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Abstract. By adopting an essentially fluid dynamic view-
point we derive the wave structure equation for stationary,
fully nonlinear, electrostatic, ion-cyclotron waves. The ex-
istence of two fundamental constants of the motion, namely,
conservation of momentum flux parallel to the ambient mag-
netic field, and energy flux parallel to the direction of wave
propagation, enables the wave structure equation to be re-
duced to a first order differential equation, which has so-
lutions that are physically transparent. The analysis shows
that sufficiently oblique waves, propagating at sub-ion acous-
tic speeds, form soliton pulse-like solutions whose ampli-
tudes are greatest for perpendicular propagation. Waves that
propagate supersonically have periodic cnoidal waveforms,
which are asymmetric about the compressive and rarefactive
phases of the wave. It is also shown that there exist criti-
cal driver fields for which the end point of the compressive
phase goes sonic (in the wave frame), with the consequence
that the wave form develops a cusp. It is possible that this
trans-sonic, choked flow feature provides a mechanism for
the “spiky” waveforms observed in auroral electric field mea-
surements.

1 Introduction

In electrostatic, ion-cyclotron waves, with frequencies (ω)
very much less than the electron gyrofrequency (�e) the
electrons are constrained to move along the ambient mag-
netic fieldBo = Bo(cosθ, 0, sinθ). Furthermore, ifω <<

ωpi (whereωpi is the ion plasma frequency) quasi-charge
neutrality prevails, so that for wave propagation parallel to
the x-axis and at angleθ to Bo, continuity requires that the x-
components of the electron and ion velocities are very nearly
equal. The linearized equations of motion for any perturbed
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wave variable, such as for example the potential,φ, readily
yield the wave equation of the system, namely:[(
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φ = 0, (1)

where
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, (2)

and
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=

(γekTe + γikTi)

mi

. (3)

Herec is the ion-acoustic speed, based on the electron and
ion temperatures,Te,i , their adiabatic indicesγe,i , and the
ion massmi . In this wave equation the transverse cyclotron
waves are coupled to the longitudinal “sound” waves through
the motional electric field and quasi charge neutrality, both
of which effects are embedded in the�2

z∂
2/∂t2 term. The

corresponding dispersion equation for plane harmonic waves
(varying as expi(ωt − kx)) follows immediately (also see
e.g. Stix, 1992) and is given by

c2k2
= ω2 (ω2

− �2)

(ω2 − �2 cos2 θ)
. (4)

Thus low frequency waves propagate at the phase speed,
c cosθ , before encountering a resonance atω = � cosθ , and
the high frequency branch exhibits a cut-off at the gyrofre-
quency� before propagating isotropically at the ion-acoustic
speed,c, for ω >> �. In the “gap”, i.e.c cosθ < ω/k < c

or, more generally� cosθ < ω < �, the wave is evanes-
cent, with the stationary wave version of Eq. (4), obtained by
puttingω = Uk, yielding

k2
=

�2

U2

(U2
− c2 cos2 θ)

(U2 − c2)
, (5)

showing thatk2 < 0, if the stationary wave speedU falls
in the “gap”. In such a region the inclusion of nonlinear
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Fig. 1. R(u) as a function ofu for γ = 2 and 1> M > cosθ . The
amplitude of the soliton is determined by the zero ofR(u) on the
compression branch of the curve (u 0 1).

