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Abstract. The elastic response of many rocks to quasistatic
stress changes is highly nonlinear and hysteretic, displaying
discrete memory. Rocks also display unusual nonlinear re-
sponse to dynamic stress changes. A model to describe the
elastic behavior of rocks and other consolidated materials is
called the Preisach-Mayergoyz (PM) space model. In con-
trast to the traditional analytic approach to stress-strain, the
PM space picture establishes a relationship between the qua-
sistatic data and a number density of hysteretic mesoscopic
elastic elements in the rock. The number density allows us to
make quantitative predictions of dynamic elastic properties.
Using the PM space model, we analyze a complex suite of
quasistatic stress-strain data taken on Berea sandstone. We
predict a dynamic bulk modulus and a dynamic shear mod-
ulus surface as a function of mean stress and shear stress.
Our predictions for the dynamic moduli compare favorably
to moduli derived from time of flight measurements. We de-
rive a set of nonlinear elastic constants and a set of constants
that describe the hysteretic behavior of the sandstone.

1 Introduction

The strain response of rock to quasistatic stress cycles (e.g.
stress cycles at 10−3 Hz) is highly nonlinear and hysteretic
(Holcomb, 1981), and displays discrete memory (Guyer
et al., 1997). Rocks also display unusual nonlinear behav-
ior in dynamic stress cycles, e.g. acoustic wave experiments
at 104 Hz, (Guyer et al., 1999). Nonlinearity and hysteresis
are prominent features in the elastic behavior of rocks (Guyer
and Johnson, 1999). This observation is the key to making
the connection between low frequency (quasistatic) and high
frequency (acoustic) measurements, and therefore between
the static modulus and the dynamic acoustic velocity of a
sample.
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(mouna@physics.unr.edu)

A model to describe the elastic behavior of rocks and other
consolidated materials is called the Preisach-Mayergoyz
(PM) space model (Mayergoyz, 1985; Preisach, 1935). The
PM space model uses the statistical properties of many meso-
scopic hysteretic elastic elements to describe the elastic re-
sponse of a macroscopic piece of material (McCall and
Guyer, 1996). It allows us to invert quasistatic stress-strain
data for the distribution of hysteretic elastic elements. From
this distribution, the high frequency acoustic response of the
macroscopic piece of material can be predicted.

In this paper, we use the PM space model to analyze qua-
sistatic stress-strain data taken on Berea sandstone. From this
analysis we determine the linear elastic constants, the coef-
ficients of cubic nonlinearity, and the coefficient that charac-
terizes the hysteretic response of the rock to compressional
and shear disturbances. From the linear elastic constants we
find values of the acoustic wave velocities that compare well
with experiments on Berea sandstone.

2 Elastic theory

Our goal is to deduce something about the nature of the elas-
tic elements in a piece of Berea sandstone from quasistatic
stress-strain data. In the context of a suitable theory we can
use these deductions to predict the response of the rock to
stress protocols different from the ones that were measured.
For example, we may predict the response of the rock to dy-
namic loading in a resonant bar experiment or in an acoustic
wave experiment. Detailed understanding of the behavior of
the elastic elements may expand our understanding of their
microscopic character and the microscopic mechanism for
the elastic hysteresis. However, in order to let the data be
our guide, we proceed without imposing a prior model of the
mechanism for nonlinearity and hysteresis.

2.1 Linear elasticity

Consider an isotropic homogeneous elastic system, whose
behavior is characterized by two constants. Unlike a liquid
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characterized by one elastic constant, a solid has the means
to transform forces in one direction into forces in the perpen-
dicular direction. The magnitude of this transformation, the
Poisson’s ratio, is an important component of the descrip-
tion of the solid. A solid with a very small Poisson’s ratio
transforms almost no force from one direction to the perpen-
dicular direction. In terms of the Young’s modulusE, and
the Poisson’s ratioν, the diagonal elements of the strain field
in the solid are

εxx =
1

E

[
σxx − ν(σyy + σzz)

]
, (1)

εyy =
1

E

[
σyy − ν(σxx + σzz)

]
, (2)

εzz =
1

E

[
σzz − ν(σxx + σyy)

]
, (3)

whereεij (σij ) is thej th component of the strain (stress) in
the ith direction. These equations state that the strain in a
single direction results from the response of the system to
forces in all directions.

