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Abstract. Three different potential predictors of forecast the likely error in the forecast of a continuous quantity, or a
error — ensemble spread, mean errors of recent forecasfsily probabilistic prediction that provides an estimate of the
and the local gradient of the predicted field — were com-probability distribution of a weather variable. Whatever the
pared. The comparison was performed using the forecasts afxact form of the information, the meteorological commu-
500 hPa geopotential and 2-m temperature of the ECMWHRity now increasingly subscribes to the mantralehnekes
ensemble prediction system at lead times of 96, 168 anckt al.(1987) that“No forecast is complete without a forecast
240 h, over North America for each day in 2004. Ensembleof forecast skilll” There is now a widespread appreciation
spread was found to be the best overall predictor of absothat providing forecasts without acknowledgement, let alone
lute forecast error. The mean absolute error of recent forequantification, of uncertainty is not tenable.

casts (past 30 days) was fom_md to contain some .|nformat|on, Probably the most straightforward method to estimate the
however, and the local gradient of the geopotential also pro-

vided some information about the error in the prediction of"ke'y error of a quantitative forecast is to base the esti-
this variable P mate on past forecast errors. This method was used by An-

_ . . ders,&ngstrbm to produce probabilistic frost forecasts in the
Ensemble spatial error covariance and the mean spatial €lr9o0s Gilias and Murphy 1994. This approach can be re-
ror covariance of recent forecasts (past 30 days) were aISﬁned by conditioning the error statistics on such things as

compared as predictors of actual spatial error covariancey .. " ¢ year, or even meteorological conditions. Such con-

Both were found to provide some predictive information, al- ditioning cannot be carried too far, however, or one ends up
though the ensemble error covariance was found to prOVid%alculating the statistics based on,too few céses

substantially more information for both variables tested at all
three lead times. In the 1960s, it was recognized that the atmosphere is a
The results of the study suggest that past errors and locathaotic system — its evolution is sensitive to its initial state
field gradients should not be ignored as predictors of fore— and also that the predictability of the atmospherstéte
cast error as they can be computed cheaply from single foredependentchanging from day-to-day depending on atmo-
casts when an ensemble is not available. Alternatively, inspheric conditionslorenz 1963 1965 196§. This dis-
some cases, they could be used to supplement the informa&overy motivated the development efisemble forecasting
tion about forecast error provided by an ensemble to providén which multiple simulations are made using a numerical
a better prediction of forecast skill. weather prediction modeEfpstein 1969 Leith, 1974. The
simulations differ in their initial conditions and/or the details
of the model used. These perturbations are made in an ef-
fort to estimate the impact of errors in the initial condition
or in the model on the accuracy of the final forec&sti(ner
2000. Model error can make a significant contribution to

It is now accepted that the potential value of weather fore-]c I | 200 d this h vated th
casts can be greatly enhanced if some information concernOrecast errorQrrell et al, ) and this has motivated the

ing the uncertainty of the prediction is also availabfénf gevelopl)rg_?fnt OmUIt"mO%Tl ensemble{falmsret alr.]ZOOS. h
et al, 2002 Palmer 2002. This information may take the >cVerald erent ensemble systems have been shown to have

form of a classification of forecasts into “low” and “high” “spread-skill relationships”, that is the spread of the ensem-

predictability Ziehmann 2001, or a quantitative estimate of ble defined using a measure such as stz_andard deylatlon or
mean absolute deviation, is correlated with the variance of

Correspondence td¥l. S. Roulston error between the verification and the mean of the ensemble
(roulston@met.psu.edu) (e.g.-Whitaker and Loughel1998.
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While ensemble forecasts have become a standard toglossible ambiguity as to whether the origin of forecast errors

at several operational forecasting centresiftekamer and
Derome 1995 Molteni et al, 1996 Toth and Kalnay1997,
Stensrud et a1.1999, other potential predictors of forecast
error should not be neglected. This paper presents a compar-

lies in the numerical model or in the downscaling scheme,
the model’s own analysis was used for forecast verification.

