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Abstract. We investigate the relevance of chaotic saddleswind plasmas is essential for a better understanding of the
and unstable periodic orbits at the onset of intermittent chaosolar wind-magnetosphere coupling processes.
in the phase dynamics of nonlinear Aéwr waves by us- The fluctuations of the plasma velocity and magnetic field
ing the Kuramoto-Sivashinsky (KS) equation as a modelas revealed by interplanetary data records are frequently well
for phase dynamics. We focus on the role of nonattractingcorrelated, which is a signature of the presence of &ifv
chaotic solutions of the KS equation, known as chaotic sadwaves in the solar wind (Belcher and Davis, 1971; Goldstein
dles, in the transition from weak chaos to strong chaos viaand Roberts, 1995). Alén waves are low-frequency elec-
an interior crisis and show how two of these unstable chaotiaromagnetic waves in a plasma with a background magnetic
saddles can interact to produce the plasma intermittency obfield. From a linear analysis of MHD equations, the disper-
served in the strongly chaotic regimes. The dynamical syssion relation of the Alfén wave is found as=kv4, where
tems approach discussed in this work can lead to a better urk), is the component of the wave vectoparallel toBg, and
derstanding of the mechanisms responsible for the phenomw,=Bg/(uop0)Y/? is the Alfvéen velocity, whereBy is the
ena of intermittency in space plasmas. strength of the ambient magnetic field is the permeability
of vacuum andbg is the average mass density of the plasma.
The perturbation of the fluid velocity relates to the mag-
netic field’s perturbation vectd=3 Bo by u==b/(1op0)*?,
1 Introduction where the upper (lower) sign refers to the céseBo>0