The forces in the interior of an elastic material are not nec-
essarily trivially related to the external forces that are applied
to the material. For example, unconsolidated granular mate-
rials display internal force chains that have magnitudes not
easily related to the external forces. Here we assume that
Eqs. (1)–(3) hold for each elastic element within the system.

To simplify Eqs. (1)–(3), we assume thatσxx = σyy , and
rewrite them in terms of mean stressσ , shear stressτ , vol-
umetric strainκ, shear strainγ , bulk modulusK, and shear
modulusG, where these quantities can be defined in terms of
our previous quantities:

σ =
1

3
(σzz + 2σxx), (4)

τ =
1

2
(σzz − σxx), (5)

κ = εzz + 2εxx, (6)

γ = εzz − εxx, (7)

K =
E

3(1 − 2ν)
, (8)

G =
E

2(1 + ν)
. (9)

Equations (1)–(3) reduce to two uncoupled equations,

κ =
σ

K
, (10)

γ =
τ

G
. (11)

These stress-strain equations are valid for linear elastic sys-
tems. They are intuitively appealing, since they imply that
given purely diagonal stresses applied in an experiment, the
elastic behavior of the system can be understood in terms of
two independent elastic coefficients in uncoupled equations.

2.2 Nonlinear elasticity

Consolidated materials are elastically nonlinear. Thus,
Eqs. (10) and (11) are not strictly valid. The traditional
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Fig. 1. Hysteretic elastic element. In the PM space model, the
elastic properties of a macroscopic system are due to an ensemble of
hysteretic elastic elements. Each element has an equilibrium length
that switches between two states hysteretically.

model of nonlinear elasticity includes third order strain terms
in the energy density of a solid body (Landau and Lifshitz,
1959), and introduces three extra moduli,A, B, andC. (Here
we have defined strain as a linear quantity,εij = ∂ui/∂xj ,
where ui is the ith component of the displacement, and
xj is the j th component of the coordinate system.) Given
the energy densityE , each component of stress is given by
σij = ∂E/∂(∂ui/∂xj ).

A very complicated set of equations can be simplified by
considering the constraints on our system, i.e. only diagonal
stresses, andσxx = σyy . In our case, the number of stress
and strain variables can be reduced to four, and we find

σ = Kκ +

(
K

2
+

A

9
+ B + C

)
κ2

+
1

3

(
K +

4G

3
+

2A

3
+ 2B

)
γ 2, (12)

τ = Gγ +

(
K

2
+

2G

3
+

A

3
+ B

)
γ κ

+
1

2

(
G +

A

3

)
γ 2. (13)

Equations (12) and (13) can be inverted to find strain as a
function of stress, the analogs of Eqs. (10) and (11). To sec-
ond order in the stresses,

κ =
1

K
σ −

T1

2
σ 2

−
2T2

3
τ2, (14)

γ =
1

G
τ − T2στ −

T3

2
τ2, (15)

where

T1 =
1

K3

(
K +

2A

9
+ 2B + 2C

)
, (16)
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Fig. 2. Stress Protocol. Experimentally applied shear stress and
mean stress as a function of time.

T2 =
1

KG2

(
K

2
+

2G

3
+

A

3
+ B

)
, (17)

T3 =
1

G3

(
G +

A

3

)
. (18)

Once again, Eqs. (14) and (15) are intuitively appealing.
These two equations reduce to Eqs. (10) and (11) for small
stresses, and deviate from the linear relationships quadrati-
cally in stress. Note that the resulting equations are no longer
decoupled, i.e. the volumetric strain depends on both shear
and mean stress. However, only the shear strain contains a
cross term in shear and mean stress.

2.3 Hysteretic elasticity

The nonlinear elastic equations, Eqs. (14) and (15), do not
have the ability to describe hysteresis, which is prevalent in
the elastic response of most rocks and other consolidated ma-
terials. Thus, we postulate that the rock responds as if there
are two systems of elastic elements, one system responding
hysteretically to the mean stress, and one system responding
hysteretically to the shear stress. We employ a generaliza-
tion of the PM space model introduced earlier in the con-
text of uniaxial stress (McCall and Guyer, 1996), to rewrite
Eqs. (10) and (11),

κ = κ0F(σ), (19)

γ = γ0J (τ), (20)

whereγ0 andκ0 are constants determined from experimental
data. The functionsF(σ) andJ (τ) are integrals over densi-
ties of elastic elements in mean stress space and shear stress
space respectively. It is these functions that we want to find
from experimental data.