terms, which allow for steepening to balance dispersion, soli-
tons may be formed. The properties of these nonlinear waves
have been studied by, for example, Temerin et al. (1979), Yu
et al. (1980), and Jovanic and Shukla (2000). Although these
waves are interesting in their own right, their properties may
explain certain features observed in auroral electric fields.
Presumably, with this in mind, Reddy et al. (2002) revisited
the problem and formulated a fully nonlinear treatment of
these waves. In their formulation the wave structure equa-
tion is a rather complicated second order differential equa-
tion for the electrostatic potentialφ. Nevertheless, they were
able to show (numerically) that for supersonic wave speeds
and sufficiently large initial perturbations, or driving elec-
tric fields, it was possible to construct the type of periodic,
spiky waveforms that have been observed in auroral electric
fields by Viking (Andre et al., 1987) and FAST (Ergun et al.,
1998). However, this numerical study does not reveal the un-
derlying mechanism which can give rise to this curious type
of waveform. More recently McKenzie (2004) has shown
that, by making use of the constants of the motion, the wave
structure equation can be reduced to a first order differen-
tial equation. This more physically transparent form shows
quite clearly that supersonic waves are periodic, and that in
the compressive phase of the wave the flow is driven towards
the sonic point. In fact, there exists a critical driving field at
which the end point of the compressive phase becomes sonic
and a cusp shaped waveform develops.

In this paper we extend this work. We show that subsonic
solitons propagate at all anglesθ > cos−1(U/c), in contrast
to the prediction of the weakly nonlinear KdV treatment, and
that their amplitudes, for a given Mach number (M = U/c),
are greatest for perpendicular propagation (see Fig. 2). We
also show analytically (through a geometrical interpretation
of the wave structure equation) how cusped shaped wave-
forms are generated in trans-sonic choked flow conditions.

2 The structure equation for nonlinear stationary EICA
waves

Here we provide a brief description of a new formulation of
fully nonlinear, stationary low frequency (ω << �e), elec-
trostatic waves in a magnetized plasma. In this fluid dynamic
approach the emphasis is placed on the nature of the proton
flow, that is to say, whether it is “subsonic” or “supersonic”,
with the consequence that the crucial role played by the sonic
point is rendered manifest. In this picture the electrons are
treated as massless(ω << �e) and are thus constrained to
move along the magnetic fieldBo = Bo(cosθ, 0, sinθ), so
that, in the wave frame, the electric fieldE, which is curl free
from Faraday, is given by

E =

(
−

1

ene

∇xpe, UBoz, 0

)
, (6)

in which pe (ne) is the electron pressure (density),UBoz is
the constant motional electric fieldEy , andU is the wave
speed. If we assume quasi-charge neutrality, i.e.ne + ni =

n, which is valid for wave frequencies very much less than
the ion plasma frequency, then in the wave frame the longitu-
dinal components of the ion and electron velocities are very
nearly equal(uex ' uix) by virtue of continuity, which for
the ions, may be written

miniuix = minioU ≡ Mi . (7)

In the wave frame the equation of motion for the ions is,

miniuix

dui

dx
= eni(E + ui × Bo) − ∇pi . (8)

Integrating the scalar product of this equation withBo

yields conservation of momentum flux parallel to the ambi-
ent magnetic field in the form,

cosθ P (uix) + sinθ Miuiz = const, (9)

in which

P(uix) = Miuix + (pe + pi). (10)

The first term on the left hand side of Eq. (9) is the com-
ponent of the longitudinal momentum flux, dynamic pressure
plus thermal pressures, alongBo, and the second term is the
component of the transverse Reynolds’ stress parallel toBo.
The third constant of the motion is energy flux conservation
which follows from the integral of scalar product ofui with
the equation of motion to give

Mi

[
1

2
(u2

ix + u2
iy + u2

iz) + w

]
− UP(uix) = const, (11)

in which

w =

[
γepe

(γe − 1)
+

γipi

(γi − 1)

]
1

mini

. (12)

Here the first term on the left hand side Eq. (11) is the flux
of kinetic energy plus enthalpy(w), and the term−UPix

represents the rate of working of the motional electric field.
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Fig. 2. (a) The strength of compressive solitons,ueq , as a func-
tion of the obliquity angleθ , for γ = 5/3, and for various
M 5 1. (b) The equivalent reduced maximum potentialφ∗

m ≡

(eφm)/(5
2kTe) = (1/(u

(γ−1)
eq − 1) for variousM 6 1.

