Nonlinear Processes in Geophysics (2003) 10: 589-597 .
Nonlinear Processes

in Geophysics

© European Geosciences Union 2003

Linear and nonlinear modulus surfaces in stress space, from
stress-strain measurements on Berea sandstone

M. Boudjemal, I. B. Santos', K. R. McCalll, R. A. Guyer?, and G. N. Boitnott3

IDepartment of Physics, University of Nevada, Reno, USA
2Department of Physics, University of Massachusetts, Amherst, USA
3New England Research Incorporated, White River Junction, Vermont, USA

Received: 9 January 2002 — Revised: 19 May 2003 — Accepted: 17 July 2003

Abstract. The elastic response of many rocks to quasistatic A model to describe the elastic behavior of rocks and other
stress changes is highly nonlinear and hysteretic, displayingonsolidated materials is called the Preisach-Mayergoyz
discrete memory. Rocks also display unusual nonlinear re{PM) space model (Mayergoyz, 1985; Preisach, 1935). The
sponse to dynamic stress changes. A model to describe thHeM space model uses the statistical properties of many meso-
elastic behavior of rocks and other consolidated materials iscopic hysteretic elastic elements to describe the elastic re-
called the Preisach-Mayergoyz (PM) space model. In consponse of a macroscopic piece of material (McCall and
trast to the traditional analytic approach to stress-strain, th&suyer, 1996). It allows us to invert quasistatic stress-strain
PM space picture establishes a relationship between the qualata for the distribution of hysteretic elastic elements. From
sistatic data and a number density of hysteretic mesoscopithis distribution, the high frequency acoustic response of the
elastic elements in the rock. The number density allows us tanacroscopic piece of material can be predicted.

make quantitative predictions of dynamic elastic properties. In this paper, we use the PM space model to analyze qua-
Using the PM space model, we analyze a complex suite obistatic stress-strain data taken on Berea sandstone. From this
quasistatic stress-strain data taken on Berea sandstone. Vi@alysis we determine the linear elastic constants, the coef-
predict a dynamic bulk modulus and a dynamic shear mod{icients of cubic nonlinearity, and the coefficient that charac-
ulus surface as a function of mean stress and shear stres®rizes the hysteretic response of the rock to compressional
Our predictions for the dynamic moduli compare favorably and shear disturbances. From the linear elastic constants we
to moduli derived from time of flight measurements. We de- find values of the acoustic wave velocities that compare well
rive a set of nonlinear elastic constants and a set of constantsith experiments on Berea sandstone.

that describe the hysteretic behavior of the sandstone.

2 Elastic theory

Our goal is to deduce something about the nature of the elas-
tic elements in a piece of Berea sandstone from quasistatic
. — stress-strain data. In the context of a suitable theory we can
The strain response of r_ock_ to quaS|§tat|c stress cycles _(e'lee these deductions to predict the response of the rock to
stress cycles at 1§ Hz) |s.h|ghly nqnhnear and hysteretic stress protocols different from the ones that were measured.
(Holcomb, 1981), and displays discrete memory (Guyerg, oyamnle we may predict the response of the rock to dy-
?t ?"-' 1997).‘ Rocks also display unusu_al nonlinear t_’ehav'namic loading in a resonant bar experiment or in an acoustic
ior in dynamic stress cycles, €.9. acoustic wave expermenty ;e experiment. Detailed understanding of the behavior of

at 10'Hz, (Guyer et al,, 1999). Nonlinearity and hysteresis o clastic elements may expand our understanding of their
are prominent features in the elastic behavior of rocks (Guye‘;nicroscopic character and the microscopic mechanism for

and Johnson, 1999). This observation is the key to makinqhe elastic hysteresis. However, in order to let the data be

the connection between low frequency (quasistatic) and high) | guide, we proceed without imposing a prior model of the
frequency (acoustic) measurements, and therefore betwe%echanism for nonlinearity and hysteresis

the static modulus and the dynamic acoustic velocity of a
sample. 2.1 Linear elasticity