The principle involved in the analysis has been previously
described and illustrated (Guyer et al., 1997). For example,
the mean stress - volumetric strain properties of a macro-
scopic rock sample are taken to be the result of an ensemble
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Fig. 3. Stress-Stress Protocol. Applied shear stress as a function of
applied mean stress during the experiment. From vertical to hori-
zontal, the protocols are for constantσ , θ , µ, andτ respectively.

of hysteretic elastic elements with the elastic response illus-
trated in Fig. 1. Each elastic element is modeled as having
an equilibrium length that switches between two states hys-
teretically. The equilibrium lengths are taken to be equivalent
for all elastic elements, thus each element is characterized by
two stresses,σc (stress to close) andσo (stress to open).

The volumetric strain response of a macroscopic sample
is characterized by a number density of elastic elementsρκ

in the space(σc, σo). F(σ) is given by an integral over
ρκ(σc, σo), where the limits of integration depend on the his-
tory of the mean stress protocol. For a closed loopσ1 →

σ2 → σ1, F is the fraction of elastic elements in(σc, σo)-
space that are in the closed state. As the mean stress is in-
creased,

F(σ) =

∫ σ

σ1

dσc

∫ σc

σ1

dσo ρκ(σc, σo). (21)

As the mean stress is decreased,

F(σ) = F(σ2) −

∫ σ2

σ

dσc

∫ σc

σ

dσo ρκ(σc, σo). (22)

We demand thatF be a fraction by normingF to unity over
the full (σc, σo)-space; this sets the constantκ0.

Similarly, J (τ) is related to the density of elastic elements
ργ , in the space(τc, τo). These elastic elements produce a
shear strain response that depends upon the shear stress his-
tory. For a closed loopτ1 → τ2 → τ1, J is the fraction of
elastic elements in(τc, τo)-space that are in the closed state.
As the shear stress is increased,

J (τ) =

∫ τ

τ1

dτc

∫ τc

τ1

dτo ργ (τc, τo). (23)

As the shear stress is decreased,

J (τ) = J (τ2) −

∫ τ2

τ

dτc

∫ τc

τ

dτo ργ (τc, τo). (24)
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Fig. 4. Shear stress-strain. Shear strain versus shear stress for three
protocols at 5 MPa base mean stress (loops 5θ2, 5σ2, 5µ2).

J is normed to unity over the full(σc, σo)-space, setting the
constantγ0.

In the limit that the densitiesρκ(σc, σo) andργ (τc, τo) are
diagonal, e.g.ρκ(σc, σo) = χ(σc, σo)δ(σc − σo), F(σ) and
J (τ) are functions ofσ andτ that coincide with Eqs. (14)
and (15) for proper choice ofχ .

Our goal is to use experimental data to determine
ρκ(σc, σo) andργ (τc, τo). These number densities can then
be used to predict the elastic response of a system under con-
ditions that have not been measured. As the number densities
characterize ensembles of elastic elements, they can also be
used to infer the important microscopic characteristics of the
rock.

3 Stress-strain experiment

The data analyzed in this paper are from measurements of ax-
ial and radial strain as the sample is subjected to complicated
stress protocols (Boitnott, 1997). The measurements were
performed in a hydraulically servo-controlled triaxial appa-
ratus with a precision internal load cell in the loading col-
umn. The sample was a “room dry” Berea sandstone cored
perpendicular to bedding, 44.4 mm in diameter with length
equal to twice the diameter. It was jacketed in 0.127 mm
thick copper foil and instrumented with standard polymide
backed constantan foil strain gauges. The axial and radial
strains (εzz andεxx) and the axial and radial stresses (σzz and
σxx) were measured. The effects of pressure on the strain
gauges were removed using calibrations derived from iden-
tically instrumented samples of optical glass for which the
elastic constants are known.

