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Abstract. This work is focused on the application of neu-
ral network based models to the analysis of total ozone
(TO) time series. Processes that affect total ozone are ex-
tremely non linear, especially at the considered European
mid-latitudes. Artificial neural networks (ANNs) are intrin-
sically non-linear systems, hence they are expected to cope
with TO series better than classical statistics do. Moreover,
neural networks do not assume the stationarity of the data se-
ries so they are also able to follow time-changing situations
among the implicated variables. These two features turn NNs
into a promising tool to catch the interactions between atmo-
spheric variables, and therefore to extract as much informa-
tion as possible from the available data in order to make, for
example, time series reconstructions or future predictions.
Models based on NNs have also proved to be very suitable
for the treatment of missing values within the data series. In
this paper we present several models based on neural net-
works to fill the missing periods of data within a total ozone
time series, and models able to reconstruct the data series.
The results released by the ANNs have been compared with
those obtained by using classical statistics methods, and bet-
ter accuracy has been achieved with the non linear ANNs
techniques. Different network structures and training strate-
gies have been tested depending on the specific task to be
accomplished.

1 Introduction to neural networks

Since the 1980s neural networks have been applied to a wide
range of subjects, most of them mainly within the Economics
and Medical fields. The forecasting of bankruptcy situations
(Mart́ın del Bŕıo, 1993), the calculation of possible peaks in
energy consumption (Alsayegh, 2003; Martı́n del Bŕıo et al.,
1995), or diagnosis of tumoural tissues (Vega-Corona et al.,
2003; Zhou et al., 2002), are some of the successful applica-
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tions in these areas. Computer interfaces for speech recog-
nition (Medrano and Martı́n del Bŕıo, 2000), signal process-
ing (Lajusticia et al., 2003), or users identification (Mitchell,
1997) are other fields in which neural systems are being ap-
plied.

Neural networks today are also little by little showing
their abilities to solve different problems in Geophysics, sev-
eral authors have recently applied these systems for classi-
fication (Maćıas et al., 2001), data retrieval (Acciani et al.,
2003; Müller et al., 2001), forecasting (Olsson et al., 2004),
downscaling (Trigo and Palutikof, 1999), parameterisation
(Chevallier et al., 2000) and problems related to the quality
of the data series (Reusch and Alley, 2002).

This first section gives a brief description of neural net-
works (NNs), explains basic terminology and performance
algorithms, and also examines the main features that make
this kind of system ideal for geophysical applications.

1.1 What are neural networks?

An artificial neural network is a multiprocessor computer
system based on the parallel architecture of the brain. Each
network consists of several simple processors called neurons,
or cells, which are highly interconnected and are arranged in
several layers (Fig. 1). The first and last layers are the in-
put and the output layer, respectively; and between the input
and the output there may be several hidden layers. To every
connection between neurons a certain corresponding weight
indicates the relevance that an output will have as an input
for the next neuron. The interaction between neurons is an
adaptive interaction based on the adaptability of the weights’
value. In fact, a neural network works by adapting these
weights in order to minimize the difference between the re-
sponse given by the output layer and the real expected value
(“target value”) for a certain pattern of inputs. The way these
weights adapt is called the “training rule”, or “learning rule”,
of the network. So, a neural network has to “learn” in order
to work properly, just as our brains do; and it is this fact that
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Figure 1. General scheme of an artificial neural network 
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Fig. 1. General scheme of an artificial neural network.

enlarges enormously the fields of application of these artifi-
cial neural schemes.

NNs are very helpful systems when numerous examples of
the behaviour intended to model are available, since the more
examples one has, the simpler the structure of the network
can be in order to achieve the same accuracy (Rojas, 1996). It
is during the training stage that the NN learns how to model
the behaviour/s under study. There are two main types of
training: supervised and unsupervised. It is the first one that
we have used and whose fundamentals are explained next.

To train the network, a “training set” of patterns is used.
For the supervised learning rules, this set is made up of input
vectors, each of them with an associated output target (for
the unsupervised rules the set consists of inputs only). The
components of the input vectors are the values of the “pre-
dictors”, or independent variables, and the targets are the val-
ues of the “predictand”, or dependent variable, for the corre-
sponding input components. For every pattern of the training
set, the net releases a certain response, this response is then
compared with the corresponding target value, and the error
between both quantities is calculated. The error function is
then used to adjust the connection weights in order to min-
imize the difference between net outputs and targets. There
are many different methods of setting the weights (“training
algorithms”). We have chosen the Levenberg-Marquardt al-
gorithm (Hagan and Mohammad, 1994), which, with respect
to the more extended backpropagation algorithm, is faster
and more reliable (see next section).

