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Abstract. By adopting an essentially fluid dynamic view- wave variable, such as for example the potentalieadily
point we derive the wave structure equation for stationary,yield the wave equation of the system, namely:

fully nonlinear, electrostatic, ion-cyclotron waves. The ex- 5 ) 5 )

istence of two fundamental constants of the motion, namely, ° +Q2? L CZa_ + 928_ $=0 (1)
conservation of momentum flux parallel to the ambient mag- 912 * ’

netic field, and energy flux parallel to the direction of wave

propagation, enables the wave structure equation to be rev_vhere

duced to a first order differential equation, which has so-g — @ (cosg, 0, sing), Q= er, 2
lutions that are physically transparent. The analysis shows mj

that sufficiently obliqgue waves, propagating at sub-ion acousand

tic speeds, form soliton pulse-like solutions whose ampli- (yekT, + yikT))

tudes are greatest for perpendicular propagation. Waves thaf = : . (3)

mi

propagate supersonically have periodic cnoidal waveforms,
which are asymmetric about the compressive and rarefactivélerec is the ion-acoustic speed, based on the electron and
phases of the wave. It is also shown that there exist critiHon temperaturesT, ;, their adiabatic indiceg.,;, and the

cal driver fields for which the end point of the compressive ion massn;. In this wave equation the transverse cyclotron
phase goes sonic (in the wave frame), with the consequenc@aves are coupled to the longitudinal “sound” waves through
that the wave form develops a cusp. It is possible that thishe motional electric field and quasi charge neutrality, both
trans-sonic, choked flow feature provides a mechanism foPf which effects are embedded in te202/9:> term. The

the “spiky” waveforms observed in auroral electric field mea- corresponding dispersion equation for plane harmonic waves
surements. (varying as expi(wt — kx)) follows immediately (also see

e.g. Stix, 1992) and is given by
212 2 (@® -2

T @2 —Q2co20) @

Thus low frequency waves propagate at the phase speed,

In electrostatic, ion-cyclotron waves, with frequencieg (¢ cost, before encountering a resonanceat 2 cosv, and
very much less than the electron gyrofrequengy)(the the high frequency branch exhibits a cut-off at the gyrofre-
electrons are constrained to move along the ambient magduencys2 before propagating isotropically at the ion-acoustic
netic field B, = B,(cosb, 0, sind). Furthermore, ilv <<  SPeedc, forw >> . In the “gap”, i.e.ccost < w/k < ¢

wpi (Wherew,; is the ion plasma frequency) quasi-charge OF, more generallf2cosf < w < 2, the wave is evanes-
neutrality prevails, so that for wave propagation parallel tocent, with the stationary wave version of Eq. (4), obtained by
the x-axis and at angteto B,, continuity requires that the x-  Puttingw = Uk, yielding
components_ of th_e electron _and ion vel(_)cities are very nearly X Q2 (U2 — 2cofh)
equal. The linearized equations of motion for any perturbedk” = U2 Wi

1 Introduction

: ©)

Correspondence tor. B. Doyle showing thatk? < 0, if the stationary wave spedd falls
(doyle@ukzn.ac.za) in the “gap”. In such a region the inclusion of nonlinear
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15 " 2 The structure equation for nonlinear stationary EICA
o M=1/2, cos@® =1/4 ] waves

Here we provide a brief description of a new formulation of
fully nonlinear, stationary low frequencw(<< €.), elec-

= osl[ 3 trostatic waves in a magnetized plasma. In this fluid dynamic
o i U=1/M2t+) ] approach the emphasis is placed on the nature of the proton
ool — ! flow, that is to say, whether it is “subsonic” or “supersonic”,
- ] with the consequence that the crucial role played by the sonic
_ \ ] point is rendered manifest. In this picture the electrons are
‘0-50 ] — 4 treated as massle$s << £2.) and are thus constrained to
u move along the magnetic fiel#, = B,(cosd, 0, sind), so

that, in the wave frame, the electric fielt] which is curl free

Fig. 1. R(u) as a function ofi for y = 2 and 1> M > cosh. The from Faraday, is given by