1 Introduction

Correspondence tdvl. Boudjema Consider an isotropic homogeneous elastic system, whose
(mouna@physics.unr.edu) behavior is characterized by two constants. Unlike a liquid
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characterized by one elastic constant, a solid has the means \ \
to transform forces in one direction into forces in the perpen-
dicular direction. The magnitude of this transformation, the | <> -
Poisson’s ratio, is an important component of the descrip-  ©
tion of the solid. A solid with a very small Poisson’s ratio
transforms almost no force from one direction to the perpen
dicular direction. In terms of the Young’s modulés and
the Poisson’s ratio, the diagonal elements of the strain field
in the solid are |
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mhgiﬁeg_ (Gi{) is tf]rehjth Compot_nent 0: t{letﬁtr?it?] (Strtes_s) _in Fig. 1. Hysteretic elastic element. In the PM space model, the
_el _|rec _|on. €se equations State that the strain In g, e properties of a macroscopic system are due to an ensemble of
single direction results from the response of the system t%ysteretic elastic elements. Each element has an equilibrium length

forces in all di.rectio!’ls. . . . that switches between two states hysteretically.
The forces in the interior of an elastic material are not nec-

essarily trivially related to the external forces that are applied

to the material. For example, unconsolidated granular matemodel of nonlinear elasticity includes third order strain terms
rials display internal force chains that have magnitudes noin the energy density of a solid body (Landau and Lifshitz,
easily related to the external forces. Here we assume that959), and introduces three extra moddlj,B, andC. (Here
Egs. (1)—(3) hold for each elastic element within the system.we have defined strain as a linear quantty, = du;/dx;,

To simplify Egs. (1)—(3), we assume that, = o,,, and  whereu; is the ith component of the displacement, and
rewrite them in terms of mean stress shear stress, vol- x; is the jth component of the coordinate system.) Given
umetric straine, shear strairy, bulk modulusk, and shear the energy density, each component of stress is given by
modulusG, where these quantities can be defined in terms ofo;; = 9€/0(du; /dx;).

our previous quantities: A very complicated set of equations can be simplified by
1 considering the constraints on our system, i.e. only diagonal
o= §(Uzz + 20yy), (4) stresses, and,x = oyy. In our case, the number of stress
1 and strain variables can be reduced to four, and we find
T = E(GZZ - O—X)C)ﬂ (5) _x K A 3 c 5
K = €77 + 2€xy, (6) o=Re+ E+§+ + *
= €;; — €xxs 7 1 4G 2A
Y ZZEXX () +§<K+?+?+23>y2, (12)
K=——-— (8)
31— 2v)
E K 26 A
G=5—"-. ©) = — 42242
2(1+v) T Gy+<2+3+3+3>y/<
Equations (1)—(3) reduce to two uncoupled equations, 1 A\
K = E’ (10)
T Equations (12) and (13) can be inverted to find strain as a
V= G’ (11) function of stress, the analogs of Egs. (10) and (11). To sec-
These stress-strain equations are valid for linear elastic sysc-)nd order in the stresses,
tems. They are intuitively appealing, since they implythat 1 71 5 @12 (14)
given purely diagonal stresses applied in an experiment, thé = x° ~ 2° 3
elastic behavior of the system can be understood in terms of
two independent elastic coefficients in uncoupled equations.y - 5, —Tot — %12’ (15)
2.2 Nonlinear elasticity
where
Consolidated materials are elastically nonlinear. Thus, 1
Egs. (10) and (11) are not strictly valid. The traditional 11 = K3 K+ o T 2B +2C |, (16)
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Fig. 2. Stress Protocol. Experimentally applied shear stress andFig. 3. Stress-Stress Protocol. Applied shear stress as a function of
mean stress as a function of time. applied mean stress during the experiment. From vertical to hori-
zontal, the protocols are for constanto, i, andr respectively.
1 K 2G A
T2:—2<E+?+§+B>y (17)
KG of hysteretic elastic elements with the elastic response illus-