(k - Bo<0). Thus,u andb are parallel/antiparallel and pro-
Intermittent fluctuations are constantly encountered in spacgortional to each other, and the plasma oscillates with the
plasmas, as reported in several works based on the analysigagnetic field lines.
of solar wind data both at the ecliptic (Burlaga, 1991; Marsch As shown by Lefebvre and Hada (2000), by assuming
and Tu, 1993; Bruno et al., 2003) and high heliographic lat-weak instability the dynamics of quasiparallel A4fv waves
itude (Ruzmaikin et al., 1995; Pagel and Balogh, 2003). In-can be studied by a complex Ginzburg-Landau (CGL) equa-
termittent events are characterized by time series that distion. The complex Ginzburg-Landau equation has been one
play time intervals with low variabilities interrupted by bursts of the most widely studied nonlinear equations in the last
of very high variabilities. As a consequence, the associatedliecades (see Cross and Hohenberg, 1993; Bohr et al., 1998;
probability density functions (PDF’s) are non-Gaussian. It Aranson and Kramer, 2002, and references therein). It de-
has been shown by drds et al. (2002) and Dorotovic and scribes the slow modulation of a periodic pattern in space
Voros (2004) that intermittent fluctuations in the solar wind and time near the threshold of an instability, where a band of
affect the geomagnetic response. By comparing solar windnodes become unstable.
data obtained from the ACE spacecraft with plasma sheet In this work we study the phase dynamics of nonlinear
data from the Geotail mission, Dorotovic andnds (2004)  Alfv én waves modeled by the CGL equation. Phase dynam-
suggested that the non-Gaussian characteristics of the PDFiss is of particular interest in systems modeled by the CGL
of solar wind data can be interconnected to the occurrencequation, since for a range of values of the control parameters
of intermittency in the magnetic fluctuations in the plasmathe dynamics of perturbations of traveling wave solutions is
sheet. Thus, the study of intermittent phenomena in solaessentially determined by variations of the phase alone, and
can exhibit “phase turbulence”. In such regimes the ampli-
Correspondence tcE. L. Rempel tudes are essentially constant and the phase dynamics sat-
(erico@dge.inpe.br) isfies the Kuramoto-Sivashinsky (KS) equation (Kuramoto
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and Tsuzuki, 1976; Cross and Hohenberg, 1993; Bohr et al.attracts almost all the initial conditions in a certain neighbor-
1998; Aranson and Kramer, 2002; van Baalen, 2004). Thehood, that is, the limit set of the orbits of initial conditions in
study of phase dynamics can elucidate important nonlineathe neighborhood as time tends+ec is the attractor (Gre-
phenomena observed in space plasmas. Finite correlation dfogi et al., 1984). Attractors may be simple sets like a fixed
phases in MHD waves upstream of Earth’s bow shock wagpoint or periodic orbit, but can also have nonelementary ge-
found in Geotail magnetic field data, indicating that non- ometrical properties such as noninteger fractal dimension, in
linear interactions between the waves are in progress (Hadehich case the attractor is called “strange” (Grebogi et al.,
et al., 2003). This bears important implications in discus-1984, 1987b). Fractal sets display scale invariance, which
sions of various transport processes of charged particles itmplies that continuous blow-up of a tiny portion of the set
space. In He and Chian (2003) imperfect phase synchroreveal self-similar structures on arbitrarily small scales (Ott,
nization in a nonlinear drift wave system was shown to be1993).
responsible for the origin of bursts in wave energy in a tur- Strange attractors are typically (but not always) “chaotic”
bulent state. Here we focus on the characterization of phas@Grebogi et al., 1987b). The orbits of random initial con-
intermittency in the KS equation. We first describe how theditions on a chaotic attractor will display aperiodic behav-
fluctuations of the phase can evolve from periodic to chaoticior and “sensitive dependence on initial conditions”, which
behavior through a sequence of bifurcations as the viscosityneans that nearby orbits will diverge exponentially with
is varied. We show that in the KS equation, chaotic attractorgime. The average rate of divergence can be measured by the
coexist with nonattracting chaotic sets responsible for tran-‘Lyapunov exponent”. Let\g be a small distance separating
sient chaotic behavior. The collision of a weak chaotic at-two initial conditions on the chaotic attractorz&t0. Then
tractor with an unstable periodic orbit leads to the generatiorfor increasing the orbits of the two points will diverge on
of a strong chaotic attractor, in an event known as interioraverage af\;~Aqexp(it), wherex is the Lyapunov expo-
crisis. The post-crisis strong chaotic attractor can be decomnent (Grebogi et al., 1987b). For systems witHimensional
posed into two nonattracting chaotic sets, responsible for thgphase space there ardyapunov exponents which measure
generation of intermittent time series. the rate of divergence/convergence ororthogonal direc-
Section 2 of this paper contains a brief introduction to ba-tions.
sic concepts on nonlinear dynamical systems. In Sect. 3 we Chaotic sets are not necessarily attracting sets. A strange
describe the numerical solutions of the KS equation by theset A might be chaotic and nonattracting. That means that
Galerkin spectral method. In Sect. 4 we present our analysighe orbits of typical initial conditions in the vicinity oA
of attracting and nonattracting chaotic sets in the KS equaare eventually repelled from it. Neverthelegscontains a
tion. The conclusions are given in Sect. 5. chaotic orbit (an aperiodic orbit with at least one positive
Lyapunov exponent) (Nusse and Yorke, 1989). If the chaotic
orbit has also one negative Lyapunov exponent the nonat-
2 Basic concepts of nonlinear dynamics tracting chaotic set is known as “chaotic saddle”. Chaotic
saddles, as well as chaotic attractors, contain an infinite num-
In this section we review some basic concepts of nonlineaiber of unstable periodic orbits (UPO's).
dynamical systems (Parker and Chua, 1989; Ott, 1993; Al- In nonlinear dynamical systems, as one varies some con-
ligood et al., 1996) that are essential for understanding thdrol parameter present in the model equations some dynam-

remaining of this paper. ical changes can occur, such as creation/destruction of fixed
We consider dissipative dynamical systems described bypoints and periodic orbits or loss of stability of attracting sets.
autonomous systems of ODE’s, Thus, periodic attractors can lose their asymptotic stability
and become unstable periodic orbits. Similarly, chaotic at-