We have assumed adiabatic flow for each species, i.e.pe,i ∝

n
γe,i

e,i ∝ u
−γe,i

e,ix . It is convenient to define the “longitudinal”
Bernoulli-like energy density as

ε(uix) =
1

2
u2

ix + w(uix). (13)

Note the “thermodynamic” relation

dε = uixdP, (14)

which, in fact, has been used in obtaining the conservation
form, Eq. (11). Thus withuiz given in terms ofuix through
momentum conservation (9), anduiy , in terms ofuix and its
derivative through the x-component of the equation of mo-
tion, namely:

� uiy sinθ =

(
uix −

c2

uix

)
duix

dx
, (15)

wherec is the ion-acoustic speed given by,

c2
=

(γepe + γipi)

min
, (16)

the energy Eq. (11) is a first order differential equation for the
longitudinal flow speeduix in the wave. In normalized form,

therefore, the wave structure is governed by the differential
equation,

1

2
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2
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in which l = U/�, u = uix/U , andP(u) ande(u) are, re-
spectively, the normalized Bernoulli momentum and energy
functions, given by
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in which the Mach numbers are given by

M2
e,i =

miU
2

γe,ikTe,i

. (20)

In the special caseγe = γi the collective ion-acoustic Mach
numberM is given by

1

M2
=

1

M2
e

+
1

M2
i

, (21)

Note the existence of possible equilibrium points (du/dx =

0) at the roots ofR(u) = 0, and critical points (du/dx = ∞)
where the longitudinal flow speed equals the ion acoustic
speed (uix = c). HereR(u) represents the change in the
total energy of the system at any point (minus the kinetic en-
ergy associated with12u2

iy) and will be referred to as the total
energy function to distinguish it from the Bernoulli energy
functione(u), which represents the change in the longitudi-
nal energy density given by Eq. (19).

3 Periodic and soliton solutions of the wave structure
equation

In generalγe 6= γi , for example, isothermal electrons (γe =

1) and adiabatic protons (γi = 5/3) as in the solar wind.
However, we do not expect any qualitative difference by as-
sumingγe = γi = γ in what follows, since the Bernoulli mo-
mentum and energy functions, whose behaviour determines
the total energy functionR(u), always exhibit a minimum at
the sonic point. The wave Eq. (17) admits either soliton or
periodic solutions depending on the behaviour of the total en-
ergy functionR(u), which possesses three extrema, namely:
one atu = 1, the initial point, which is a double zero of
R(u), another atu = 1/M [2/γ+1] (for γe = γi = γ ), which
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Fig. 3. R(u) as a function ofu for γ = 2 and 1> M > cosθ .
SinceR(u) has a double negative zero at the initial point, periodic
waves may be constructed with amplitudes given by the intersec-
tions with the horizontal line, representing the initial driver energy,
and the system oscillates betweenueq− (compressive) andueq+

(rarefactive). There exists a critical driver, at whichueq− becomes
sonic.

corresponds to the sonic point,uix = c, and the third atu+,
which is the only positive root of the equation

M2

cos2 θ
=

uγ
− 1

γ uγ (u − 1)
, (22)

which follows from∂R/∂u = 0. It follows that if 1> M >

cosθ , u+ < 1 andR(u) has a double positive zero atu = 1
(a prerequisite for soliton formation). The form ofR(u) is
shown in Fig. 1, in which there are two other zeros ofR(u),
one in the compressive regionu < 1 and the other in the
rarefactive regionu > 1, but lying beyond the sonic point
u = 1/M [2/γ+1]. Therefore, compressive solitons may be
constructed with amplitude (centre of the wave) given by
the compressive root ofR(u) = 0, which lies to the left
of u+. AlthoughR(u) possesses a rarefactive root, no rar-
efactive solitons can be constructed because, before reaching
this possible equilibrium, the flow speed must go through the
sound speed where the flow becomes choked (du/dx = ∞).
The strength of compressive solitons,ueq (or φm), given by
R(u) = 0 as a function of obliquity, is shown in Fig. 2 for
various Mach numbers. The relation between the equilibrium
compression (ueq ) and its associated potential (φm) is given
by the electron enthalpy, which in normalized form is

