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Abstract. A continuum theory is developed for a geophysi- occur in a region of ocean, oil and water may be considered
cal fluid consisting of two species. Balance laws are givenas the members of the mixture, in that region.
for the individual components of the mixture, modeled as Most studies in geophysical fluid dynamics are based on
micropolar viscous fluids. The continua allow independentthe Navier-Stokes (N-S) equations, with the inclusion of the
rotational degrees of freedom, so that the fluids can exhibitCoriolis acceleration. The Navier-Stokes equations assume
couple stresses and a non-symmetric stress tensor. The sate atmosphere as a single fluid. Moreover, in the N-S equa-
ond law of thermodynamics is used to develop constitutivetions, the effects of couple stresses and intrinsic rotations are
equations. Linear constitutive equations are constituted foignored. These effects may become important in some in-
a heat conducting mixture, each species possessing sepstances, e.g. tornadoes, hurricanes, tumbling ice or sand.
rate viscosities. Field equations are obtained and boundary Kirwan and Chang (1976) have demonstrated the influence
and initial conditions are stated. This theory is relevant toof couple stress in the Ekman problem, in the case of a single
an atmospheric mixture consisting of any two species frommicropolar fluid.
rain, snow and/or sand. Also, this is a continuum theory for |ijterature is extensive on the mixture theories. Some
oceanic mixtures, such as water and silt, or water and oibf the early references are quoted by Bowen (1976), up to
spills, etc. 1976, and more recent ones by Eringen (1994). However,
these are concerned with nonpolar materials. Twiss and
Eringen (1971, 1972) gave a theory of mixtures for micro-
morphic materials and investigated propagation of waves in
1 Introduction two-constituent micropolar elastic solids. Several new elas-
tic wave branches predicted by this theory are in accordance
In the atmosphere, many complex physical phenomena cawith the phonon dispersion experiments. These branches are
occur. For example, simultaneously, it may be raining andnot predicted by the mixture models based on the classical
snowing. Tornadoes or hurricanes may lift sands, mixingelastic solids. Consequently, the present theory, too, is ex-
with rain or snow. In these cases, we have a mixture of twopected to exhibit some new physical phenomena that are not
different fluids. We consider snow, sand and rain as fluids.in the domain of a mixture theory based on the N-S equa-
Although ice and sand grains are solids by themselves, weions.
must treat each species as a liquid, since there is no cohesion
among the grains as in a solid. The friction between rain, 1. The raison ctre of the present paper stems from these
snow or sand, falling through the saturated air, attributes vis- observations.
cosities to the species. We do not consider the air as a third
species, but rather as an agent that allows the fluid assump- |n Sect. 2, we discuss briefly, the kinematics of a mixture.
tion for the species to be plausible. Alternatively, air, and Balance laws are given in Sect. 3. Section 4 is concerned
either rain, snow or sand, may be considered to constitute @jth the development of the constitutive equations and the
binary mixture of two fluids. thermodynamic restrictions required on the viscosity moduli.
In the case of oceanography, the mixture of water and silin Sect. 5, we obtain the field equations and state the bound-
may compose the two species of the mixture. When oil spillsary and initial conditions. Here, we also give the restrictions
when fluids are incompressible. In Sect. 6, as a special case,
Correspondence toA. C. Eringen we derive the field equations of a binary mixture of classical
(103265.462@compuserve.com) fluids.
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2 Kinematics

We consider a binary mixture of two continuous fluent bodies Z =1

BY, « = 1, 2. In the case of atmospheric activities, Bay

represent the rain, and®Bhe snow or sand. In an ocean at-
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From Eq.7 and EQ.9, it follows that
(10)

o

Since rain drops, snow and sand undergo translations and

mosphere, they may represent water and silt. We considertations, the mixture continua must possess rotational de-

that, continuous bodies®B occupy a region of the three-
dimensional space. A material point, in th& species, at
the natural state, is denoted B ,in Cartesian coordinates.
The motion ofX*, at timer, is represented by a mapping of
X%, to a spatial poink:

x = x%(X%, 1), 1)
which is assumed to possess the unique inverse
X% = x ¥, 1). )

The velocity and the acceleration &, at time¢, are
given by

oY — Ix* (X%, 1)
ot ’
2y (X*, 1
a® =x"" = ox 4.l 8(t2 ). 3)

As usual, the material time derivative of a functigix, )
is denoted by

oy Y1)

ot 3t “)

v = |x + Y X (x, 1),

where and hencgfqrth_, we employ the summatign conventiorﬂ LV (0% =0 or p%|detF® |=
on repeated Latin indices, and an index following a comma 9¢

for a partial derivative with respect iq_ e.g.