x = f(x), Q) tractors can lose their attracting nature and become nonat-

tracting chaotic sets, or chaotic saddles. The qualitative
wherex is ann-dimensional vectorf is a vector function  changes in the behavior of solutions of dynamical systems
and the dot denotes derivative with respect to time. A “flow” as a control parameter is varied are called “bifurcations”.
fi(x0) is the solution of Eqg. (1) for an initial conditioso ~ When the changes in the phase portrait involve merely the
after certain timer. The components of the vector “state |ocal vicinity of fixed points or periodic orbits, one has a “lo-
variable”x define a “phase space”, where the flowxefis  cal bifurcation”. Large changes in the topology of the system
plotted for increasing values of generating the “orbit” of  are called “global bifurcations”. An example is the “interior

X0. crisis” discussed in this paper, whereby a chaotic attractor is
A “fixed point” of Eq. (1) is a constant solution, i.e. a point suddenly enlarged. The bifurcations of a dynamical system
x for which x=0, or equivalently,f; (x)=x for all . A “pe- can be represented in a “bifurcation diagram”, in which the

riodic orbit” is a solution of Eq. (1) that always repeats its values of one of the state variables are plotted as a function

behavior after a fixed time interval, i.¢;(x)=f;+r(x) for of one control parameter.

all r and some minimum periofi>0. A classical technique to analyze nonlinear dynamical
Dissipative systems are characterized by the presence afystems is the “Poincarmap”. It replaces the flow of

“attractors”. An attractor is a subset of the phase space thaan n-order continuous-time system with am—1)-order
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discrete-time system, simplifying the analysis and visualiza- . i i i (k 4 m)byby e *k+m. (6)
tion of the dynamics. There are different forms of defining a "
Poincaé map. At the end of the next section we exemplify

k=—o00 m=—00

one of them. Next, multiply Eq. (6) bye=/*, with /=—o0, ..., 00, and

integrate in the spatial domain,
. . . 2r % 2 00 )

3 The Kuramoto-Sivashinsky equation / Z bkezx(k—l)dxzf Z K2bye* k=D g
0 (=— 0 (=—

The derivative nonlinear Sobdinger equation (DNLS) > on 0 >

(Rogister, 1971; Mjolhus and Wyller, 1988) describes _/ v Z Kbe* D gy

the dynamics of quasiparallel AlBn waves of moder- 0 [

ate amplitudes in a finitg- plasma, taking into account 2 o0 00

weak linear dispersion. To describe patterns formed —/ Z Z i (k+m)

0

by Alfvén waves subject to damping and growth rate, k=—00 m=—00
Lefebvre and Hada (2000) used a model based on a % bpby e &tm=D gy 7)

modified version of the DNLS equation, including lin- ) ) ) )
ear growth rate, linear dissipation and nonlinear Lan- Each integral of the exponential functions in Eq. (7) van-

dau damping. Assuming weak instability, Lefebvre and ishes except when the exponent is zero. The three first expo-
Hada (2000) proposed a further simplification to an en-N€nts are zero whek=/. For the nonlinear term the expo-
velope equation by writing the complex transverse mag-”ent is null wherk=I—m. After solving the integrals, Eq. (7)
netic fieldB=By+i B, asB(x, )=y (&, 1) expli (kcx —w.1)], becomes

wherew.=w(k.), E=x—v(k.)t andk. is the most unstable ) 4 . N
mode. Assuming, >0 (left-hand polarization) the resulting bx = (k% = vkHbi —ik Y~ bubi—, (8)
equation fory is given by m=—N
k=-N,.., N,
0y =¥ + (L—ibdeey — iv(ba — MY, (2)

whereN is the truncation order. Our choice dfis explained
whereb; measures the strength of the dispersion &nthe later in this section.