The samples were subjected to an elaborate stress protocol
involving a limited stress range,|σ | ≤ 30 MPa, and repeated
stress loops so that loops with negligible creep are obtained.
The applied stresses and the strain response can be charac-
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Fig. 5. Stress-strain at constant radial stress. Shear strain versus
shear stress, and volumetric strain versus mean stress for loop 20θ2.

terized by mean stressσ , shear stressτ , volumetric strainκ,
and shear strainγ , as defined in Eqs. (4)–(7). At each of
three base mean stresses, 5 MPa, 10 MPa, and 20 MPa, the
samples were subjected to stress loops as the following were
held constant: (1) shear stress, (2) radial stress, (3) mean
stress, and (4) radial strain. In Fig. 2 we show the stress pro-
tocol as a function of time. In Fig. 3 we show the stress pro-
tocol in stress space, with coordinatesσ andτ . From Fig. 2
we see that each scan in stress-strain space has been carried
out at least twice. Because the elastic response of rocks has
discrete memory the first exploration of any region of stress-
strain space is different from all subsequent explorations.

Our analysis will focus on a subset of the complete data
set. In particular, we are interested in closed stress loops,
σ1 → σ2 → σ1. We will specify the stress loop under dis-
cussion by a sequence of a number, a letter, and a number,
e.g. stress loop 20σ2. The first number refers to the base
mean stress; 5, 10 or 20 MPa. The letter corresponds to the
type of stress loop;τ = constant shear stress,θ = constant
radial stress,σ = constant mean stress, andµ = constant ra-
dial strain. The third number corresponds to the loop number
at fixed base mean stress and stress protocol. Thus the loop
20θ2 is the second loop at constant radial stress, at 20 MPa
base mean stress.

There are 30 mean stress and 30 shear stress loops in the
complete data set. We will confine our attention to 9 mean
stress and 9 shear stress loops, the second loop of each stress
protocol, for each base mean stress state. In Fig. 4 we show
three shear strain versus shear stress loops, loops 5θ2, 5σ2,
and 5µ2 (note there is no shear strain loop 5τ2). The stress
and strain for each loop have been shifted by a constant
amount so that each loop starts and stops at(τ, γ ) = (0, 0).
The strain for increasing stress is always less than the strain
for decreasing stress, i.e. the hysteresis loops are always tra-
versed counter clockwise. The stress protocol was chosen
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Fig. 6. Volumetric strain – mean stress forτ constant. Volumetric
strain versus mean stress at constant shear stress, for the three base
mean stresses (loops 5τ2, 10τ2, 20τ2).

so that the shear stress change was nominally equivalent for
each of these loops. Note that the amount of hysteresis in the
5µ2 loop is substantially less than that in the 5σ2 loop, i.e.
the hysteresis is least when the mean stress varies the most,
and most when the mean stress is constant.

In Fig. 5 we show the volumetric strain as a function of
mean stress, and the shear strain as a function of shear stress
for a single experimental loop, 20θ2. As above, we have
shifted stress and strain so that the curves begin at the origin.
The two loops differ primarily in that the shear strain shows
substantial hysteresis while the volumetic strain has almost
none. In Fig. 6 we show volumetric strain versus mean stress
at fixed shear stress, for the three base mean stresses, loops
5τ2, 10τ2, and 20τ2. Note that as the mean stress increases
the amount of hysteresis in the volumetric strain decreases.
In Fig. 7 we show volumetric strain versus mean stress at
fixed radial stress, for the three base mean stresses, loops
5θ2, 10θ2, 20θ2. At constant radial stress there is very mod-
est hysteresis in the volumetric strain. Compare this to the
hysteresis in the shear strain in Fig. 5.

4 Analysis

In this section, we describe analysis of the data using the PM
space model. We use a simple analytic model for the number
densities, fit the stress-strain data to appropriate functions,
and use the results to predict the dynamic moduli,Kdyn and
Gdyn, in the mean stress – shear stress space of the exper-
iment. Measurements of the compressional and shear ve-
locities on the sample (Boitnott, 1997) yielded values of the
dynamic moduli which we compare to theKdyn and Gdyn
surfaces derived from quasistatic data.