ison of three predictors: the spread of an ensemble, the mean Predictors of forecast error

error of past forecasts, and the local gradient of the predicte
field in the ensemble control member. The latter two predic-
tors are, in terms of computation, much cheaper than calcu-
lating the ensemble spread as they do not require multiple in;
tegrations of an NWP model. Also, the mean error of recent
forecasts provides a baseline level of error predictability as
it should capture persistent spatial structure in the error fiel
as well as smoothly varying temporal structure — such as an
seasonal variation in errors. This baseline error predictabil-
ity should also be captured by the ensembles but in addition
the ensembles should also capture day-to-day temporal varia-
tions in predictability if the extra computational expense is to

q‘he forecast error in this study is defined as the absolute error
of the control (unperturbed) member of the ensemble. When
using ensemble forecasts the forecast error is often defined as
the error of theensemble mearThis definition was not used

in this study because part of the motivation for the investi-
ation was to determine the usefulness of other predictors of
orecast error that are available even in the absence of an en-
%emble forecast, and obviously if no ensemble is available
then an ensemble mean cannot be calculated.

The three predictors of forecast error analysed in this study
are described below.

be justified. This analysis is then extended to the problem of — Ensemble spreadf ¢ is the value of the forecast vari-

predicting spatial error covariances. A prediction of how the
forecast errors at two different locations are likely to be cor-
related is potentially valuable information to a forecast-user
whose risk or utility depends upon the weather at both loca-
tions. Ensemble error covariances and past error covariances
are compared as potential predictors of error covariance.

2 Forecast data

The forecast data used in this study were provided by the
European Centre for Medium Range Weather Forecasting.
The ensemble forecasts were produced by the ECMWF en-
semble prediction system (EP3)¢lteni et al, 1996. Each
ensemble consisted of a control member, initialized with the
best estimate of the current state of the atmosphere obtained
using a 4D-var data assimilation scheme, and 50 other mem-
bers initialized with their initial conditions perturbed in the
space of the leading 25 singular vectors. Two fields, the
500 hPa geopotential and the 2-m temperature, were studied
at three forecast lead times: 96 h, 168 h and 240 h. Although
the ECMWF EPS forecasts are global only the forecasts
over North America were analysed (38-70° N, 130° W-

60° W). The forecasts issued on the 356 days starting with 1
January 2004 were used in the study. The numerical model
used in the ECMWF EPS is a T255 spectral model but all the
calculations described in this paper were conducted on fore-
casts and analyses projected ontd a I° latitude-longitude
grid.

The ECMWF operational analysis was used as the veri-
fication. In practice the purpose of numerical weather pre-
diction is to predict actual observed weather conditions at
specific locations. However, even under the assumption that
an NWP model is “perfect” it still only predicts values of
weather variables at scales commensurate with the resolu-
tion of the model. Some type of downscaling scheme, there-
fore, should be applied before the model is compared with
observations. To avoid this additional complexity, and the

able in thek™ member of the ensemble then the ensem-
ble spread of aw-member ensemble is defined, in this
study, as the standard deviation of the ensemble, given

by

N

2
1 13
SPREAD= -~ |~ (¢k - kZ;¢k) @)

k=1

“Spread-skill” relationships normally refer to the rela-
tionship between ensemble spread and the error of the
ensemble mean, not the control forecast which is a sin-
gle ensemble member. However, since the ensemble
control, or indeed any ensemble member, is an estima-
tor of the ensemble mean, a relationship between the en-
semble mean and the error of any single member should
also exist.

— Mean past error The average past error used was the

mean absolute error of the control forecast averaged
over the most recent 30 daily forecasts for which verifi-
cations would be available. The average was calculated
for each gridpoint. This predictor should reflect any
persistent dependencies of error on location and also to
some extent, the seasonality of forecast errors. For the
forecast issued on day with a lead time ofL. days, the
mean past error is defined as

1 Tl
PAST= — verification — contro 2
30t=T_XL:_3OI n @

Note that the most recent forecast used to calculate this
quantity is the one issuetl+1 days ago, as this is the
most recent forecast for which a verification is available.
The choice of 30 days was made as a trade off to obtain
a reasonably representative estimate of the mean error
while still allowing smoothly varying temporal varia-
tions in error variation that might be associated with the