i=5|0+3 (18)  an equilibrium length that switches between two states hys-
teretically. The equilibrium lengths are taken to be equivalent
Once again, Egs. (14) and (15) are intuitively appealing.for all elastic elements, thus each element is characterized by
These two equations reduce to Egs. (10) and (11) for smaltwo stresses. (stress to close) ang, (stress to open).
stresses, and deviate from the linear relationships quadrati- The volumetric strain response of a macroscopic sample
cally in stress. Note that the resulting equations are no longejs characterized by a number density of elastic elemgpts
decoupled, i.e. the volumetric strain depends on both sheaf the space(o., 0,). F(o) is given by an integral over
and mean stress. However, only the shear strain contains g, (¢, 0,), where the limits of integration depend on the his-

1 < A) trated in Fig. 1. Each elastic element is modeled as having

cross term in shear and mean stress. tory of the mean stress protocol. For a closed logp—
. o o2 — o1, F is the fraction of elastic elements (@, o,)-
2.3 Hysteretic elasticity space that are in the closed state. As the mean stress is in-
. . . r
The nonlinear elastic equations, Egs. (14) and (15), do nof eased,

have the ability to describe hysteresis, which is prevalent in e %e

the elastic response of most rocks and other consolidated maF—(G) - /g do /g oo pc(0c, 00)- (21)
terials. Thus, we postulate that the rock responds as if there i
are two systems of elastic elements, one system respondirfyS the mean stress is decreased,
hysteretically to the mean stress, and one system respondinlg 02 oc

hysteretically to the shear stress. We employ a generalizal' (0) = F(02) — / doe / doy pe(dc, 00).
tion of the PM space model introduced earlier in the con- 7 U ) .
text of uniaxial stress (McCall and Guyer, 1996), to rewrite YWe demand that” be a fraction by norming’ to unity over

1 1

(22)

Egs. (10) and (11), the full (o., 0,)-space; this sets the constapt
Similarly, J () is related to the density of elastic elements
Kk = KkoF (o), (19) py, in the spacer,, 7,). These elastic elements produce a
y = yoJ (1), (20) shear strain response that depends upon the shear stress his-

. . tory. For a closed loop; — 12 — 11, J is the fraction of
whereyg andkg are constants determined from experimental . . .

. . . elastic elements i, 7,)-space that are in the closed state.
data. The functiong' (o) andJ (t) are integrals over densi- D

. . . As the shear stress is increased,
ties of elastic elements in mean stress space and shear stress
space respectively. It is these functions that we want to find t te
fr?)m ex p y J(t) = dt. dz, Py (Te» To)- (23)
perimental data. o o
The principle involved in the analysis has been previously )
described and illustrated (Guyer et al., 1997). For example/S the shear stress is decreased,
the mean stress - volumetric strain properties of a macro- ™2 T
[ Can [Cdn g,
T T

scopic rock sample are taken to be the result of an ensemblé(?) = J(72) (24)
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Fig. 4. Shear stress-strain. Shear strain versus shear stress for thréég. 5. Stress-strain at constant radial stress. Shear strain versus
protocols at 5 MPa base mean stress (lo#& 502, 5.2). shear stress, and volumetric strain versus mean stress for 168p 20

J is normed to unity over the fullo., o,)-space, setting the terized by mean stress shear stress, volumetric straing,
constanty. and shear straiw, as defined in Egs. (4)—(7). At each of
In the limit that the densitieg, (o., 0,) andp, (t., 7,) are  three base mean stresses, 5MPa, 10 MPa, and 20 MPa, the
diagonal, e.g,0, (o¢, 0,) = x (0., 05)8(0. — 0,), F(o) and samples were subjected to stress loops as the following were
J(t) are functions ok andtr that coincide with Eqgs. (14) held constant: (1) shear stress, (2) radial stress, (3) mean
and (15) for proper choice of. stress, and (4) radial strain. In Fig. 2 we show the stress pro-
Our goal is to use experimental data to determinetocol as a function of time. In Fig. 3 we show the stress pro-
o« (oc, 0,) andp,, (¢, 7,). These number densities can then tocol in stress space, with coordinatesindz. From Fig. 2
be used to predict the elastic response of a system under come see that each scan in stress-strain space has been carried
ditions that have not been measured. As the number densitiesut at least twice. Because the elastic response of rocks has
characterize ensembles of elastic elements, they can also liscrete memory the first exploration of any region of stress-
used to infer the important microscopic characteristics of thestrain space is different from all subsequent explorations.