amplitude of the soliton is determined by the zeroRgfi) on the
E= <_

1
compression branch of the curve € 1). ViPe, UB,, 0) , (6)

e
in which p. (n.) is the electron pressure (density) B, is
the constant motional electric field,, andU is the wave
speed. If we assume quasi-charge neutralitysi.es n; =
terms, which allow for steepening to balance dispersion, soliz, Which is valid for wave frequencies very much less than
tons may be formed. The properties of these nonlinear wavet€ ion plasma frequency, then in the wave frame the longitu-
have been studied by, for example, Temerin et al. (1979), yudinal components of the ion and electron velocities are very
et al. (1980), and Jovanic and Shukla (2000). Although thesdearly equalu.. = u;x) by virtue of continuity, which for
waves are interesting in their own right, their properties maythe ions, may be written
explain certain features observed in auroral electric fields.m_n_w — iU = M, )
Presumably, with this in mind, Reddy et al. (2002) revisited """ "* e e
the problem and formulated a fully nonlinear treatment of In the wave frame the equation of motion for the ions is,
these waves. In their formulation the wave structure equa-
tion is a rather complicated second order differential equaminiuixﬂ =en;(E +u; x B,) — Vp;. (8)
tion for the electrostatic potentigl Nevertheless, they were dx
able to show (numerically) that for supersonic wave speeds Integrating the scalar product of this equation wiih
and sufficiently large initial perturbations, or driving elec- yields conservation of momentum flux parallel to the ambi-
tric fields, it was possible to construct the type of periodic, ent magnetic field in the form,
spiky waveforms that have been observed in auroral electric )
fields by Viking (Andre et al., 1987) and FAST (Ergun et al., cosh P(u;x) + sin® M;u;, = const (9)
1998). However, this numerical study does not reveal the unin, \which
derlying mechanism which can give rise to this curious type
of waveform. More recently McKenzie (2004) has shown P (u;x) = M;uix + (pe + pi). (10)
that, by making use of the constants of the motion, the wave

structure equation can be reduced to a first order differen- The first term on thg left hand side of Eg. (9) IS the com-
tial equation. This more physically transparent form showsponent of the longitudinal momentum flux, dynamic pressure

quite clearly that supersonic waves are periodic, and that irPIus thermal pressures, aloy, and the, second term is the
the compressive phase of the wave the flow is driven toward ompqnent of the transverse .Re)./nolds stress paraIIBt,to'
the sonic point. In fact, there exists a critical driving field at h_e third constant of th_e motion is energy fiux conse_rvatlon
which the end point of the compressive phase becomes soni‘%hICh follpws from Fhe mtegral of scalar productaf with

and a cusp shaped waveform develops. the equation of motion to give

M; B(ufx +uf, +ul) + w} — UP(u;y) =const  (11)
In this paper we extend this work. We show that subsonic
solitons propagate at all anglés> cos X(U/c), in contrast  in which
to the prediction of the weakly nonlinear KdV treatment, and Ve Pe ViDi 1
that their amplitudes, for a given Mach numbéf & U/c), w= [ —1 + - 1 ] —. (12)
are greatest for perpendicular propagation (see Fig. 2). We e=D (i =D Lmini

also show analytically (through a geometrical interpretationHere the first term on the left hand side Eq. (11) is the flux
of the wave structure equation) how cusped shaped wavesf kinetic energy plus enthalpyw), and the term—U P;,
forms are generated in trans-sonic choked flow conditions. represents the rate of working of the motional electric field.
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Fig. 2. (a) The strength of compressive solitong,, as a func-
tion of the obliquity angled, for y = 5/3, and for various
M < 1. (b) The equivalent reduced maximum potenig] =

(edm)/ BKT,) = (1) ™Y — 1) for variousM < 1.