M. S. Roulston: Predicting forecast error 1023

seasonal cycle to be captured. Error histories rangingoy sorting the forecasts at each of the 2911 gridpoints, and
from 10 to 60 days were also tried as predictors. His-for each day of the 326-days starting on 31 January 2004 +
tories of less than 30 days yielded inferior predictions — L days (wherd. is the lead time of the forecast in days) into
a 10 day history typically explains about one-third less ascending order of the value of the predictor variable under
variability in error magnitudes, while histories of 40 to examination. The mean absolute forecast errors of succes-
60 days offered no improvement over 30 days. sive blocks of 1000 forecasts were then calculated. These
) ) ] ) mean errors are plotted against the mean value of the predic-
— Local gradient If ¢o(x, y) is the forecast variable inthe 15y for the 1000 forecasts in the block. The horizontal bars
control member of the ensemble then the local gradient, Figs. 2-7 denote the range of the predictor values in each

of the predicted field is given by block of 1000 forecasts. The vertical bars represent the stan-
dard error in the mean forecast error for those 1000 forecasts.

ddo\° [ 9d0\> Examination of Figs2—7 indicates that all three predictors
GRADIENT = (W) + <a_y> ©) provide some information about the expected magnitude of

the forecast error. The ensemble spread generally exhibits the

The rationale behind this predictor is that some forecastcléanest, most linear, relationship over the largest range of
errors can be characterized as distortions or dismacetorecasterror. This ability to pred|ctalar_ge_r range of forecast
ments of the forecast fieldHpffman et al, 1995. In error suggests that is has the most _prt_ad|ct|ve power, although
such cases, the error at a given location is likely to beit iS difficult to assess relative predictive power from graph-
larger if the local spatial gradient of the predicted field ical plots alone. A more quantitative analysis is provided in
is large. This predictor shares a similar philosophy to the next section. The slope of the ensemble spread-mean er-

the idea of “neighbourhood ensembles” usedTingis 'O line is sometimes close to, or even less than, unity. This
et al. (2005 for precipitation forecasting. The neigh- is not necessarily an indication that the ensemble is overdis-

bourhood ensemble approach essentially creates an eRersive. If the errors are normally distributed the expected
semble by using predictions from a neighbourhood of value of theabsolute erromwill be /2/7 times the standard
gridpoints defined in both space and time. This ap_deviation of the distribution, so even if the ensembles were
proach is also an attempt to account for spatial displace Perfect the slope of the lines in Figa-7 would be about
ments and timing errors in the forecast. The numerical0-80. In addition, the spread of the ensemble is not exactly

value of the GRADIENT predictor was estimated using equal to the spread of the underlying distribution from which
midpoint finite differencing on aclgrid, taking into ac- the ensemble is drawn, sometimes it will be less than the

count latitudinal differences in gridpoint size. spread of the “true” distribution. To produce the plots the
ensemble spreads are sorted into ascending order and thus,
Figurel is a density estimate of absolute forecast errorsby construction, those forecasts where the ensemble spread
of the ECMWEF control member of 500 hPa geopotential, at aunderestimated the true spread of the ensemble distribution
lead time of 96 h, plotted against each of the three predictorsvill tend to be at the low end, while the cases when the en-
described above. The density plot was calculated by aggresemble spread overestimated the true spread will tend to be
gating each of the 4471 gridpoints over North America, at the high end.
for each of the 322 days in the dataset (the first 34 days of The mean past error also has a reasonably linear relation-
2004 were required to calculate the mean past error of 3&hip with forecast error, although over a smaller range which
verified 96 h forecasts leading up to February 4). The coefsuggests it is less able to predict very large or small forecast
ficients of linear correlation between the forecast error anderrors. The mean forecast error is also approximately linear
the ensemble spread, the past errors and the local gradieitt the local field gradient for the 500 hPa geopotential fields
respectively are 0.43, 0.27 and 0.25. These correlations maglthough not for the 2-m temperature fields. For 2-m temper-
not appear to be particularly high but it must be rememberedature the local field gradient is only a reasonable predictor
that the predictors are not predicting the actual magnitude ofor relatively small forecast errors. In the case of the 500 hPa
the forecast error buhe width of the distribution from which  geopotential the slope of the line represents a rough estimate
the error will be drawn As Houtekame1993 has pointed  of the horizontal scale of field displacements and distortions
out, even under highly idealized circumstances spread-skilthat are contributing to the local error. For the lead times of
relationships are unlikely to show correlations greater than96 h, 168 h and 240 h the slopes are approximately 60 km, 75
about 0.8. km and 100 km, respectively.
A better idea of the relationship between the predictors of
forecast error and the forecast error itself can be obtained
if the mean absolute errors of many forecasts with similar?