effects of nonlinearity. The term¥ denotes a function that The coefficients in Eq. (8) are complex. We can sim-
accounts for the nonlinear Landau damping (Mjolhus andplify our analysis by restricting to the subspace of odd solu-
Wyller, 1988). Equation (2) falls into the general class of tions, ¢ (x, 1)=—¢(—x, t). It is possible to prove that if an
the complex Ginzburg-Landau equation. The envelpps initial condition ¢ (x, 0) is an odd function, the solution of

a complex variable. By writingy=R exp(i®) and assum-  Eq. (3) is odd for all time (Temam, 1988)

ing small perturbation®=Ro+r, ®=do+¢, it is possible

to derive an equation for the phageof the CGL equation. ®&:1) = —¢(=x.1),  Vx.1. ©)

As shown by Kuramoto and Tsuzuki (1976) and Aranson and  The Fourier transform of an odd function has purely imag-
Kramer (2002), the phase equation is given by the Kuramotoinary coefficients, so we can represent odd functions by as-

Sivashinsky equation. Here we study the following form of suming thaty (¢) are purely imaginary, setting
the KS equation (LaQuey et al., 1975; Christiansen et al.,

1997; Chian et al., 2002; Rempel and Chian, 2003) by = —%iak, (20)

0 = —02¢ — V3P — .9, (3)  whereq are real numbers. After substituting Eq. (10) into

wherev is a damping parameter representing viscosity and=d- (8), we obtain

we assume thap (x, ¢) is subject to periodic boundary con- P

ditions ar = (k% — vkhyay — > > amaim, (11)
m=—N

¢(x,t)=¢(x+27f,t) (4) k=_N,’N

To obtain the numerical solution of Eq. (3) we use the  gquation (11) contains unnecessary operations. Since
Galerkin method (Gottlieb and Orszag, 1977), by applymgmx’ 1) is real, —iay=ia_g, and it is not necessary to com-

a Fourier decomposition for the functigrix, 1) pute the modes with negatike Moreover,a; =0 for |k|>N,
) " and some operations in the nonlinear term can be dropped.
P, 1) = Y br(n)e*. (5)  Thus Eq. (11) can be written in the form
k=—00
-1
After substituting Eq. (5) into Eq. (3) and solving the & = (k? — vkha +E ( Z A—mQk—m (12)
derivatives one obtains 2\,.5n

00 ) 00 ) o0 ] k—1 N
Z bre™™ = Z Kbget — v Z Kb e - Zamak,m—i— Z amam—ri | »
k=—00 m=1

k=—00 k=—00 m=k+1
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v =0.029924

) —1 0 1 2
a, (b) %
‘\‘“4\
Fig. 1. Period-3 limit cycle solution of Eq. (12) a&=0.029924 and 0"‘&&\“"/ &g"’ "‘{‘ Y
the corresponding Poindapoints. K“p\\‘%ﬁ)""‘\\y} ‘ :,( \ 4 (‘\‘\(\
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with k=1, ..., N. <AL A\ R \ 7 1.5

The dynamics of the system described by Eq. (12) can be 'ik,!‘.‘v"“"’ ‘A‘ \‘2'
analyzed on a Poincasection defined by, =0. A trajectory 0 ' \‘#/
representing the flow of Eq. (12) in a phase space defined by \/

the Fourier modes;, can intersect this Poindgaisection in -
two ways: wheni; >0 (from “left” to “right”) or when a1 <0
(from “right” to “left”). We adopt a Poinca map P de-
fined as the N —1) dimensional hyperplane given lay=0,
with a1>0, so that a Poincarpoint is plotted every time the
flow of Eq. (12) crosses the Hyperplang=0 from “left” to
“right”, as illustrated in Fig. 1 for a period-3 (p-3) limit cycle
solution atv=0.029924.