Based on observations of the stress-strain data, we argue
for a simple model for the number density of elastic units.
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These observations are: 1. The hysteresis in stress-strain
is obvious, but not enormous. Thus, the number densities
should be high on the diagonalsσc = σo, andτc = τo. Diag-
onal elastic elements have no hysteresis, as shown in Fig. 1.
2. Nonlinearity in stress-strain decreases as the stresses are
increased. Given these two observations, we propose ana-
lytic forms for the number densities,

ρκ(σc, σo) = (Dκ + Hκσc)δ(σo − σc) + ακ , (25)

and

ργ (τc, τo) = (Dγ + Hγ τc)δ(τo − τc) + αγ . (26)

In Eqs. (25) and (26), the number density is taken to vary
linearly with stress on the diagonal, and to have a (small)
constant background that accounts for the hysteresis (off-
diagonal elements). Since the nonlinearity decreases with
increasing stress, we expectH to be negative.

Given the model for number density in Eqs. (25) and (26),
the strainsκ andγ can be calculated for closed stress loops
using Eqs. (19)–(24). For a closed loopσ1 → σ2 → σ1
(κ1 → κ2 → κ1), the strain as stress is increasing fromσ1 to
σ2 is given by

κup(σ ) = κ1 + κ0

[(
1

2
(ακ − Hκ)σ 2

1 − Dκσ1

)
+ (Dκ − ακσ1)σ +

1

2
(ακ + Hκ)σ 2

]
, (27)

and the strain as stress is decreasing fromσ2 to σ1 is given
by

κdn(σ ) = κ2 − κ0

[(
1

2
(ακ + Hκ)σ 2

2 + Dκσ2

)
− (Dκ + ακσ2)σ +

1

2
(ακ − Hκ)σ 2

]
. (28)
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Similarly, for a closed loopτ1 → τ2 → τ1 (γ1 → γ2 → γ1),
the strain as stress is increasing fromτ1 to τ2 is given by

γup(τ ) = γ1 + γ0

[(
1

2
(αγ − Hγ )τ2

1 − Dγ τ1

)
+ (Dγ − αγ τ1)τ +

1

2
(αγ + Hγ )τ2

]
, (29)

and the strain as stress is decreasing fromτ2 to τ1 is given by

γdn(τ ) = γ2 − γ0

[(
1

2
(αγ + Hγ )τ2

2 + Dγ τ2

)
− (Dγ + αγ τ2)τ +

1

2
(αγ − Hγ )τ2

]
. (30)

Thus, by fitting the experimental strain to a quadratic equa-
tion in stress, we can find the parametersD, H , andα that
characterize the number density of the PM space model. That
is, if the experimental data can be characterized by the equa-
tions

κup(σ ) = a0 + a1σ + a2σ
2, (31)

κdn(σ ) = b0 + b1σ + b2σ
2, (32)

then

κ0Dκ =
1

2
[a1 + b1 + (σ2 − σ1)(b2 − a2)], (33)

κ0Hκ = a2 + b2, (34)

κ0ακ = a2 − b2. (35)

Similar equations hold for the shear stress versus shear strain
loops.

One of our goals is to relate quasistatic stress-strain data
to dynamic moduli, and thus to acoustic velocities. Recall
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constant, right triangles forµ constant, and triangles pointing down
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that a propagating wave is just a very small stress-strain loop.
Lettingσ1 = σ̄ , σ = σ̄ +δσ , andκ −κ1 = δκ in Eq. (27) (or
equivalently, lettingσ2 = σ̄ , σ = σ̄ − δσ , andκ2 − κ = δκ

in Eq. 28), we find

δκ

δσ
=

1

Kdyn
= κ0(Dκ + Hκ σ̄ ). (36)

That is, the dynamic bulk modulus depends only on the diag-
onal part of the number density characterizing the volumet-
ric stress space. A similar calculation for the shear modulus
yields

δγ

δτ
=

1

Gdyn
= γ0(Dγ + Hγ τ̄ ). (37)

K−1
dyn is explicitly dependent only onσ , andG−1

dyn is explic-
itly dependent only onτ . However, each loop from which
the moduli are determined follows a trajectory in the two-
dimensional space of(σ, τ ). Thus the moduli are implicitly
dependent on both stresses.