values of the relevant predictor are calculated and pIOtte.dTo better quantify the relative amounts of information about

against the value of the predictor. Such plots are shown i . . . ol
Figs. 24 for the 500 hPa geopotential at lead times of 96,?%?5?3:(;] dn;ev:,t:;nggéowded by the three predictors a simple

168 and 240 h and in Figs7 for 2-m temperature, also at
lead times of 96, 168 and 240 h. These plots were constructedl = «[SPREAD + b[PAST] + ¢c[GRADIENT] + d 4)

Multi-predictor analysis
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Fig. 1. Density estimates of “spread-skill” relationships of the ac- Fig. 2. Plots of the mean forecast errgpverification—control), of

tual forecast errorjverification—control against the three predic- sets of 1000 forecasts with similar values of the three predictors of
tors of forecast errorta) ensemble spready) average error of the  forecast error:(a) ensemble spreadb) average error of the most
most recent 30 daily forecasts for which the verification would be recent daily forecasts for which the verification would be available
available andc) local field gradient. The forecasts used were the and(c) local field gradient. The horizontal bars represent the ranges
ECMWEF ensemble forecasts of the 500 hPa geopotential over Nortlof the values of these predictors for each of the 1000 forecasts used
America at a lead time of 96 h initialized on each of the 322 daysto calculate each mean error (for lower values of the predictors these
starting with 4 February 2004. Density is given in arbitrary units.  ranges are too small to yield visible bars). The vertical bars rep-
resent the standard error in the estimate of the mean forecast er-
ror. The forecasts used were the ECMWF ensemble forecasts of
the 500 hPa geopotential over North America at a lead time of 96 h

wheree is the estimated magnitude of the forecast error. initialized on each of the 322 days starting with 4 February 2004.

Equation §) is essentially an extension of the models used
by Gneiting et al(2005 andJewson et al(2004) to predict
error as a linear function of ensemble sprjead addition a the local gradient as predictors was also used,

simple linear model that used only the mean past error and
¢’ = b'[PAST] + ¢[GRADIENT] + d 5)

1in the present study, ensemble standard deviation was used tIhe mod_el coefficients were determined u5|_ng a least-
predict error magnitude where@meiting et al(2005 used ensem- ~ Squares fit. Tablé@ shows the percentages of variance of ab-
ble variance to predict error variance, so even without the extra preSolute forecast error explained by linear fits to each predictor
dictors Eq. §) is slightly different from their equationlewson etal.  individually and also to the linear combination of mean past
(2004 used a linear function of standard deviation, as in this study.error and local gradient (Ed) and to all three predictors
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Fig. 3. As Fig. 2 but for a lead time of 168 h. First forecast was Fig. 4. As Fig.2 but for lead time of 240 h. First forecast was issued
issued on 7 February 2004. on 10 February 2004.