. o . oy | .
Ve = 3)61X1 + 3xzx2 + 3X3X3'
The material derivative of a function[ x* (X<, 1), t], fol-
lowing the motion of the constituent'Bis defined by

9 o Xa, , 9 , -

WZW wa=$+¢,ka ) (5)
From Eg. @) and Eq. b), it follows that

Y= = (V) - @ 1), (6)

The mass density of the constituent B denoted by
p%(x, t). The densityp(x, r) and the velocityw(x, r) of the
mixture are given by

1
plx. 1) =Y p*(x.0), hw=;wa. 7

The barycentric velocity is defined by

(8)
The mass concentratiat of the constituent B, at (x, 1)

is

c®(x, 1) = p%/p. 9)

grees of freedom. This suggests that we consider each
species as a micropolar continuum. In a micropolar contin-
uum, a material point is endowed with a director, so that rota-
tional degrees of freedom arise from the rotation of the direc-
tor. For micropolar fluids, this is represented by gyration vec-
tor v¢. Micropolar fluid continua possess two deformation-
rate tensors (c.f. Eringen, 2001):

akl = Vi k + €lkmVm. bii = vk 1. (11)

Consequently, each species of the mixture is endowed with
two deformation tensors

gy = V' F €liom Vi bl = vic- (12)

3 Balance laws

We assume that no chemical reactions take place between the
two constituents of the mixture.

The balance laws for each constitueft Bonsist of: con-
servation of mass, balance of momentum, balance of moment
of momentum, and conservation of energy.

Conservation of Mass
00> (13)
where g is the mass density in the natural state, dtdis
the deformation gradient, defined by

axk

F*=Vx* (X% 1) or FY%=——. (14)
X%
Summing Eqg. 13) overw, we obtain the equation of con-

servation of mass for the mixture:
dp
ot

Another useful form of Eq.1(3) follows upon using Eq.4)
and Eq. 8):

4+ V. (pv) =0. (15)

¢ + V. (p%v%) =0. (16)

Balance of Momentum
potx//a — V . tot +pafa +pAa’ (17)
(18)

> =0
o

where,t;, f andpy are, respectively, the stress tensor, the
body force density, and the force exerted on #hk con-
stituent from the other constituent.

Balance of Moment of Momentum

P = M et I (19)
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> i =0,
o

where o® j%, v my;, p*Ij andm,; are, respectively, microin-
ertia density, microrotation-rate (gyration), body couple den-
sity, and the couple exerted atth constituent from the other
constituent. ¢, is the alternating tensor. Note that, when
J%, m; andlf vanish, Eq. 19) reduces to the classical form

(21)

(20)

Elmnt®,, + % = 0,

If we sum this overr, we arrive at the symmetry of the
mixture stress tensag;=f;x. Thus, Eq. 19) expresses the
balance of spin inertia.

Conservation of Energy

p“ €Y = tihagy + myby + qi i + p“h* + €7, (22)

Subject to

D @+ p -+ mY - v%) =0, (23)
o

where

1 =vY—v, V=rvY—v. (24)

Here,e%, ¢“ andh® are, respectively, the internal energy
density, the heat vector, and the energy souredlogpecies.
€Y denotes the transfer of energy doth species from the

other species.For the derivation of these equations, we re-

fer the reader to Twist and Eringen (1994), Eringen (2001),
Eringen and Ingram (1965) and Bowen (1976).
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With this, Eq. €7) becomes
pé =V .q+ph
+ ) hag + mybf) — pt- w2 —mt v (30)
o
We introduce Helmholtz’s free energy by
€=1v+0n, (31)

where, >0 (inf§=0) is the absolute temperature, and
is the entropy density. With this, the energy balance law
Eqg. (30) takes the form

P + pO7 + pn — V - q — ph = Y _(tafy + mybfy)
o

+pt- P+ mt 2 =0 (32)

To the balance laws, we adjoin the second law of thermody-

namics,

@ > 0.