We have assumed adiabatic flow for each speciegd.ex
n’ ocu, /%', Itis convenient to define the “longitudinal”

Bernoulli-like energy density as

1
euiy) = E“izx + w(uiy). (13)
Note the “thermodynamic” relation
de = uj dP, (14)

423

therefore, the wave structure is governed by the differential
equation,

2
1 1 1 du
—{]/11- — u— =
2 M2y (et D Mizu(yi+1) dx

SiP O [P(u) — e(u)] — %cosze Pu) = R@u)

(17)

in whichl = U/, u = u;/U, andP(u) ande(u) are, re-
spectively, the normalized Bernoulli momentum and energy

functions, given by
1 1
—1)+ 2(—.—1>,(18)
ViMi uvi

1 1
-1
(ve = HMZ \ure—t

P(u) 1+ L L
u)=u— ——-
yeMEZ uve

and

e(u) = %(uz — 1)+

1 1
+ - 1 ) 19
(i —HM? (u%—l ) (19)
in which the Mach numbers are given by
m;U?
b= (20)
’ Ve,ikTe,i

In the special casg, = y; the collective ion-acoustic Mach
numberM is given by

1 1 1
m = W + W’ (21)
Note the existence of possible equilibrium pointa (dx =
0) at the roots oR (1) = 0, and critical pointsdu /dx = o0)
where the longitudinal flow speed equals the ion acoustic
speed &;, = c¢). Here R(u) represents the change in the
total energy of the system at any point (minus the kinetic en-
ergy associated wit%ul?y) and will be referred to as the total
energy function to distinguish it from the Bernoulli energy
functione(u), which represents the change in the longitudi-
nal energy density given by Eq. (19).

which, in fact, has been used in obtaining the conservation;  periodic and soliton solutions of the wave structure

form, Eq. (11). Thus withe;,; given in terms ofs;, through
momentum conservation (9), angd,, in terms ofu;, and its

equation

derivative through the x-component of the equation of mo-| generaly, # y;, for example, isothermal electrong, (=

tion, namely:
2
. du;
Q u;ysingd = (u,-x - C—) ulx, (15)
; Uiy | dx
wherec is the ion-acoustic speed given by,
2= (YePe + Vipi)’ (16)

min

the energy Eq. (11) is afirst order differential equation for theone atu =

longitudinal flow speed;, in the wave. In normalized form,

1) and adiabatic protong;( = 5/3) as in the solar wind.
However, we do not expect any qualitative difference by as-
sumingy. = y; = y inwhat follows, since the Bernoulli mo-
mentum and energy functions, whose behaviour determines
the total energy functio® («), always exhibit a minimum at
the sonic point. The wave Eq. (17) admits either soliton or
periodic solutions depending on the behaviour of the total en-
ergy functionR (1), which possesses three extrema, namely:
1, the initial point, which is a double zero of
R(u), another at: = 1/M'2/v+1l (for y, = y; = ), which
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Fig. 3. R(u) as a function ofs fory = 2and 1> M > cosd.

SinceR(u) has a double negative zero at the initial point, periodic Fig. 4. Spiky periodic EICA waves for as a function ofc/1, for
waves may be constructed with amplitudes given by the intersecthe same parameter&f(and co®) as used for Fig. 2.

tions with the horizontal line, representing the initial driver energy,

and the system oscillates betwees,— (compressive) and.,+

(rarefactive). There exists a critical driver, at whigh,— becomes Note that in this case) > 1, and the sonic point lies in

sonic. the compressive phase of such a periodic wave, so that the
flow is being driven towards this point, with the result that
corresponds to the sonic point, = c, and the third at,,  the slopefu/dx is enhanced in the compressive phase. Thus
which is the only positive root of the equation there is a critical value of the driver constant such that its
horizontal line touche® () in the compressive range at the
M? _our'-1 (22) sonic point with the result that the waveform develops a cusp
cof6 yu’(u—1)° (du/dx — o0) at that point. Hence the periodic structure

for the flow speed: and the associated potentjatakes the
forms depicted in Fig. 4. Periodic cusp shaped waveforms
can, therefore, be generated by this trans-sonic feature where
the flow becomes choked.

which follows fromdR/0u = 0. It follows that if 1 > M >
cost, ur < 1 andR(u) has a double positive zeroat= 1