Like what happens in our brains, new interconnections can
be established if the learning process requires it (due for ex-
ample to the fact that a certain behaviour is observed more
frequently). Once the NN has been trained, a set of predic-
tors with unknown values for the dependent variable, can be
presented to the NN, and then the responses given by the
network are expected to have an accuracy within the range
reached during the training process. The precision that the
system must be able to achieve is one of the parameters that
can be modified by the designer, taking into account certain

rules regarding number of patterns and size of the network.

1.2 Advantages for geophysics

Neural networks present several characteristics that make
them ideal systems for dealing with atmospheric and cli-
matological data. First of all, NNs are non linear systems,
which makes them an ideal tool for catching non-linearities.
Secondly, they are highly versatile systems which can easily
adapt to circumstances, making them able to pick up tem-
poral variations, while classical statistics assume the station-
arity of the series. NNs are a very useful phenomenologi-
cal approach when the dynamics of the problem is either not
known or is too complex. In addition, because of the high
interconnectivity that a NN presents, this kind of model is
very tolerant to errors or noise in the input data. Therefore,
NNs are robust and flexible systems which are able to deal
with non-linear and non-stationary series. To ensure a better
tracking of time variations in the relationships between vari-
ables, different strategies can be followed: moving window
training set, bootstrapping techniques, ...

In our case we have applied NNs models for the treatment
of TO time series. As for almost every climate or weather
time series, we have a long available record of data, and we
have to deal with extremely non-linear relationships. Solar
activity, the chemical composition of the atmosphere, wind
regime, or stratospheric intrusions are some of the highly
non-linear processes that affect the total amount of ozone.
In addition, since the relationships between variables are ex-
pected to vary over time, we were interested in a method
which is not only able to cope with non-linearities, but also
able to track time-changing situations. These reasons led us
to consider NNs as the best potential candidate to solve the
problem.

Besides, one major advantage of neural nets is that no spe-
cial requirements need to be fulfilled a priori by the time se-
ries. In general the more complex the problem, the larger the
number of data required, but also the size and architecture of
the network play a fundamental role. There is no fixed crite-
ria to say that the ideal length of the time series should be one
or another, simply because there is no fixed criteria to use one
type of neural network or another, nor one training algorithm
or another. Neural networks are flexible enough to be ap-
plied to any time series, provided that some points are taken
into consideration. Primarily, the overtraining of the network
must be always avoided. Overtraining means that the net is
not able to generalize any rules for patterns different from
those used for training because it has learned (memorized)
the patterns in the training set during the learning stage.

Several studies about which should be the ideal size of a
network in order to avoid overtraining (Baum, 1989; Haykin,
1999), have supplied a rule that relates the number of patterns
used for training and the maximum number of weights that
the network can have. Such a rule is:p=µ/w, wherep is
the order of the number of patterns,w is the total number
of weights andµ is the order of the precision one wants to
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reach. In our applications this rule has been taken into ac-
count to minimise the risk of having an overfitted network.

The next section offers a brief presentation of the data and
the methodology we have used, including the NNs configura-
tions and the chosen training algorithm. In Sect. 3, one model
based on neural networks is presented for the substitution of
missing values within the data series and compared with clas-
sical statistical techniques. Section 4 deals with time series
reconstruction.

2 Data and method

For this work we have chosen TO series corresponding to
stations located at European mid-latitudes, which, because
of their geographical position, are strongly influenced by
atmospheric dynamics. All TO data have been retrieved
from the World Ozone and Ultraviolet Radiation Data Centre
(WOUDC). The time series used are made up of total ozone
mean monthly values for the following locations (Fig. 2):
Lisbon (38.8◦ N, 9.1◦ W) in Portugal, Arosa (46.8◦ N, 9.7◦ E)
in Switzerland, and Vigna di Valle (42.18◦ N, 12.2◦ E) in
Italy.