The choice of the truncatioN for the number of modes
has obvious implications in the numerical solutions of 4 Nonlinear dynamics analysis
Eq. (3). High values ofV imply high computational cost
for the simulations, due to the sums in the nonlinear term4.1 The bifurcation diagram
in Eq. (12). On the other hand, low values §f may re-
sult in a dynamical system whose behavior has no resemFigure 3a depicts the bifurcation diagrag(v) for Eq. (12)
blance with the original PDE. A determination of the range with N=16. The diagram is similar for any choice of.
of linearly unstable modes is helpful in this case. Consid-For each value of we drop the initial 100 iterations of the
ering the linear part of Eq. (12), one finds that the stability Poincaé map before we start plotting. These initial iterations

Fig. 2. (a) Temporal variation of the Fourier modeg(¢) in Eq. (12)
for v=0.029919 andN=16 modes;(b) the corresponding spa-
tiotemporal pattern op (x, r). The system dynamics is chaotic in
time but coherent in space.

eigenvalues are negative fir>1/./v and are positive for
lk|<1//v. Thus, the modes with wave numbeérsn the

contain the transient dynamics, before the fluctuations of the
wave phase converge to a regime where the Pdéngaints

range[—1/4/v, 1/4/v] are linearly unstable. These modes stay in an attracting subset of the phase space. For this range

excite the short wavelength (high)-modes through the non-

of v, the attracting set can be either chaotic or periodic. The

linear term in Eq. (12), and the excitations are dissipated bygray area in Fig. 3a depicts another important subset of the
the highx modes (Christiansen et al., 1997). Modes with phase space representing a chaotic saddle. The trajectories
|k|>>1//v are strongly damped and their amplitudes remainof random initial conditions are first attracted to the vicinity
very close to zero for all times, but intermediate modes mustof the chaotic saddle, where they display chaotic behavior
be kept in the simulations. Figure 2a depicts the tempo-for a finite time (“‘chaotic transient”), before they converge
ral variation of the Fourier modes (z) in Eq. (12) for a  to the attractor (periodic or chaotic). The chaotic saddles

chaotic regime at=0.029919 andV=16 modes. Clearly,
the energy is concentrated in the léwiong wavelength
modes. The corresponding spatiotemporal paidnn ¢) in

are obtained by the PIM triple algorithm (Nusse and Yorke,
1989).
A saddle-node bifurcation at=vgng~0.02992498, indi-

real space, obtained with Eq. (5), is shown in Fig. 2b. Thecated as SNB in Fig. 1, marks the beginning of a “peri-

system dynamics is chaotic in time but coherent in space.

odic window” in the bifurcation diagram. Far>vsyg, ran-
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SNB (a) 1'57 IC

ORDER

-1.5¢

0029919 0.029921 0.029923 0.029925

-2.9 ‘ :
0.0299190 0.0299211 0.0299232 0.0299253 \Y
AY (b) 0.7
(b) -2.4 T 0.65} |
25 4 0.6/ ,
_______ L S s T e — e
E_> 0.55f
0.5f
0.45f
0.029919 0.029921 0.029923 0.029925
\Y
-2.9 ‘ ‘
0.0299190 0.0299211 0.0299232 0.0299253 Fig. 4. (a)Variation of the maximum Lyapunov exponetax with
Vv v; (b) variation of the correlation lengthwith v.

Fig. 3. (a) Variation of ag for the chaotic saddle (gray) as a func- ) o ) ) ) o o
tion of v, superimposed by the bifurcation diagram of the attractor This collision is respons_uble f0f_ an “interior crisis’, which is
(black) in a p-3 periodic window. IC denotes interior crisis and a sudden enlargement in the size of a chaotic attractor (Gre-