(a prerequisite for soliton formation). The form &fu) is
shown in Fig. 1, in which there are two other zeroskgf:),
one in the compressive region < 1 and the other in the
rarefactive regiont > 1, but lying beyond the sonic point
u = 1/M'2/v+1 Therefore, compressive solitons may be

constructed with amplitude (centre of the wave) given byWe have shown that compressive soliton pulses propagate at

tr;e corr;\pl)rﬁsswr? root ok(u) = O, Wh'cfh I'?S to the left subsonic speedsW{ < 1) provided that the wave is suffi-
Of U tl.OUQ R(u)bpossesses a:jrsre act|vebrofot, no rar:? ciently oblique, i.ef > cos™1 M. In the weakly nonlinear
efactive solitons can be constructed because, before reaching i\~ 1" _ _ 1) the wave structure Eq. (17) goes over

this possible equilibrium, the flow speed must go through they, stationary version of the KdV equation, and admits the
sound speed where the flow becomes choleddx = o0). classical sechhump of compression ’
The strength of compressive solitoms,, (or ¢,,), given by

R(u) = 0 as a function of obliquity, is shown in Fig. 2 for 1 R(x ou
various Mach numbers. The relation between the equilibriumu = 14 dusec (2 ) ’ (24)
compressioni,,) and its associated potentia,() is given
by the electron enthalpy, which in normalized form is

4 Discussion

B (M?%cog6 — 1)(1— M?)

Om =
! L Y @3 (y + M2
(e — M2 \uret 2 2/3
—_— 2
If the wave speed is super-ion-acoustid (> 1) the en- X [CO o (MZ — 1/3>:| (25)

ergy functionR («) has a double negative zero and takes the
form shown in Fig. 3. In this case we can construct periodicwheres,, < 0 when 1> M > cosf. From this result it
cnoidal like waves by adding a constant to right hand sidewould also appear that solitons are restricted to a cone of
of the wave structure equation. This constant represents thebliquity
kinetic energy of some initial driver. Therefore, the intersec-
tions of a horizontal line, representing the initial driving en-
ergy, with the energy functio® («), as illustrated in Fig. 3,
gives the magnitudes of the compressive<£ 1) and rar- 2/3

. ) o costy, = | ————. (27)
efactive ¢ > 1) phases of the corresponding periodic wave. M?2—-1/3

M > cosf > c0oSbHy,, (26)
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Figure 2 provides a pictorial vindication of this fully non-

linear result. Note that in the laboratory frame these sub-

sonic stationary waves correspond to wave frequencies in thgtix T. H.: waves in Plasmas, AIP, New York, 1992.

evanescent gaj2 cost < w < K, in which linear waves  Temerin, M., Wolderif, M., and Mozer, P. S.: Nonlinear Steepening

cannot propagate. On the other hand, if the wave speed is of Electrostatic lon Cyclotron Waves, Phys. Rev. Lett., 43, 1941—

“supersonic”, the wave frequencies in the laboratory frame, 1943, 1979.

lie above the ion cyclotron cut-off frequency, in which non- Yu, M. Y., Shukla, P. K., and Bujarbarua, S.: Fully nonlinear ion-

linear cnoidal waves can be generated by some initial driver. acoustic waves in a magnetized plasma, Phys. Fluids, 23, 2146—

In this case the waveforms are asymmetric in nature with the 2147, 1980. _

compressive phase having sharper slopes than the rarefacti\‘)gv‘"‘_m'cf P. and Shukla_, P. K.: Nonlinear Model for Coherent Elec-

phases. In fact, if the driver is “critical’, the end point of tric Field Structures in the Magnetosphere, Phys. Rev. Lett., 84,
. . 4373-4376, 2000.

the compressive phase becomes sonic and the waveforms dﬁ

. - ) -2 ¥Reddy, R. V., Lakhina, G. S., Singh, N., and Bharuthram, R.: Spiky
velop a cusp shape, as illustrated in Fig. 4. At this sonic point parallel electrostatic ion cyclotron and acoustic waves, Nonlin.
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