5 =
By means of Eq.32), we eliminateph/0 from Eq. 33),

to obtain

—p(F +n) + Y (efaf + mfbi) — pt- vt
o

pii—V - (%) - (33)

1 - - Vo
—m1~v12 quo

+ (34)

This is the generalized Clausius-Duhem inequality. It is

We consider that both species have the same temperaturgndamental to the development of the constitutive equa-

Certainly this is not true for the rain and ice mixture, except
perhaps at the melting point. But, for a mixture consisting of

tions.

rain and sand, it can be valid. In this case, we need only a

single energy equation, namely that of the mixture. To this
end, we sum Eq2Q) overa, use Eq. 23) and

q= Z(q“ — p%e*v?), ph = Zp“h“. (25)
o o
Using the expression
Do pMY =pY 4 Y V- (0Pt
o o
Py =Y p*Y°, (26)
o
we obtain
pé =V -q+ph
+ > (faf + mE bl — v — w57, (27)
o
Using Eqg. (L8) and Eq. 20), we have
2 2
Z I;oz LPY = I;l . 512’ Z’ha L pY = rﬁl . ]—)12, (28)
a=1 a=1

where

=12

7 1 2

=V —0v, lz:vl—v.

(29)

4 Constitutive equations

According to the causality hypothesis, Eringen (1980), the
independent variables are

Y =0, 0% al, b, 52,5205,  a=12 (35)

where,

2=l -2 2=yl 2 (36)
Dependent variables

Z =, 1, my, —p, —im*, q) (37)

are considered to be functions Xf

We observe that, all independent variables are frame-
independent, except far? andv12. Generally, these latter
guantities are not admissible to form a constitutive equa-
tion in nonlinear continuum mechanics. However, it ap-
pears in classical Darcy’s law, and is well accepted in porous
media theories. The admissibility of this term, as a lin-
ear approximation in continuum mechanics, was noted by
Wilmanski (2003). The same argument readily applies to the
variablep1?.
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Static variables are andp®, so that

v =y, " p7). (38)
We calculate
Z — (0% ), (39)

where, we used Eq18) to replaces®. Substituting Eq.39)
into Eqg. 34), we have

oY
—F (a_e +”> 0
+ 5 |:<tkl + ,0,0

A1 - Al ~ Vo
—pl-vlz—m1~v12+q-720. (40)

0
: 5kl> ag + mk,blk}

This inequality cannot be maintained in one sign, for all

independent variations éfunless

oy
n=—2g" (41)
and
> (ptgagy +mgb) — pt- o2 —mt -t
o

Vo

where,

« OV
= pp* T (43)
Y
Here,n* is the partial pressure th species.
We recognize the thermodynamic foraéby

pty =ty + 7%, ¢

Y = (af), b, 0t 012, 6.4/0), (44)

and thermodynamic fluxeg, by

J = (ptfy, mfy, = pic, =i, r)- (45)
The inequality Eq.42) may be abbreviated by

r=yY.-J>0. (46)
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The dissipation (dynamic) part of constitutive equations may
be expressed in the form

J=3X;0). (47)

Edelen (1993) gave a general solution of Ep)( in the
form

JY;0) =Vyd(Y;0)+ W(Y;0), (48)
where,W is restricted by
W.Y =0, (49)

and the dissipation potentiab(Y; 6) is given by

1
d(Y; 6) =/ Y -3(rY,9)dTT. (50)
0

Equation 49) indicates thatW do not contribute to the
dissipation of energy. In fact, for the linear constitutive equa-
tions, W vanish, and we obtain

I 3¢ . . I

P =G ™ =g P =T = Tm

X X 9P 0P

it =i == 20— , 51
Ip12 A(Vo/0)

where, a superscrifft denotes the transpose, el =b%.