SNB denotes saddle-node bifurcation. The dashed lines denote theogi et al., 1983). After crisi&v <vic), we find a new chaotic
p-3 mediating unstable periodic orbfb) Same as (a), but depicting saddle embedded in the enlarged chaotic attractor, in the re-
the conversion of the three-band weak chaotic attractor into a ban@]ion previously occupied by the “pre-IC” banded chaotic at-
chaotic saddle after (to the left of) IC. tractor. In contrast with the surrounding chaotic saddle, we
call this new chaotic saddle the “band chaotic saddle” (BCS).
Figure 3b illustrates the structure of BCS after IC, where the
dom initial conditions converge to a chaotic attractor, and forbifurcation diagram for the attractor (black) of Fig. 3ais plot-
v<vsng the chaotic attractor no longer exists. At the saddle-ted to the right of the IC point and the band chaotic saddle
node bifurcation the simultaneous creation of a p-3 attracto{gray) is plotted to the left of IC. It is important to stress that
and a p-3 unstable periodic orbit occurs. The p-3 UPO, foundilthough in Fig. 3a the surrounding chaotic saddle is plotted
with the Newton method, is represented in Fig. 3a by dashe®nly between points SNB and IC, it is actually present in the
lines. As the value ob is decreased, the p-3 attractor under- entire bifurcation diagram. For<vic andv>vsng SCS is a
goes a cascade of period-doubling bifurcations, whereby theubset of the chaotic attractor.
period of the attractor is successively doubled. As the period In Fig. 4a we plot the variation of the maximum Lyapunov
tends towards infinity, a chaotic attractor is formed, local- exponentimax Of the attracting set as a function of Pos-
ized in three separate bands in the bifurcation diagram. Wative values of A\nmax indicate the presence of a chaotic at-
call the region occupied by this “banded” attractor the “bandtractor, and negative values indicate that the attractor is pe-
region” (B), and the region occupied by the surroundingriodic. Note thatimax jumps abruptly atc, indicating a
chaotic saddle (SCS) the “surrounding region” (S), follow- sudden increase in the attractor’s chaoticity. For that reason,
ing reference (Szdbet al., 2000). Atv=1,c~0.02992021 the pre-IC chaotic attractor is called “weak chaotic attrac-
the chaotic attractor collides with the p-3 UPO created attor” and the post-IC attractor, the “strong chaotic attractor”.
SNB, called the “mediating unstable periodic orbit” (MPO). As mentioned before, for the chosen value of the damping
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Poincare' Points 5 ‘ ‘ ‘ ‘
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Fig. 5. Transient chaos at=0.0299248. t

. . Fig. 6. Exponential decay oiV;, the number of trajectories inside
ParamEte“) and the spatlallsystem s'ie:_ 27_7' the d}/”_amf the restraining region at timeas a function of. The inverse of the
ics of the Kuramoto-Sivashinsky equation is chaotic in time, gjope of the fitted line gives the average exit tioe27.9.

but coherent in space. In fact, the spatial coherence remains
basically unaltered throughout the whole range afsed in
Figs. 3 and 4, as indicated by the correlation lerig{Nlorris

et al., 1993) in Fig. 4b.

-0.012 \\
\

4.2 Chaotic saddles N
Associated to a chaotic saddle, there are stable and unsta —0.0143- \
ble manifolds. The stable manifold is the set of points that \
converge to the chaotic saddle in forward time dynamics; the; 16 \
unstable manifold is the set of points that converge to the ~0.0167- \
chaotic saddle in the time reversed dynamics. The chaotic
saddle lies on the intersection of its stable and unstable man- N

ifolds (Nusse and Yorke, 1989; Ziemniak et al., 1994). In- o 05

side the periodic window (between SNB and IC in Fig. 3) _038 \/0/

the trajectories of all initial conditions will eventually con- -0.44

verge to an attractor, except for initial conditions lying on a o '

the stable manifold of SCS, which is a set of measure zero.

Initial conditions close to the stable manifold are first at- Fig. 7. Three-dimensional projectiofay, a1g, a1e) of the chaotic

tracted to SCS and stay close to its neighborhood for someaddle defined in the 15-dimensional Poigchyperplane just be-

time, before they are repelled, following its unstable mani- fore the saddle-node bifurcation,at0.029925.

fold. The closer an initial condition is to the stable manifold

of SCS, the longer its transient time before converging to the

attractor (Hsu et al., 1988). In Fig. 5 an example of tran-is @ continuation of the surrounding chaotic saddle shown in

sient chaos is shown for a time series of Poi'aqapints at Fig. 3a. The chaotic saddle is not a continuous line. It has