We can compare our results to the traditional model of
nonlinear elasticity by noting

1

Kdyn
=

dκ

dσ
=

∂κ

∂σ
+

∂κ

∂τ

∂τ

∂σ
, (38)

and similarly forG−1
dyn. The dynamic moduli from traditional

nonlinear elasticity theory are determined by derivatives of
Eqs. (14) and (15),

1

Kdyn
=

1

K
− T1σ −

4

3
T2

∂τ

∂σ
τ, (39)

1

Gdyn
=

1

G
− T2

(
σ +

∂σ

∂τ
τ

)
− T3τ. (40)
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Table 1. The values ofD, H , andα for each of the 18 stress-strain loops

Loop κ0Dκ , GPa−1 κ0Hκ , GPa−2 κ0ακ , GPa−2 γ0Dγ , GPa−1 γ0Hγ , GPa−2 γ0αγ , GPa−2

5τ2 0.185 -7.54 3.58 - - -
10τ2 0.130 -2.80 1.80 - - -
20τ2 0.089 -0.58 0.74 - - -
5θ2 0.197 -12.84 0.00 0.155 -9.18 6.21
10θ2 0.182 -7.32 0.00 0.121 -4.76 3.73
20θ2 0.118 -1.85 0.00 0.087 -1.16 1.64
5σ2 - - - 0.124 -0.45 11.38
10σ2 - - - 0.103 -0.49 5.14
20σ2 - - - 0.082 -0.03 1.72
5µ2 0.172 -7.42 2.13 0.153 -10.6 4.21
10µ2 0.133 -3.17 0.97 0.115 -4.63 2.60
20µ2 0.098 -0.95 0.42 0.088 -1.47 1.45
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Fig. 10. The off-diagonal constantsκ0ακ andγ0αγ . The squares,
circles, and diamonds connected by dotted lines areκ0ακ , for θ , τ ,
andµ constant respectively. The triangles connected by solid lines
areγ0αγ : triangles pointing up forθ constant, right triangles forµ
constant, and triangles pointing down forσ constant.

Analysis of the experimental data will yieldK−1
dyn(σ, τ )

and G−1
dyn(σ, τ ) through Eqs. (36) and (37). The partial

derivative∂τ/∂σ depends on the stress protocol, and can be
determined from the slopes of theτ − σ relations shown in
Fig. 3. Thus, the linear and nonlinear moduliK, G, A, B,
andC can be determined using the experimental data, and
Eqs. (39) and (40).

5 Results

For each of the 18 stress-strain loops listed in Table 1, 9
covering regions of(σc, σo)-space and 9 covering regions
of (τc, τo)-space, we made quadratic fits to the data (as in
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Fig. 11. K−1
dyn and G−1

dyn for τ = 1 MPa. The squares, circles,

and diamonds connected by dotted lines areK−1
dyn, for θ , τ , and

µ constant respectively. The triangles connected by solid lines are
G−1

dyn: triangles pointing up forθ constant, right triangles forµ
constant, and triangles pointing down forσ constant.

Eqs. 31, 32), and determined the parametersκ0Dκ , κ0Hκ ,
κ0ακ , γ0Dγ , γ0Hγ , andγ0αγ that characterize the number
density (using Eqs. 33–35). These are listed in Table 1. Note
that for the constantθ mean stress loops,α was arbitrarily set
to zero. To within the noise in the data, these curves have no
hysteresis, as shown in Fig. 7.

Figures 8, 9, and 10 show the values in Table 1 as a func-
tion of the base mean stress of the stress-strain loops. As ex-
pected,D, |H |, andα all decrease as mean stress increases.
The moduliKdyn andGdyn depend on the inverse combina-
tion of D and H (Eqs. 36, 37). Thus, the decrease inD in-
dicates that the material is hardening as the base mean stress
is increased. The decrease in|H | indicates that the overall
curvature of the stress-strain loop decreases as the base mean
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Fig. 12. Planes describing the inverse dynamic bulk modulus. The
modulus plane explored is determined by the experimental proto-
col. In the figure, the top plane describes the modulus for constant
τ , the middle plane is for constantµ, and the bottom plane is for
constantθ . The diamonds are the result of dynamic measurements
as a function of mean stress.

stress is increased. The decrease inα indicates that the hys-
teresis in the stress-strain loops decreases as the base mean
stress is increased.

