing thecovarianceof these errors would
be useful. If the errors are positively correlated then if it is
colder than expected in one city it is also likely to be colder
than expected in the other city, implying greater overall de-
mand in the region. On the other hand, if the errors are nega-
tively correlated then if it is colder than expected in one city it
is likely to be warmer than expected in the other city, suggest-
ing that the demand errors for each city will, at least partly,
compensate for each other and result in a smaller error in the
overall demand. Forecast users whose utility depends on the
weather at multiple locations may benefit from information
concerning the spatial covariance of forecast errors.

The relative usefulness of the ECMWF ensemble, and of
recent errors of the control forecast, for predicting error co-
variances was compared. The use of recent error covariances
essentially provides a baseline predictor which should be ca-
pable of capturing persistent structure in the error covariance
field, including the fact that error covariances of widely sep-
arated points is likely to be zero. If the ensemble covariance
outperforms the historical predictor then it must be predict-
ing more than relatively stable structures in the error covari-
ance field and must also be predicting features in the error
covariance field that vary from forecast to forecast. The lo-
cal gradient of the predicted field was not used as a predictor
for this part of the study as it is not clear how this relatively
simple quantity might be related to spatial error covariances.

Fig. 7. As Fig. 5 but for a lead time of 240 h. First forecast was
issued on 10 February 2004.

Let ci be the value of the control forecast at gridpointi,
and letvi be the value of the verification at gridpointi. Fur-
thermore, letei,k be the value of thekth ensemble member at
gridpointi. The actual error covariance between gridpointsi

andj can be defined as

COV(i, j)act = (vi − ci) · (vj − cj) (6)

The error covariance of anN -member ensemble can be de-
fined as

COV(i, j)ens=
1

N

N∑
k=1

(ei,k − ci) · (ej,k − cj) (7)

The mean past error covariance was defined as the mean
value of COV(i, j)act averaged over the most recent 30 fore-
casts for which verifications would be available.



1028 M. S. Roulston: Predicting forecast error

Table 1. The percentages ofspatio-temporalvariation in forecast error magnitudes explained by individual linear fits to the three predictors
used in this study, and to a linear combination of past error and local gradient and to all three predictors combined. These percentages were
determined across all gridpoints and thus include both spatial and temporal variations. The standard deviations were estimated by bootstrap
resampling of the data, with replacement. The data were resampled in blocks of 15◦ in longitude×15◦ in latitude and 5 days in time, this
was to account for spatial and temporal correlations in the forecast error.

forecast lead ensemble mean past local 2 predictors 3 predictors

variable time spread error gradient

500 hPa GP 96 h 18.4 ± 0.5 7.2 ± 0.1 6.1 ± 0.1 11.2 ± 0.2 19.1 ± 0.5

500 hPa GP 168 h 16.3 ± 0.6 9.8 ± 0.5 3.7 ± 0.2 11.6 ± 0.4 16.9 ± 0.5

500 hPa GP 240 h 16.0 ± 0.7 8.4 ± 0.3 2.6 ± 0.3 9.7 ± 0.4 16.1 ± 0.7

2 m TMP 96 h 14.7 ± 0.7 13.1 ± 0.4 1.7 ± 0.1 13.9 ± 0.4 20.7 ± 0.1

2 m TMP 168 h 17.6 ± 0.2 12.7 ± 0.6 0.7 ± 0.04 13.0 ± 0.6 19.7 ± 0.4

2 m TMP 240 h 19.2 ± 1.1 12.2 ± 0.5 0.3 ± 0.01 12.4 ± 0.5 19.9 ± 1.0

Table 2. The percentages oftemporalvariation in forecast error magnitudes explained by individual linear fits to the three predictors used in
this study, and to a linear combination of past error and local gradient and to all three predictors combined. The percentage of variation at
each gridpoint was determined separately and the mean of these percentages is given. This means that purely spatial error variation (the fact
that some gridpoints have smaller errors than other gridpoints) is not included in these estimates. The standard deviations were estimated by
bootstrap resampling of the data, with replacement. The data were resampled in blocks of 15◦ in longitude× 15◦ in latitude and 5 days in
time, this was to account for spatial and temporal correlations in the forecast error.