1=0.0299248, where the phase dynamics converges to a phany gaps, most of which are not visible in Fig. 7 due to

3 attractor. The average transient timean be estimated their small size.

by taking Ng random initial conditions and computing;,

the number of trajectories that are still in the transient stage#.3  Interior crisis

afterr iterates. Figure 6 shows a graph of l¥gversust

atv=vic, whereNp=10 000 different initial conditions were In this section the dynamics near the interior crisis poijpt

used. The graph can be fitted with a straight line of slopeis investigated in terms of the role of chaotic saddles and

y=—3.59x10"2+1.45x10~4, which gives an average exit UPOs. For details on the numerical algorithms employed

time t=—1/y~27.9 (Rempel et al., 2004). see Rempel and Chian (2003) and Rempel et al. (2004).
Figure 7 shows a three-dimensional projecti@a, aio, At crisis the collision of the mediating UPO with the

aie) of a chaotic saddle defined in the 15-dimensionaltree-band weak chaotic attractor at results in the for-

Poincaeé hyperplane ab=0.029925-vgng, to the right of  mation of a single-band strong chaotic attractor. Figure 8

the saddle-node bifurcation in Fig. 3a. This chaotic saddleshows a three-dimensional projectiéa, aio, ais) of the
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-0.012+
-2.51
-0.0143+ -— SCA a
6
+ -2.52 -
A6 SM
-0.0167- —253
— WCA
0.38 0 : -1.840 -1835 -1.830 -1.825 -1.820
' -0.44 ds

05 05 (] s
o !

Fig. 8. Three-dimensional projectiofuy, a1g, a1g) Of the strong (b) -250
chaotic attractor (SCA, light line) defined in the 15-dimensional
Poincaé hyperplane after crisis at=0.02992006, superimposed
by the three-band weak chaotic attractor (WCA, dark lines) at crisis -2.51
(v=0.0299202}.

Us

Poincaé points of the strong chaotic attractor (SCA, light
line) after crisis(v=0.0299200, superimposed by the 3- -2.53
band weak chaotic attractor (WCA, dark lines) at crisis
(v=0.0299202}. An estimation of the fractal dimension of | 254 : . o
the post-crisis chaotic attractor a=0.02992006 using the -1.840 -1.835 -1.830 -1.825
Kaplan-Yorke formula (Ott, 1993) results in the dimension as
D~2.08. Note the similarity of the strong chaotic attractor ~
with th.e surrounding ChaOt_'C Sadfjle show.n m_ Fig. 7. Fig. 9. Plots of the upper branch of the chaotic attractor (CA,

In Fig. 9 we plot a two-dimensional projectioms( as) of  pjack line), the surrounding chaotic saddle (SCS, red lines) and
the upper branch of the chaotic attractor CA (black line) with its stable manifolds (blue dots)a) before the interior crisis, at
the surrounding chaotic saddle SCS (red lines) and its stable=0.0299211; andb) at the interior crisisy=0.02992021. The
manifold (blue dots) for (a)=0.0299211 (before crisis) and cross denotes one of the Poinegoints of the p-3 mediating un-
(b) v=0.02992021 (at crisis). The upper Poingamoint of stable periodic orbit. The dashed lines represent segments of the
the p-3 mediating orbit is represented by the cross. In theéboundary between the band region and the surrounding region,
Poincaé map, an unstable periodic orbit turns into a set of9iven by the stable manifolds (SM) of the mediating unstable pe-
saddle points with their associated stable and unstable marfiodic orbit.
ifolds. The dashed lines in Fig. 9 denote the local branches
of the stable manifold (SM) of the mediating orbit (MPO). o . ]
Note that SCS has a large gap between the two dashed linetQr shown in Fig. 8. Figure 10a shows th'e chaotic attractor
and many other smaller gaps, or discontinuities. Its gaps ar€CA) and Fig. 10b shows the corresponding B (green lines)
due to the horizontal white spaces in the background, whici8nd S (red lines) chaotic saddles. BCS is localized in a re-
reflect the fractal structure of the stable manifold of SCS.9ion of the phase space previously occupied by the pre-crisis
Figure 1b reveals that at crisis the S chaotic saddle and th&eak chaotic attractor. SCS is the continuation of the pre-
weak chaotic attractor collide. The collision takes place atCfisis surrounding chaotic saddle. It can be seen from Fig. 10
the mediating saddle, which belongs to SCS. Likewise, thdhat the post-crisis B and S chaotic saddles are subsets of the
weak chaotic attractor collides with the stable manifolds of Strong chaotic attractor. The gaps in SCS and BCS are filled