(Eq. 4). These percentages are given by the squares of the
coefficients of linear correlation between the error magnitudeformation about the error magnitude. Furthermore, the com-
and the predictors, or the combination of predictors. Thebination of these latter two predictors contains an appreciable
percentages given in Tableare the means obtained from amount of information. While the ensemble spread provides
50 datasets constructed by bootstrap resampling the originahore information than the mean past error and the local gra-
dataset. For the purposes of resampling the dataset was dilient it must be remembered that these latter two predictors
vided into blocks 15in longitude x15° in latitude x5 days  are computationally much cheaper and will be available even
in time. The blocks were then randomly resampled with re-when multiple simulations from an NWP model are not. The
placement to create the 50 datasets. The standard deviatioesisemble spread is also the best predictor of 2-m temperature
given in Tablel were also estimated from the 50 resampled error, but for this variable the mean past error provides an ap-
datasets. This bootstrap resampling in blocks was done t@reciable fraction of information, while the local gradient is
take account of spatial and temporal correlations in the forea poor predictor of error magnitude. Although the ensemble
cast error. spread explains a larger amount of the variation in the mag-
From Tablel it can be seen that, in the case of the 500 hPanitude of the forecast error than the mean past error or the
geopotential, the ensemble spread alone predicts the errdocal gradient, the fact that all three predictors explain more
magnitude almost as well as all three predictors combinedhan either predictor alone indicates that the predictors are,
at all three lead time times examined. However, both theto some degree, providing independent information about the
mean past error and the local field gradient contain some inmagnitude of the error.
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Fig. 5. Plots of the mean forecast errgverification—control), of Fig. 6. As Fig.5 but for a lead time of 168 h. First forecast was
sets of 1000 forecasts with similar values of the three predictors ofissued on 7 February 2004.

forecast error(a) ensemble sprea¢h) average error of the 30 most

recent daily forecasts for which verifications would be available and

(c) local field gradient. The horizontal bars represent the ranges othe temporalvariation — how the error at a given gridpoint
the values of these predictors for each of the 1000 forecasts used 'éhanges from forecast to forecast. While a good ensemble

calculate each mean error (for lower values of the predictors thes?)rediction system should explain such spatial variability in
ranges are too small to yield visible bars). The vertical bars rep-

) . errors it should also be able to explain temporal variability
resent the standard error in the estimate of the mean forecast errar. - .
The forecasts used were the ECMWF ensemble forecasts of the Zmecause other predlctors, part!cu!a}rly the average past errors,
temperature over North America at a lead time of 96 h initialized on C&N Capture purely spatial variability far more cheaply. The
each of the 322 days starting with 4 February 2004. variability in error explained by the ensemble beyond that
explained by the mean past error provides an approximate
indication of how much of the error variability is temporal,
rather than spatial. In this sense, the mean past error pro-
Table 1 was calculated by aggregating all gridpoints. vides a control that accounts for spatial variability and also,
Therefore it describes the ability of the predictors to explainto some extent, smoothly varying temporal variability, such
the spatio-temporalariation in forecast error. It is conceiv- as that associated with the seasonal cycle. A more explicit
able that a predictor might only explain spatial variation —way of assessing how much purdlgmporalvariability in
that the errors at one gridpoint are, on average, smaller than atrrors is explained by the different predictors is to exam-
another gridpoint — without providing any information about ine the correlations between the different predictors and the
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magnitude of the error at each gridpoint individually. This is (a) ensemble spread
done in Table2. The percentages of variation explained were 2t ‘ ‘
obtained by averaging the percentages of temporal variabil- [
ity explained at each gridpoint. Therefore in this case spatial
error variation has been removed from the analysis although
the past mean error predictor should still provide information
about smoothly varying temporal error variability.

An examination of Table€ indicates that the ensemble
spread explains significantly more temporal variability in the
forecast error than the other two predictors for both variables
at all three lead times. This suggests that the relatively high

mean error of control (°C)

ol 1 1 I I

0 2 4 6 8 10
percentage of the error variability explained by the mean past ensemble spread (°C)
error in Tablel is due to purely spatial variability in the fore- (b) mean past error (30 doys)

121 T T

cast errors.

5 Predicting spatial error covariance

Forecast products are now available that provide quantitative
information about the uncertainty of predictions of particu-
lar variables at given locations for different lead times. Such

mean error of control (°C)
o
T

information tells forecast users abautivariateerrors, that OO’ : . : : - -
is, one dimensional probability distributions. For some de- meon past error (°C)

cisions, however, more sophisticated decision-making strate- (c) local field gradient

gies require information abowmnultivariateerrors, or infor- et ‘ ‘ ‘ ]
mation about error covariances. For example, if a power 1o 1

company has two major power consuming cities in its re-
gion it would be helpful to know the likely magnitude of the
errors in the temperature forecasts for these cities as these
errors will translate into errors in predicted energy demand.
Furthermore, knowing theovarianceof these errors would

be useful. If the errors are positively correlated then if it is
colder than expected in one city it is also likely to be colder
than expected in the other city, implying greater overall de- 000 oo 010 o 020

mand in the region. On the other hand, if the errors are nega- grodient (°C/km)

tively correlated then if itis colder than expected in one city it

is likely to be warmer than expected in the other city, suggest19- 7- As Fig. 5 but for a lead time of 240h. First forecast was
ing that the demand errors for each city will, at least partly, isSued on 10 February 2004.