forecast lead ensemble mean past local 2 predictors 3 predictors

variable time spread error gradient

500 hPa GP 96 h 15.9 ± 0.6 3.5 ± 0.3 7.7 ± 0.3 4.4 ± 0.3 17.3 ± 0.6

500 hPa GP 168 h 12.2 ± 0.5 4.7 ± 0.4 5.6 ± 0.3 5.1 ± 0.3 13.6 ± 0.5

500 hPa GP 240 h 11.5 ± 0.6 4.2 ± 0.3 4.9 ± 0.1 4.7 ± 0.3 13.1 ± 0.6

2 m TMP 96 h 10.8 ± 0.6 6.2 ± 0.3 3.6 ± 0.2 8.6 ± 0.3 15.5 ± 0.5

2 m TMP 168 h 11.9 ± 0.6 5.6 ± 0.4 2.2 ± 0.1 6.8 ± 0.4 13.9 ± 0.5

2 m TMP 240 h 12.3 ± 0.5 5.6 ± 0.4 1.6 ± 0.05 6.3 ± 0.4 13.6 ± 0.5

As with conventional, univariate, spread-skill relation-
ships there is large amount of scatter when actual error co-
variances are plotted against ensemble covariances, or mean
past covariances. As before, the mean actual covariances of
1000 forecasts with similar values of the relevant predictor
were plotted against the mean value of the predictor. These
plots are shown in Figs.8–13. As in Figs.2–7 the horizontal
bars indicate the ranges of predictor values of the forecasts
that contributed to each mean. The plots in Figs.8–13where
constructed using a random sample of 1000 pairs of grid-
points.

The results shown in Figs.8–13suggest that the ensemble
error covariance is a good predictor of the likely actual error
covariance. This is the case for all three lead times examined
and both the 500 hPa geopotential and the 2-m temperature.
The mean past error covariance provides some information
concerning the actual error covariance, but in general this
predictor does not span as large a range as the ensemble er-
ror covariance and thus does not provide as much predictive

information. In particular, the mean past error covariance has
little ability to predict strongly negative error covariances in
the same way as the ensemble error covariance. This sug-
gests that the expectation of negative error covariances is
somewhat transient, and therefore averaging over 30 previ-
ous forecasts does not lead to strongly negative error covari-
ances. The ensembles, however, are better able to capture
the possibility of negative error covariances based upon the
specific meteorological conditions.

To quantify the relative amount of information concerning
error covariances in the ensemble and in past error covari-
ances, a linear model was used. This model is given by

ĈOV(i, j)act = A · COV(i, j)ens+ B · COV(i, j)past+ C (8)

where COV(i, j)past represents the mean error covariance of
the 30 most recent daily forecasts for which verifications
would be available.

The percentages of variation in the error covariance ex-
plained by the two predictors used in Eq. (8) are shown in
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Table 3. The percentages of variation in forecast error covariance
explained by linear fits to the ensemble covariance and the mean
error covariance of the same two gridpoints averaged over the most
recent 30 forecasts for which verifications would be available. The
estimates of the percentages and the standard deviations were es-
timated by bootstrap resampling 1000 random pairs of points at 5
day intervals. This was done to account for temporal correlations in
forecast errors.

forecast lead ensemble mean past both

variable time covariance covariance predictors

500 hPa GP 96 h 7.9 ± 0.2 2.5 ± 0.1 8.3 ± 0.2

500 hPa GP 168 h 16.6 ± 0.3 3.9 ± 0.1 16.7 ± 0.3

500 hPa GP 240 h 22.8 ± 0.3 5.0 ± 0.1 22.9 ± 0.3

2 m TMP 96 h 4.8 ± 0.3 4.1 ± 0.1 7.9 ± 0.3

2 m TMP 168 h 9.4 ± 0.4 2.9 ± 0.1 10.4 ± 0.4

2 m TMP 240 h 15.2 ± 0.3 3.1 ± 0.1 15.7 ± 0.3

Table3. The mean percentages and their standard deviations
were estimated by bootstrap resampling, with replacement,
the 1000 random pairs of gridpoints and only using forecasts
at 5 day intervals to account for possible temporal correla-
tions in forecast error covariances. Due to spatial correla-
tions in error covariance, if all pairs of gridpoints had been
used this would have resulted in an underestimate of the un-
certainties in Table3.

The results in Table3 indicate that in the case of 500 hPa
geopotential the ensemble error covariance is a significantly
better predictor than the mean past error covariance. The en-
semble error covariance alone is almost as good a predictor
as a linear combination of both predictors. Mean past error
covariances do relatively better at predicting spatial error co-
variances in 2-m temperature, but they are still outperformed
by the ensemble error covariances. For both variables, the
extra information that the ensemble provides over what is
provided by past control forecasts and verifications is greater
for spatial error covariances than for the magnitude of fore-
cast error.