The dissipation potentiab depends on the invariants Bf
and@. We distinguish pseudo-tensab® and »1? from the
absolute tensors®, 312 and V6 /6. For first degree consti-
tutive equations, we need the second degree invariants only.
These can be read from a table, Eringen (1980 p. 577):

tra®, tr@®?, tr@*a®"), tr@ta®”), @rb%)>?,
b, tr®*6°T)  tr®W%T), 2. 912

Vo .Vo
512,512 §12.v9/0, K 7 «=12 (82)

The dissipation functiod® may be expressed as
O = 3 + Py, (53)

where,

A\
20, = Z [Aa (tra®)? + g tr(@®)? + (o + ko) tr(ao‘a“T)] + 20tr(ata®’) + 912 1% 4 2¢912 -
o
Vo -Vvo
K ;
62
20, =) [aa (trb™)? + Bo tr(b*)? + ya zr(b“b”)] + 2t tr('6?) + wv'? . 512 (54)

o

wheredy, e, Koy Ay Bas Yar &, @, ¢, 0 , T andK are material moduli.
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Substituting Eq.%4) into Eq. 61), we obtain the constitutive equations

Dt = hotra®1+ pnea®” + (g + ko)a® + o (@'dyz + a®541),

m® = agtrb®1l+ Bab® + yub®T + (0 841 + 5?7 541), a=12
—pl=p? =02+ ¢cVo)0,
—t = m? = wp'?

g =cv?+ KV0o/6. (55)

The dissipation potentiatb; and®; must be nonnegative press®,, in terms of symmetric and antisymmetric tensors
for all independent variations of the independent variable set.

Fora®=0, 2d; reduces to o — b + b7 4 — b* — b (58)
2 ’ N 2 '
Vo Vo -veo
~12 =12 ~12
- 2 -— 4+ K > 0.

SV v 2 + 62 Then, we have

This will be nonnegative, if and only if T

b =c"+d*, b7 =% —a°. (59)
£20, E(K-¢*=0 (56)
From Eq. 64) (with 5=0), & > 0 leads to Va}lt\jlgggglsi:,ebz may be expressed in terms of the principal

@ > 0. (57)

1o - . P2 = P21+ D22, (60)
For 912=p12=0, ®; and ®, acquire similar quadratic

forms. Thus, we need to study only one of them. We ex-where,

2®1 = Ajjcj,
D2 = (y1 — P1)(d? + d3 + d2) + (y2 — P2)(d2 + dZ + dB) + bt (d1dy + dods + dads), (61)

A1 =A11=Ap=Azz=a1+B1+y1, Ax=Asu+ Ass+ Ags=az+ B2+ 2,
Alp=Ap3=Az1 =01, Ama=Axps=A3=71, Ass=A36= Ags= 2,

1 1 1 2 2 2
C11=0C1 €(2=0C2, C€33=€3, (11 =04, Cp=C5 (33=C6

di,=di, diz=ds, di=ds, d?y=dy, di3=ds, d3 =ds. (62)
From ®2,>0, expressed by Eg69), it follows that (B1 + y1)?(Bas + B1+ y1) (B2 + v2) (202 + B2 + 2)
—2(B1+ yDI(B1L+ y) (a2 + B2 + ¥2)
M—p1>0,  (n—PO(a—P)—4r2>0. (63 + e (302 + 22 + 2y2) 17
+ (a1 + B+ ynrt =0 (65)

@1 will be nonnegative, when the eigenvalues are non-
negative. Alternatively, all sub-determinants based on the di-

agonals of the following matrix are nonnegative: In the case ofp; > O, in Eq. 65), we replacax, by i
il ] . ] o o

Aiarar T 0 O Ba BY o Ve DY tatie, andz by o.
a1 Araa 0 7 O With the inequalities Eqs56), (57), (63), (65), and these
a1 a1 A1 0 O 7 (64) replacements, we will havé>0.