compensate for each other and result in a smaller error in the

overall demand. Forecast users whose utility depends on the

weather at multiple locations may benefit from information
concerning the spatial covariance of forecast errors.

mean error of control (°C)
o
T
1

Let ¢; be the value of the control forecast at gridpaint
and letv; be the value of the verification at gridpointFur-
hermore, let; x be the value of thét" ensemble member at

Thet relative ;Jtsr(]efulnefs Iolf the ECtZI\]{IWF eg_seimble, and o gridpointi. The actual error covariance between gridpoints
recent errors of the control forecast, for predicting error Co'andj can be defined as

variances was compared. The use of recent error covariances
essentially pr0\_/|des a b_asellne predlctpr which should b_e CATOV(i, act= (Vi — G) - (Vj — G)) (6)
pable of capturing persistent structure in the error covariance

field, including the fact that error covariances of widely sep- The error covariance of aN-member ensemble can be de-
arated points is likely to be zero. If the ensemble covariancdined as

outperforms the historical predictor then it must be predict- \
ing more than relatively stable structures in the error covari- - 1

ance field and must also be predicting features in the error OV (1> Dens= N kZl(a’k — G- @k=0) (7)
covariance field that vary from forecast to forecast. The lo- B

cal gradient of the predicted field was not used as a predictolThe mean past error covariance was defined as the mean
for this part of the study as it is not clear how this relatively value of COMi, j)act averaged over the most recent 30 fore-
simple quantity might be related to spatial error covariancescasts for which verifications would be available.
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Table 1. The percentages apatio-temporalariation in forecast error magnitudes explained by individual linear fits to the three predictors
used in this study, and to a linear combination of past error and local gradient and to all three predictors combined. These percentages wert
determined across all gridpoints and thus include both spatial and temporal variations. The standard deviations were estimated by bootstraj
resampling of the data, with replacement. The data were resampled in block3 ioflbBgitude x15° in latitude and 5 days in time, this

was to account for spatial and temporal correlations in the forecast error.

forecast lead ensemble  mean past local 2 predictors 3 predictors
variable time spread error gradient

500hPaGP 96h 18+05 72401 6.1+0.1 112+0.2 191+£05
500hPaGP 168h 18+06 98405 37+0.2 116+0.4 169+05
500hPaGP 240h 16+0.7 84403 26+0.3 9.7+04 161+0.7

2mTMP 9%6h 147+0.7 131+04 17+0.1 139+ 04 207+0.1
2mTMP  168h 1/+02 127+06 07+0.04 130+£06 197+04
2mTMP  240h 1®2+11 1224+05 03+0.01 124+05 199+1.0

Table 2. The percentages témporalvariation in forecast error magnitudes explained by individual linear fits to the three predictors used in

this study, and to a linear combination of past error and local gradient and to all three predictors combined. The percentage of variation at
each gridpoint was determined separately and the mean of these percentages is given. This means that purely spatial error variation (the fa
that some gridpoints have smaller errors than other gridpoints) is not included in these estimates. The standard deviations were estimated b
bootstrap resampling of the data, with replacement. The data were resampled in blocksnoobhgitude x 15° in latitude and 5 days in

time, this was to account for spatial and temporal correlations in the forecast error.

forecast lead ensemble  mean past local 2 predictors 3 predictors
variable time spread error gradient

500hPaGP 96h 19+06 35+03 7.7+03 44403 17.3+£0.6
500hPaGP 168h 12+05 47+04 56+03 51+03 136+ 0.5
500hPaGP 240h 13+06 42+03 49+0.1 47+03 131+0.6