6 Summary and conclusions

This paper has compared three potential predictors of
weather forecast error: the spread of an ensemble of mul-
tiple NWP simulations, the mean past error over the previous
month at the location in question, and the local spatial gra-
dient of the predicted variable in the control forecast. The
ensemble spread is quite an “expensive” predictor in that it
requires multiple runs of a numerical forecast model. The
other two predictors can be cheaply calculated even when no
ensemble is available.

It was found that, for the ECMWF medium-range ensem-
ble forecasts of 500 hPa geopotential and 2-m temperature
over North America, the spread of the ensemble was the best

Fig. 8. Plots of the mean error covariance,〈(vi−ci)·(vj−cj )〉,
wherev andc denote the verification and control, andi andj de-
note gridpoints. The averages were calculated over blocks of 1000
forecasts with similar values of the predictor variables:(a) the er-
ror covariance between pointsi andj averaged over the ECMWF
ensemble, and(b) the error covariance between pointsi andj aver-
aged over the most recent 30 forecasts for which verifications would
be available. The horizontal bars represent the ranges of the values
of the predictors for each of the 1000 forecasts used to calculate
each mean error, The vertical bars represent the standard error in
the estimate of the mean forecast error. The forecasts used were
for 500 hPa geopotential over North America at a lead time of 96 h
initialized on each of the 322 days starting with 4 February 2004.

single predictor of the magnitude of forecast error. The mean
past error, however, also explained a substantial amount of
the variation in forecast error, especially in the case of 2-
m temperature where it was almost as good a predictor as
ensemble spread. As the mean past error was calculated
for each gridpoint individually, it incorporates information
concerning the spatial dependence of forecast error, as well
some information about the seasonal variation in forecast er-
ror magnitudes. When discussing the value of ensembles
for predicting forecast error it is important to consider how
much of the variation in predictability is spatial or seasonal
as such variation can be estimated using methods that are
computationally cheaper than ensemble forecasting. The lo-
cal gradient of the forecast variable in the control forecast
was found to contain some information about forecast errors.
This particular predictor is likely to be most effective when
the forecast errors are the result of distortions or displace-
ments of weather patterns in the forecast relative to the ver-
ification. The gradient was a better error predictor for the
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Fig. 9. As Fig. 8 but for a lead time of 168 h. First forecast was
issued on 7 February 2004.

Fig. 10. As Fig. 8 but for a lead time of 240 h. First forecast was
issued on 10 February 2004.

Fig. 11. Plots of the mean error covariance,〈(vi−ci)·(vj−cj )〉,
wherev andc denote the verification and control, andi andj de-
note gridpoints. The averages were calculated over blocks of 1000
forecasts with similar values of the predictor variables:(a) the er-
ror covariance between pointsi andj averaged over the ECMWF
ensemble, and(b) the error covariance between pointsi andj aver-
aged over the most recent 30 forecasts for which verifications would
be available. The horizontal bars represent the ranges of the values
of the predictors for each of the 1000 forecasts used to calculate
each mean error, The vertical bars represent the standard error in
the estimate of the mean forecast error. The forecasts used were for
2-m temperature over North America at a lead time of 96 h initial-
ized on each of the 322 days starting with 4 February 2004.

500 hPa geopotential than the 2-m temperature, for which it
contained very little information. It is possible that refine-
ment of this predictor could improve its performance. For ex-
ample, the spatial structure of distortions and displacements
could be characterized and used to generate relatively com-
putationally cheap ensembles by deforming the fields in a
single NWP simulation.

This paper has also examined the potential value of en-
semble error covariance and mean past error covariances as
predictors of spatial error covariance. While the mean error
covariance between two given gridpoints over the previous
30 forecasts was found to provide some information about
likely forecast error covariance, the ensemble error covari-
ance was found to be a significantly better predictor.

In this paper, it has been demonstrated, that the ECMWF
medium-range ensemble provides predictive information
about the likely magnitude of forecast errors, more so than
the two predictors with which it was compared. Furthermore,
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Fig. 12. As Fig. 11 but for a lead time of 168 h. The first forecast
was issued on 7 February 2004.

Fig. 13. As Fig. 11 but for a lead time of 240 h. The first forecast
was issued on 10 February 2004.

the ECMWF ensemble also provides predictive information
concerning likely spatial error covariances, and in this re-
spect its marginal information content compared to a predic-

tor based on past errors is even greater. The other predictors
of forecast error – mean past errors and local field gradients
– do in some cases, however, provide some predictive infor-
mation. This information can be exploited when an ensemble
is not availble, or it can be used to supplement the informa-
tion provided by the ensemble to yield a better prediction of
likely forecast error.
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