T 0 0 Axar as
0 7 0 a2 A2 ap
0 0 7 a2 a2 Ao

For simplicity and practical reasons, often two-
dimensional problems are treated. In this case, E5f), (
(57) and 63) are not changed. But the matri&4) is reduced

Hence, we obtain to
a1+ pP1+y1>0, B1+y1>0, 201+ B1+y1>0,
2 Atar T O
Bar+ p1+y)Baz+ P2+ y2) —1° >0, WAL O 1
(B1+ y1)Ba1 + B1+ y1) (a2 + B2+ 12) T 0 Ayas (66)

— o1+ 1+ y2 =0, 0 7 ap Ay
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In this case, we obtain the inequalities moduli are constants, we obtain the field equations
ar+p1+y1>20, B1+y1>0,
_ 2 dapt
201+ P1+y1>0, (B1+ Vl)(ﬂZ;‘ y2) —1t° >0, 9P Ly, (plo1) = 0, (68)
201 + B1+ y1) (202 + B2 + v2) — 2 = 0. 67

5 Field equations

Substituting the constitutive Eq<l1), (43) and 65) into bal- 2
ance laws 17), (19) and @2), and assuming that all material 5 P ’

=5
Ao

—Val+ a4+ u)VV -t + (w1 + k) V2 4V x vt

Vo

+ o (VA2 4V x 0% — £ =) — g —= 4+ p'(f -3 =0, (70)
—Va? + (24 u2)VV - 02 + (u2 + k2) V202 4 62V x v?

]

+o (VAL +V x v + 6 —0?) + o=+ p%(f2 — 5% =0, (71)
(@14 BOVV - v +91V2 4 tVV - w2 4 k1 (V x vt — 20}

+0(Vxv2—2%) - —v?) + @t - jBYh =0 (72)
(@24 B2)VV -2 + 1oV202 4 tVV - vl 4 ko(V x 02 — 2v?)

+0o(V x vl—2v1)—i—w(vl—vz)—i-pz(lz—jlﬁz) =0 (73)

0%y o2 )2 Vo
1.2 120 1 .2 1.2 Vo
W =)+ —v) - (v —v)+V.|c —v)—i—KT + ph =0. (74)

For small variations of temperature from a constant ambi-by replacingi!, v2, ¥ andv? as follows

ent temperatur&p, we can substitute 1

P 2@ x v ,
0=To+T., |T|<To. (75) 97— 97— 29 x v,
I pl-@x vl,
so that, we may replaced /6 by VT /Ty, and take 25 52 @ x p? (78)
92 9%y where, is the rotation vector of Earth.
= PO—oz = —polo | 27 | = cu, (76) Field Egs. 68) to (74) are expressed in rectangular coordi-
0 nates. We expressed them in terms of vector operators, which
are valid in orthogonal curvilinear coordinates.
52 2 9pl
2, %V %y LR I N
6 —— T =3. 77 + V- (phvh) =0, (79)
(0) 3605 PO O(3T8p> (77) a1

In the case of atmospheric fluid dynamics, we need to takea 2 )
into account the Coriolis acceleration. This is accompllshed— +V - (p*v?) =0, (80)
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—Val4 a4 21 +x)VV -0 — (u1 + 1)V x V x 02 + 11V x v 4+ 0(VV - 02

VXV X124V xvz)—g(vl—vz)—TiVT+p1(fl—i;1+2szxv1)=o, (81)
0
—Vr% 4 (Ao 4 2u2 + k2)VV - 2 — (2 + k2)V x V x v + 12V x v?> +0(VV - vt
—VXxVxot4V xv1)+g(v1—v2)+TiVT+p2(f2—i;2+29xv2)=0, (82)
0
(@14 BL+yDVV v — 1V x V x v+ 1VV - v2 4 kg (V x o1 — 20
+0(Vxv2—20%) —ww!—v?) + ot — jWt + jle x vl =0, (83)
(@24 B2+ y2)VV - 1% — 1oV x V x 2 + 1VV - vl 4 10(V x v% — 2v?)
+o(Vxvt—20Y) + wwl = v?) 4 p2(I% — j2% + j2@ x v?) =0, (84)

. VT
—eT =8V - (@' +0) + Y (pt - a®T + m* - b*) + |:§(vl -+ ;T] S = v?)
0
o

K
+w=v3)) . wrl=-vH+Vv. [g(vl -’ + FVT} + ph =0. (85)
0
In Eq. 85), pt*, a%, m®, b*, v* andv* denote the physi- These conditions implgtrict adherencen the boundary.
cal components of tensors. Initial Conditions