2mTMP 9%h 1B8+06 62+03 36402 86+0.3 155+ 0.5
2mTMP  168h 119+06 56+04 22401 6.8+ 0.4 139+0.5
2mTMP  240h 1284+05 56+04 16+0.05 63+ 04 136+ 0.5

As with conventional, univariate, spread-skill relation- information. In particular, the mean past error covariance has
ships there is large amount of scatter when actual error colttle ability to predict strongly negative error covariances in
variances are plotted against ensemble covariances, or medine same way as the ensemble error covariance. This sug-
past covariances. As before, the mean actual covariances gfests that the expectation of negative error covariances is
1000 forecasts with similar values of the relevant predictorsomewhat transient, and therefore averaging over 30 previ-
were plotted against the mean value of the predictor. Theseus forecasts does not lead to strongly negative error covari-
plots are shown in Fig8-13. As in Figs.2—7 the horizontal ances. The ensembles, however, are better able to capture
bars indicate the ranges of predictor values of the forecastthe possibility of negative error covariances based upon the
that contributed to each mean. The plots in F&gd3where  specific meteorological conditions.
constructed using a random sample of 1000 pairs of grid- To quantify the relative amount of information concerning
points. error covariances in the ensemble and in past error covari-

The results shown in Fig8-13 suggest that the ensemble ances, a linear model was used. This model is given by
error covariance is a good predictor of the likely actual error —,. . . .-
covariance. This is thg casg for all three lead tir)r/1es examine§ OV Nact = A - COV(i, ens+ B - COV(i, J)past+ C (8)
and both the 500 hPa geopotential and the 2-m temperaturavhere CO\(i, j)past represents the mean error covariance of
The mean past error covariance provides some informationhe 30 most recent daily forecasts for which verifications
concerning the actual error covariance, but in general thisvould be available.
predictor does not span as large a range as the ensemble er-The percentages of variation in the error covariance ex-
ror covariance and thus does not provide as much predictivglained by the two predictors used in E§) ére shown in
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Table 3. The percentages of variation in forecast error covariance (o) ensemble covariance
explained by linear fits to the ensemble covariance and the mean 0e ‘ ‘ ‘ ‘
error covariance of the same two gridpoints averaged over the most
recent 30 forecasts for which verifications would be available. The
estimates of the percentages and the standard deviations were es-
timated by bootstrap resampling 1000 random pairs of points at 5
day intervals. This was done to account for temporal correlations in
forecast errors.

0.4

0.2

0.0

mean error covariance (10° m*s™)

—ool ]
forecast lead ensemble  mean past both 0.4 ‘ ‘ ‘ ‘
variable time covariance covariance  predictors —1.0 e;gé; e igmncgi - ml;l,) 1.5

500hPaGP 96h .9+02 25+0.1 83+0.2 = (b) mean past covariance (30 days)
500hPaGP 168h 16+03 39+01 167403 T ©F ‘ ‘ ‘
€
500hPaGP 240h 224+0.3 50+01 229+4+0.3 5 0.4F B
2mTMP  96h 48+03 41401 7.9+03 5 07 1
2mTMP  168h %+04 29+01 104+04 g 00 ]
2mTMP 240h 12+03 31+01 157+0.3 5
o —0.2r b
é —-0.4 | | |
Table3. The mean percentages and their standard deviations -02 0.0 0.2 0.4 0.6

mean past covariance (10° m*s™)

were estimated by bootstrap resampling, with replacement,
the 1000 random pairs of gridpoints and only using forecastsFig 8. Plots of the mean error covariance ) 3

. . Fig. 8. vi—c;i)(vj—cj)),
at 5 day intervals to account for possible temporal correla wherev andc denote the verification and control, ahénd j de-

tions in forecast error covariances. Due to spatial CorrEIa'note gridpoints. The averages were calculated over blocks of 1000

tions in error covariance, if all pairs of gridpoints had been (4e¢asts with similar values of the predictor variablésy the er-
used this would have resulted in an underestimate of the Ungor covariance between pointsaind j averaged over the ECMWF
certainties in Tabl&. ensemble, an¢b) the error covariance between poinndj aver-