The artificial NNs we have employed are feedforward con-
figurations of the multilayer perceptron (MLP) implemented
with Matlab software. Feedforward networks are nets in
which signals flow from the input to the output neurons, in
a forward direction. There also exist recurrent or feedback
networks which have closed-loop paths, from a unit back to
itself or to units from a previous layer (Fausset, 1994). Feed-
forward networks have been proved to be able to approxi-
mate a function with a finite number of discontinuities to any
degree of accuracy (Principe et al., 2000).

One of the most extended training algorithms for MLP
structures is backpropagation (Rumelhart et al., 1986). This
method basically consists of a gradient descent technique
based on the Widrow-Hoff rule. However, the algorithm cho-
sen to train our ANN models was the Levenberg-Marquardt
algorithm (L-M) because, for moderate seized networks, it
presents important advantages that help to overcome two of
the main problems that arise from backpropagation training:
the Levenberg-Marquardt can converge more rapidly, and the
risk of the final weights becoming trapped in a local mini-
mum is much lower. On the other hand, the L-M algorithm
requires more computational memory (Matlab, 1997), since
it assesses second derivatives.

Concrete applications of these neural network configura-
tions to ozone data series and the results obtained will be
discussed next.

3 NNs models for missing data treatment

When dealing with time series, some kind of treatment for
the missing data is essential since most of the analysis meth-
ods cannot be performed otherwise. Classical methods such
as substitution of the gaps by the mean value of the series, or

 

 

 

 

Figure 2. Map of the stations whose data series have been analysed. 
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Fig. 2. Map of the stations whose data series have been analysed.

interpolation from the nearest neighbours, persistence tech-
niques or arbitrary value substitution, are unable to catch
time variations, or dependence with other variables varia-
tions. We propose here the alternative method of using non-
linear neural networks to improve missing values substitu-
tion.

In order to design the most appropriate network model
and training strategy we have distinguished between isolated
missing values or long gaps within the data series. In this
work we describe how the isolated data within TO series have
been filled by using a NN model, and compare the results
with those obtained by applying a linear interpolation tech-
nique.

For the estimation of the isolated gaps within the data se-
ries, then previous and then following values to the missing
one are presented as inputs to the network. And then the
net releases the searched value. The structure of the network
used for this interpolation model is a pyramidal (2n 2n-1 1)
configuration. For the single output neuron the lineal transfer
function is used, while for the other layers the log-sigmoid
function has been chosen. Data series were standardized be-
fore being processed by the net.

Best results are obtained forn=2, compared with those
obtained forn=1, n=3, n=4. The physical reason is quite
probably that the number of data considered withn=2 is 5
(2+2 predictors and the missing one), thus almost one semi-
period of the annual ozone signal component is being taken
into account. TO series, at the latitudes considered here,
present a seasonal periodicity of 12 months, high ozone sea-
son for spring-summer and low-ozone season for autumn-
winter. So taking fewer values we were not assuming varia-
tions within an interval affecting the searched value, and with
more predictors we were including seasonal variations which
must be avoided for the neural network to be able to detect
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Table 1. RMSE values for the results obtained with the non-linear
model based on neural networks and with the lineal model, for the
three considered data series.

NN non-linear model Linear model

station RMSE RMSE

Lisbon 0.79 7.62
Vigna di Valle 2.64 3.23

Arosa 2.89 2.99

anomalies.
To evaluate the model performance, simple statistical tests

have been applied: the Root-Mean-Square-Error (RMSE)
and the explained variance (EV); which also permit an easy
comparison with the results obtained with other methods. In
our case, the response given by the NN model has been com-
pared to the one achieved using a linear interpolation tech-
nique. By using a perceptron with linear activation function
that has been trained with the LMS method or Widrow-Hoff
rule, it is possible to implement a linear interpolation func-
tion by way of a simple NN model. This model generates
the same results as a linear regression (Widrow and Winter,
1988; Trigo and Palutikof, 1999).

The series of Lisbon for the period June 1967–July 1975
is shown in Fig. 3a. The first part of the dataset, i.e. June
1967–November 1973, was used to train the network, while
the set December 1973–July 1975 has been used to validate
the model. The validation period is indicated by an arrow.
In the graph, the real values are represented by stars and the
circles stand for the values released by our NNs based model.
The second diagram (Fig. 3b) is the result for the same series
and the same period of time but using a linear interpolation
model. It can be seen that the performance of the first model
is much better: stars and circles match up better for the non-
linear model. In fact, the RMSE for the NN non-linear model
is 0.79% whereas for the linear model it is 7.62%. Results for
all the three stations are summarized in Table 1. It is shown
that the NN non-linear model improves the results obtained
with a linear regression model.