Field Egs. 79) to (85) constitute a system of fifteen partial ~ The initial conditions usually consist of Cauchy data, ex-
differential equations to determine the fifteen unknown func-pressed by
tions p1, p2, 1, v, vl v2 and T, given the external loads
fL, f2,11,12 andh. Note that partial pressurest, 72 and ~ ~(x,0) = p%(x),  v*(x,0) = v*°(x),
¢, ands, given by Eqs. 43), (76) and (77), are determined  v%(x,0) = v*%(x), T(x,0) = T%x) in V, (89)
when the the free energy functiah is specified. Thus, the
system 79 to (85) is closed. Under appropriate boundary ~ Where, quantities carrying a superscript4re prescribed
and initial conditions, the field equations may be solved tothroughout the body, at time=0.
determine the unknown functions. Incompressible fluids

Boundary Conditions In incompressible fluidsy* =py =const. and we have

Let V denote a regular region of the Euclidean space, oc-
cupied by the mixture, whose boundanydig. The interior ¥ % =0 V-»* =0 (90)
of V is denoted byV, and the exterior unit normal t8V

; ) The pressures® are now replaced by an unknown pres-
is denoted by:. Let S; (i=1, 2..., 6) denote subsets @fV,

surep*(x, t) and the field equations are simplified by using

such that (5.23).
S1US» = 8S3USs4=S5US8 =2V,
$1N Sz =S3N54=55NSe=0. (86) & Mixtures of two Newtonian fluids
A mixed set of boundary conditions on the surfaces, at
time T+=[0, c0), may be expressed as: When the constituent fluids can be approximated by New-

tonian fluids, basic equations are greatly simplified. In this

- case, the field equations follow, by settiag=ko=vl=v? =
v =vd on S3xTT, mfni=mgonSaxTT, 0, and ignoring the remainder of the Eg83| and §84), since
T=Ty on SsxTT, gkng =q¢ on Se x T+, (87) these equations arise from the nonsymmetry of the stress ten-

sor and the existence of the couple stress.

v =0 on SixTT, tinf=1& on Spx T,

where, vy, vg, 15, mg;. To andqg are prescribed. When
any one of the surfaces is absent, the accompanying bound,1

ary conditions are extended to covdr. For example, when -+ V- (p'vh =0, (91)
S>=0, S1, becomesV, and whenS;=0, S3 becomesHV,
so that )
o o o o BL . 2 2 —_
v =3, v¥=vg on V. (88) o1 + V.- (p*v%) =0, (92)
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—Val+ M+ 2u)VV -0t — iV x V x 11 +6(VV - 92—V x V x v?)
— e —v?) — TioVT +or =t 2@ x o) =0, (93)

—Vr%+ (A2 4+ 2u2)VV - 0% — 1oV x V x 2 + 0(VV - 01 — V x V x v1)
+EW -0 + Tivr +p2(f2— 124+ 22 x v) =0, (94)
0

. VT
—c,T =8V - (0t + %) +ptt-d'T +p 2. d°T + [g(vl )+ gTO} (=%

K
+V~[§(vl—vz)+70VT} + ph =0, (95)
where, From the field Eqs.§1) to (85), it is clear that strong cou-
o o N o plings exist among the velocities and gyrations of species.
17 = =714 AV - 0" 4 2p0d", (96)  consequently, the gyrations will alter the velocities and vice

versa. The constituent fluids display couple stress and a non-
symmetric stress tensor.

As compared to the binary mixtures of Newtonian fluids
(Egs.93 to 95), here, we encounter an additional physical
phenomena, diffusion due to the difference of gyrations.
This effect also guides the conduction of heat in the mixture.

1
d/?l = E(Uz’l + U;)fk). (97)

Boundary Conditions
The boundary conditions follow from Eq. (87), by drop-
ping conditions on®, andmy;.

- Edited by: S. Wiggins
o _ .« + o o __ Lo +
vi=wvg on SixT7, fym =ty on SpxTT7, Reviewed by: two referees

T=Tp on S3xTT, qny =q5 0on  Six TT, (98)

where,S1 U So = S3U S4=3V, S1 N S»=S3 N S4=0. References
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