The results in Tabl8 indicate that in the case of 500 hPa aged over the most recent 30 forecasts for which verifications would
geopotential the ensemble error covariance is a significantlye available. The horizontal bars represent the ranges of the values
better predictor than the mean past error covariance. The ergf the predictors for each of the 1000 forecasts used to calculate
semble error covariance alone is almost as good a predictdgfach mean error, The vertical bars represent the standard error in
as a linear combination of both predictors. Mean past errofthe estimate of the mean forecast error. .The forecast§ used were
covariances do relatively better at predicting spatial error co-°r 500 hPa geopotential over North America at a lead time of 96 h
variances in 2-m temperature, but they are still outperformedmt'ahzed on each of the 322 days starting with 4 February 2004.
by the ensemble error covariances. For both variables, the
extra information that the ensemble provides over what is _ _
provided by past control forecasts and verifications is greategingle predictor of the magnitude of forecast error. The mean

for spatial error covariances than for the magnitude of fore-Past error, however, also explained a substantial amount of
cast error. the variation in forecast error, especially in the case of 2-

m temperature where it was almost as good a predictor as
ensemble spread. As the mean past error was calculated
6 Summary and conclusions for each gridpoint individually, it incorporates information
concerning the spatial dependence of forecast error, as well
This paper has compared three potential predictors osome information about the seasonal variation in forecast er-
weather forecast error: the spread of an ensemble of mulror magnitudes. When discussing the value of ensembles
tiple NWP simulations, the mean past error over the previoudor predicting forecast error it is important to consider how
month at the location in question, and the local spatial gra-much of the variation in predictability is spatial or seasonal
dient of the predicted variable in the control forecast. Theas such variation can be estimated using methods that are
ensemble spread is quite an “expensive” predictor in that ittcomputationally cheaper than ensemble forecasting. The lo-
requires multiple runs of a numerical forecast model. Thecal gradient of the forecast variable in the control forecast
other two predictors can be cheaply calculated even when navas found to contain some information about forecast errors.
ensemble is available. This particular predictor is likely to be most effective when
It was found that, for the ECMWF medium-range ensem-the forecast errors are the result of distortions or displace-
ble forecasts of 500 hPa geopotential and 2-m temperaturenents of weather patterns in the forecast relative to the ver-
over North America, the spread of the ensemble was the besfication. The gradient was a better error predictor for the
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Fig. 9. As Fig. 8 but for a lead time of 168 h. First forecast was
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(a) ensemble covariance
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Fig. 11. Plots of the mean error covariancgy; —c;)-(v;—c;)),
wherev andc¢ denote the verification and control, ahdnd j de-

note gridpoints. The averages were calculated over blocks of 1000
forecasts with similar values of the predictor variablés): the er-

ror covariance between pointsand j averaged over the ECMWF
ensemble, an(b) the error covariance between poihtnd j aver-

aged over the most recent 30 forecasts for which verifications would
be available. The horizontal bars represent the ranges of the values
of the predictors for each of the 1000 forecasts used to calculate
each mean error, The vertical bars represent the standard error in
the estimate of the mean forecast error. The forecasts used were for
2-m temperature over North America at a lead time of 96 h initial-
ized on each of the 322 days starting with 4 February 2004.

500 hPa geopotential than the 2-m temperature, for which it
contained very little information. It is possible that refine-
ment of this predictor could improve its performance. For ex-
ample, the spatial structure of distortions and displacements
could be characterized and used to generate relatively com-
putationally cheap ensembles by deforming the fields in a
single NWP simulation.

This paper has also examined the potential value of en-
semble error covariance and mean past error covariances as
predictors of spatial error covariance. While the mean error
covariance between two given gridpoints over the previous
30 forecasts was found to provide some information about
likely forecast error covariance, the ensemble error covari-
ance was found to be a significantly better predictor.

In this paper, it has been demonstrated, that the ECMWF
medium-range ensemble provides predictive information
about the likely magnitude of forecast errors, more so than
the two predictors with which it was compared. Furthermore,
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tor based on past errors is even greater. The other predictors
of forecast error — mean past errors and local field gradients
— do in some cases, however, provide some predictive infor-
mation. This information can be exploited when an ensemble
is not availble, or it can be used to supplement the informa-
tion provided by the ensemble to yield a better prediction of
likely forecast error.
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