both SCS and MPO. by a set of coupling UPQO's created at the crisis (Robert et al.,
2000).
4.4 Crisis-induced intermittency The two post-IC chaotic saddles are not attracting, but they

exert influence on the dynamics of nearby orbits, since they
After the crisis, it is still possible to determine the B and S are responsible for chaotic transients. Bsnc, trajectories
regions, which are separated by the stable manifold of MPOon the chaotic attractor never abandon the band region. For
Figure 10 shows the chaotic sets f6£0.02992006, after the v slightly less thanc a trajectory started in the B region
crisis, around the upper branch of the strong chaotic attracean stay in B for a long time, after which it crosses SM and
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Fig. 12. logigt Vvs. logg(vic—v). The solid line with slope

escapes to region S. Once it is in the surrounding region, thé/%—o._AfG is a linear fit of the_ values_ of th(_e characteristic intermit-
trajectory is in the neighborhood of SCS. Since SCS is nonat{eNCY timer computed from time series (circles).
tracting, after some time the trajectory is “re-injected” into
region B. The “jumps” between regions B and S repeat in-
termittently. This crisis-induced intermittency can be viewed
as an alternation between two transient behaviors, in which
the trajectory spends a finite time in the vicinity of either mittent time series (the “characteristic intermittency time”)
BCS or SCS. These transitions between regions B and S argepends on the value of Close tovc the average time spent
due to the coupling UPO’s that are located within the gapsin the vicinity of BCS is very long, and decreasesas de-
of BCS and SCS, and establish the dynamical connectiortreased away fromc. The characteristic intermittency time
between the two chaotic saddles (Sza al., 2000; Rem-  (denoted byr) can be obtained as the average over a long
pel and Chian, 2004). The crisis-induced intermittency istime series of the time between switches among regions B
characterized by time series containing weakly chaotic lami-and S. Figure 12 is a plot of Iggt Vvs. log;o(vic—v), where
nar phases that are randomly interrupted by strongly chaotithe solid line with slope/~—0.46 is a linear fit of the val-
bursts, as shown in Fig. 11 for = 0.02992. The weakly ues of the characteristic intermittency time computed from
chaotic laminar phases correspond to the time spent in retime series (circles). Figure 12 reveals that the characteristic
gion B, and the strongly chaotic bursts correspond to the timaime r decreases with the distance from the critical parame-
spentin region S. ter valuevc following a power-law decay; ~(vic—v)?, as

The average duration of the “laminar” phases in the inter-expected (Grebogi et al., 1987a).
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5 Conclusions termittency. In particular, our theoretical results can be used
to reconstruct chaotic transients in phase space from space

We have investigated the relevance of chaotic saddles andata and to calculate the average duration of laminar phases
unstable periodic orbits at the onset of intermittent chaos inin solar wind intermittency.
the phase dynamics of nonlinear Adfiv waves by using the
Kuramoto-Sivashinsky equation as a model equation. We deA " : :
scribed how a strong chaotic attractor formed after an in- cknowledgementsThis work is supported by FAPESP and CNPg.
terio_r crisis can be naturally decomposed into two no,nat'Edited by: T. Passot
tracting chaotic sets, known as chaotic saddles, dynamicallieiewed by: two referees
linked by a set of coupling unstable periodic orbits. The per-
turbed wave phase oscillates irregularly, switching intermit-
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