In order to provide further proof of the non-linearity of
the model, we include a histogram with the distribution of
the weights values for the input layer and the hidden layer
(Fig. 4) of the network used in this application. The meaning
of the weights in a neural system is not directly comparable
with the coefficients in a classical regression model, never-
theless, as can be seen from the chart, most of the weights
have an absolute value higher than 5, with several above 20.
Such a weights distribution points out that the network works
far from the linear range of the sigmoidal activation function,
so that we can assure that the nonlinear part of the network
plays the main role in the model, and that the model we are
dealing with is clearly non linear.

In this section the substitution of isolated missing values
has been analysed. The estimation of longer gaps requires
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Fig. 3. Real values (∗) and modelled values (o) for the ozone se-
ries of Lisbon during the period June 1967–July 1975. Results for
the interval December 1973–July 1975 have been obtained with a
non-linear model based on neural networks(a), and with a linear
regression model(b). The better performance of the NNs model
can be seen.

more complex and specific methods, therefore NNs are also
a promising alternative to accomplish the task. In Monge-
Sanz and Medrano-Marqués (2003), non-linear models based
on NNs that use the North Atlantic Oscillation Index as a
predictor have been successfully applied for the assessment
of long missing periods of data.

4 NNs for time series reconstruction

In the previous section NNs have been used to discover the
absent values inside a data series. A more ambitious appli-
cation is the reconstruction of a series beyond the available
data record, either forwards or backwards. For such a pur-
pose we have developed a NN model which is able to ex-
tend the considered ozone series when a longer one is used
as predictor. The example shown here is the forward exten-
sion of the series of Vigna di Valle by using the series of
Arosa. The Arosa register has been chosen as a good pre-
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Fig. 4. Weights distribution of the neural network used for the in-
terpolation of isolated missing data. The values shown correspond
to the input layer and to the hidden layer of the net. Since most of
them are high values, the network is acting far from the linear range
of the sigmoidal function.

dictor because of the high correlation that it presents with
the Italian one, and because it is the longest European total
ozone record, with observations in this alpine location dat-
ing back to the 1920’s. Moreover, the time series of Arosa is
not only the longest but also one of the best quality registers
of TO because of the revisions and updates that have been
made to ensure adaptation between different instrumentation
and measurement strategies to provide a homogeneous series
(Staehelin et al., 1998). The length and quality of the Arosa
register make it the ideal series to predict values for shorter
or more incomplete series which are correlated enough.

To find the TO value at Vigna for a certain month, which
we call the current month, we use the following set of predic-
tors: the n previous values to the considered month of the Vi-
gna seires, the n previous of the Arosa series, and the current
month value of Arosa. From these inputs the net provides
the mean value of TO for the current month at Vigna. For
the case analysed here the set of data is June 1967–October
1980, and the period November 1975–October 1980 has been
reserved for validation.

The model structure used consists of a two layer MLP with
k input neurons and one cell at the output layer. These mod-
els (k+1 models) have been used before for different meteo-
rological applications, see for instance (Trigo and Palutikof,
1999); with these models better results are achieved for our
application than with more complex structures. For the out-
put layer the linear transfer function has been chosen, whilst
the quality of the results seems to be independent from the
election of the log-sigmoid or the hyperbolic tangent transfer
function for the input layer.

For this particular application we have experimented with
a technique that is of high interest at the moment because it
improves the performance of individual neural networks: as
the final signal of our model, we have considered the aver-
age of the output of severalk+1 nets. Since we average the
results given by several of thesek+1 individual networks,
the parameter beingk=1,. . . , 2n+1 (onek value for one net-
work), we are using a “neural network ensemble”. The neu-
ral network ensembles technique is a learning scheme where
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Fig. 5. One month ahead reconstruction for Vigna di Valle by way
of the NNs ensemblek+1 for n=1 (red line), and the observed real
series at the station from November 1975 to October 1980 (black
line).

a finite number of individual networks is trained to solve a
problem.

A neural network ensemble consists of a set of different
individual neural networks, trained with the same or different
predictors, in order to give the same output variable. The
output of the ensemble is a combination of the outputs of the
individual NNs. It has been shown that the generalization
capability of a NN can be improved by using this kind of
ensemble learning (Sharkey, 1999). The way the individual
predictions are combined strongly depends on the application
the ensemble is used for. For regression tasks, as is our case,
the individual outputs can be averaged (Opitz and Shavlik
1996) or weight averaged (Perrone and Cooper 1993); while
for classification majority voting may be an ideal combining
approach (Hansen and Salamon, 1990).