1

(γe − 1)M2
e

(
1

uγe−1

)
= φ. (23)

If the wave speed is super-ion-acoustic (M > 1) the en-
ergy functionR(u) has a double negative zero and takes the
form shown in Fig. 3. In this case we can construct periodic
cnoidal like waves by adding a constant to right hand side
of the wave structure equation. This constant represents the
kinetic energy of some initial driver. Therefore, the intersec-
tions of a horizontal line, representing the initial driving en-
ergy, with the energy functionR(u), as illustrated in Fig. 3,
gives the magnitudes of the compressive (u < 1) and rar-
efactive (u > 1) phases of the corresponding periodic wave.

U

X / l

Fig. 4. Spiky periodic EICA waves foru as a function ofx/l, for
the same parameters (M and cosθ) as used for Fig. 2.

Note that in this case,M > 1, and the sonic point lies in
the compressive phase of such a periodic wave, so that the
flow is being driven towards this point, with the result that
the slopedu/dx is enhanced in the compressive phase. Thus
there is a critical value of the driver constant such that its
horizontal line touchesR(u) in the compressive range at the
sonic point with the result that the waveform develops a cusp
(du/dx → ∞) at that point. Hence the periodic structure
for the flow speedu and the associated potentialφ takes the
forms depicted in Fig. 4. Periodic cusp shaped waveforms
can, therefore, be generated by this trans-sonic feature where
the flow becomes choked.

4 Discussion

We have shown that compressive soliton pulses propagate at
subsonic speeds (M < 1) provided that the wave is suffi-
ciently oblique, i.e.θ > cos−1 M. In the weakly nonlinear
limit ( |u − 1| << 1) the wave structure Eq. (17) goes over
to the stationary version of the KdV equation, and admits the
classical sech2 hump of compression

u = 1 + δmsech2
( x

2l

)
, (24)

δm = −
(M2 cos2 θ − 1)(1 − M2)

(γ + 1)M2

×

[
cos2 θ

(
2/3

M2 − 1/3

)]
(25)

whereδm < 0 when 1> M > cosθ . From this result it
would also appear that solitons are restricted to a cone of
obliquity

M > cosθ > cosθm, (26)

cosθm =

√
2/3

M2 − 1/3
. (27)
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However, this is a flaw of the weakly nonlinear approxima-
tion, since the fully nonlinear structure equation shows, in
fact, that, providedθ > cos−1 M, all subsonic oblique waves
form soliton pulses with the greatest amplitudes occurring
for perpendicular propagation, withu → 0, in the fashion

u ∝

[
(π/2 − θ)2

2γM2

]1/γ

, θ →
π

2
. (28)

Figure 2 provides a pictorial vindication of this fully non-
linear result. Note that in the laboratory frame these sub-
sonic stationary waves correspond to wave frequencies in the
evanescent gap,� cosθ < ω < �m, in which linear waves
cannot propagate. On the other hand, if the wave speed is
“supersonic”, the wave frequencies in the laboratory frame,
lie above the ion cyclotron cut-off frequency, in which non-
linear cnoidal waves can be generated by some initial driver.
In this case the waveforms are asymmetric in nature with the
compressive phase having sharper slopes than the rarefactive
phases. In fact, if the driver is “critical”, the end point of
the compressive phase becomes sonic and the waveforms de-
velop a cusp shape, as illustrated in Fig. 4. At this sonic point
the potentialφ is peaked with amplitude

eφ

kTe

=
γ

γ − 1

[
M

2(γ−1)
(γ+1) − 1

]
(29)

= ln(M), (γ = 1). (30)

It is possible, as Reddy et al. (2002) have indicated in their
numerical solution of this problem, that this trans-sonic fea-
ture may provide an explanation for the “spiky” waveforms
observed in auroral electric fields (Ergun et al., 1998).
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