In Fig. 10, it is clear that shear stress loops are more hys-
teretic than mean stress loops, i.e. theα’s connected by solid
lines are uniformly larger than those connected by dotted
lines. Figures 4–7 confirm this point. From a practical stand-
point, this means that shear strain will generally be harder to
predict than volumetric strain, in the absence of data. Hys-
teresis is an important component of shear strain response
to shear stress changes. The constantσ shear stress loops
are particularly interesting (see examples in Figs. 4 and 5).
They feature small change inD andH (almost no average
curvature to a stress-strain loop), and yet very large values
of α. Thus the average trend of the data is almost linear, but
the hysteresis is very large! An explanation can be found in
the loops displayed in Figs. 4 and 5, where we see that the
curvature of constantσ loops changes sign when the applied
stress changes direction; thus, the average stress-strain is al-
most linear, even though the loop is quite fat. In contrast, the
constantθ mean stress loops shown in Fig. 7 have curvature
(large values ofD andH ), but no hysteresis (α).

Using Eqs. (36) and (37) and the values ofD andH in
Table 1, we can predict inverse dynamic moduli for the vari-
ous experimental protocols. In Fig. 11 we show the predicted
inverse dynamic moduli atτ = 1 MPa, andσ = 5, 10, and
20 MPa. Each point in Fig. 11 is the first point of a line seg-
ment in(σ, τ ) space, e.g. theD andH values derived for the
5θ2 loop are valid on a line from (5 MPa, 1 MPa) to (10 MPa,
8 MPa) (see Fig. 3). Furthermore, given Eqs. (39) and (40),
we expect that the three lines ofK−1

dyn derived for loops 5θ2,
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Fig. 13. Planes describing the inverse dynamic shear modulus. The
top plane describes the modulus for constantσ , the middle plane
is for constantθ , and the bottom plane is for constantµ. The di-
amonds are the result of dynamic measurements as a function of
mean stress.

10θ2, and 20θ2, will lie on a plane in(σ, τ ) space. Because
of the partial derivative∂τ/∂σ in Eq. (39), the inverse mod-
ulus plane derived for constantθ experimental protocols will
be different from the plane derived for other experimental
protocols. That is, we should find three planes ofK−1

dyn and

three planes ofG−1
dyn, one for each experimental protocol.

We performed a least squares fit of Eqs. (39) and (40) to
the inverse dynamic modulus lines produced by Eqs. (36) and
(37), where the fitting parameters wereK, G, A, B, andC.
Our results areK = 8.0 GPa,G = 7.3 GPa,A = 1900 GPa,
B = 120 GPa, andC = 140 GPa. The values ofA, B,
andC are not unreasonable, but are difficult to verify easily.
Previous measurements of nonlinear elastic coefficients vary
widely (Winkler and Liu, 1995). Figures 12 and 13 show the
linear modulus planes described by our best fit parameters,
and Eqs. (39) and (40). Also shown are results from time
of flight measurements of moduli (Boitnott, 1997), where
τ = 0 and theσ = 5, 10, 20 MPa (equivalent mean stress).
Our predictions are consistent with the time of flight modulus
measurements, and quite close to the measurements of bulk
modulus. The spread in the planes defined by the different
protocols is also larger for the bulk modulus.

The analysis described here demonstrates the use of the
PM space model to explore the relationship between nonlin-
ear, hysteretic stress-strain measurements, and dynamic elas-
tic measurements. The PM space model allows us to use
quasistatic data to predict dynamic elastic properties of con-
solidated materials, and produces results consistent with in-
dependent measurements of dynamic quantities. In practice,
this kind of measurement and analysis is time consuming and
difficult, and is unlikely to be done routinely. Currently, the
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PM space model requires a closed data loop for the inver-
sion procedure, i.e. creep cannot be accommodated. We are
hopeful that a straightforward modification of the PM space
model will allow us to account for creep. This would reduce
the cycling necessary to obtain appropriate data. Meanwhile,
to answer very specific questions, a limited test would suf-
fice, i.e. a single experimental protocol.

Ideally, one would prefer to use dynamic measurements to
infer quasistatic response, rather than the other way around.
When an easy and reliable method for measuring third order
elastic constants dynamically is developed, inverse modulus
planes such as those in Figs. 12 and 13 will be trivial to de-
rive. However, dynamic measurements will not so easily give
information about the magnitude of the hysteresis (α). One
can be reasonably sure that shear strain is more hysteretic
than volumetric strain, but mechanisms for the hysteresis are
still a matter of debate. As theory and experiment continue
to complement each other, we hope to find a connection be-
tween dynamically measured quantities, and quasistatically
displayed hysteresis.
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