The ensemble we have used is made up of a collection
of neural networks, each of these networks with a different
numberk of input cells. For a given numbern of values
of the Vigna series, the ensemble contains 2n+1 networks,
every network with its correspondingk, and the parameterk
takes values from 1 to 2n+1. In our application, every net
in the ensemble provides the mean value of TO. By taking
the average of all these responses (output of the ensemble) as
the final signal of our model, we get an answer with a lower
variance.

The method of the neural network ensembles has however
a substantial drawback: ensembles are more difficult to inter-
pret than single networks, although some works have already
addressed the problem of the extraction of rules from these
structures, see for instance (Zhou et al., 2003).

In Fig. 5 the results obtained with the modelk=1, and
with n=1, are represented together with the real signal for the
time interval under consideration. The high explained vari-
ance value (EV>88.0%) means that the shape of the original
signal is accurately reproduced by the model.

Compared with the application in Sect. 3, where isolated
gaps were filled up by using the previous and following val-
ues of the series itself, here we have also included Arosa
as a predictor variable. Just to highlight the improvement
achieved by including Arosa comparative tests have been car-
ried out. Table 2 shows the results obtained when the recon-



688 B. M. Monge Sanz and N. J. Medrano Marqués: Total ozone time series analysis

Table 2. RMSE and EV values for the forward reconstruction of Vi-
gna series, comparing the inclusion of Arosa data as an input vari-
able with the results obtained using the Vigna series only.

E
n

s
e

m
b

l
e

Predictors
Vigna + Arosa Only Vigna
RMSE EV RMSE EV

n=1
k=1, ..., 3

28.00 90.64 48.95 58.00

n=2
k=1,.., 5

31.00 88.67 42.80 63.28

n=3
k=1,.., 7

29.67 89.69 36.55 70.71

All numerical values in this table are percentage values.

struction of the Vigna series is tried using only data from this
series, and the results attained with the inclusion of Arosa
data in the model.

As can be deduced from Table 2, better results are ob-
tained when Arosa is included as a predictor, lower RMSE
and higher correlation are achieved. In addition, the spread
in the RMSE and EV values is a good indicator for the ro-
bustness of the strategy: when we use only Vigna the results
seem to be much more dependent on the number of inputs
and the particular ensemble used.

In general, the inclusion of related variables as predictors
for the model will always improve the quality of the results.
Although it is true that one must consider whether such in-
clusions offer a sufficiently worthwhile improvement for the
computational cost they imply. In cases like ours, where both
the size of the network and the number of input variables are
rather small, the benefits of including a second variable, here
Arosa series, compensate by far for the minimal increase in
the computing time of the model, which still remains within
the order of 10 s.

Besides, we are passing from having just one predictor se-
ries (Vigna) to having two predictor series (Arosa and Vi-
gna), in a case like this, with any kind of model, not just with
neural network schemes, one must expect more benefits than
problems.

Considering again the results in Fig. 5, one can state that,
given the high correlation between real and modelled series
and the ability of this NNs structure to predict the right sign
of the TO variations, it is shown that the model including
Arosa, without any modification, is suitable for forecasting
the sign of TO monthly anomalies. However, if we want
to improve accuracy for the exact values we should include
new predictors, such as for example the Arctic Oscillation
Index, which exhibits very high correlations with TO series
throughout the whole year over these European areas (Stae-
helin et al., 2002; Monge-Sanz et al., 2003).

5 Future work and concluding remarks

Because of their great versatility and capability of dealing
with non-linear and non stationary series, neural network
systems are the ideal approach for geoscience data treatment.
In this work, several models based on NNs for the analysis
of TO time series have been presented for different appli-
cations concerning missing data treatment and time series
reconstruction. Such models have proved to achieve better
results than some other classical techniques. In addition, the
simplicity of our NNs based models allows us to consider
further applications without the risk of involving schemes
which are too complex or time consuming. Some of these ap-
plications involve the backwards-reconstruction of time se-
ries into pre-instrumental periods, or the forecasting of the
magnitude under analysis. Different time-scales can also be
considered just by choosing the appropriate set of predictors.
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