rock. Our analysis will focus on a subset of the complete data
set. In particular, we are interested in closed stress loops,
o1 — o2 — o1. We will specify the stress loop under dis-
cussion by a sequence of a number, a letter, and a number,

The data analyzed in this paper are from measurements of a@-9- Stress loop 2. The first number refers to the base
ial and radial strain as the sample is subjected to complicate@eéan stress; 5, 10 or 20 MPa. The letter corresponds to the
stress protocols (Boitnott, 1997). The measurements werdyP€ Of stress loopt = constant shear stress,= constant
performed in a hydraulically servo-controlled triaxial appa- fadial stressy = constant mean stress, gnd= constant ra-
ratus with a precision internal load cell in the loading col- dial strain. The third number corresponds to the loop number
umn. The sample was a “room dry” Berea sandstone coredt fixed base mean stress and stress protocol. Thus the loop
perpendicular to bedding, 44.4mm in diameter with Iength2092 is the second loop at constant radial stress, at 20 MPa
equal to twice the diameter. It was jacketed in 0.127 mmbPase mean stress.
thick copper foil and instrumented with standard polymide There are 30 mean stress and 30 shear stress loops in the
backed constantan foil strain gauges. The axial and radiatomplete data set. We will confine our attention to 9 mean
strains €, ande,,) and the axial and radial stresses.(and stress and 9 shear stress loops, the second loop of each stress
oxx) Were measured. The effects of pressure on the straiprotocol, for each base mean stress state. In Fig. 4 we show
gauges were removed using calibrations derived from identhree shear strain versus shear stress loops, |aths6 2,
tically instrumented samples of optical glass for which theand 5.2 (note there is no shear strain loop2). The stress
elastic constants are known. and strain for each loop have been shifted by a constant
The samples were subjected to an elaborate stress protocamount so that each loop starts and stops a¢) = (0, 0).
involving a limited stress ranggy| < 30 MPa, and repeated The strain for increasing stress is always less than the strain
stress loops so that loops with negligible creep are obtainedior decreasing stress, i.e. the hysteresis loops are always tra-
The applied stresses and the strain response can be charaersed counter clockwise. The stress protocol was chosen

3 Stress-strain experiment
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mean stresses (loops3, 10r2, 20r2). mean stresses (loop8B, 112, 2092).

so that the shear stress change was nominally equivalent forhese observations are: 1. The hysteresis in stress-strain

each of these loops. Note that the amount of hysteresis in this obvious, but not enormous. Thus, the number densities

512 loop is substantially less than that in the5loop, i.e.  should be high on the diagonats = ¢, andz, = 1,,. Diag-

the hysteresis is least when the mean stress varies the mosinal elastic elements have no hysteresis, as shown in Fig. 1.

and most when the mean stress is constant. 2. Nonlinearity in stress-strain decreases as the stresses are
In Fig. 5 we show the volumetric strain as a function of increased. Given these two observations, we propose ana-

mean stress, and the shear strain as a function of shear strdg$ic forms for the number densities,

for a single experimental loop, 2Q. As above, we have

shifted stress and strain so that the curves begin at the origirfx (%> %) =

The two loops differ primarily in that the shear strain shows g

substantial hysteresis while the volumetic strain has almost

none. In Fig. 6 we show volumetric strain versus mean stres®y (e, 7o) = (D, + Hy,1:)8(t, — 7c) + oty (26)

fi h for the th I I
at fixed shear stress, for the three base mean stresses, OOI%SEqS. (25) and (26), the number density is taken to vary

2,10c2, and 2@62. N h he mean stress incr . . X
5t2, 10r2, and 28 ote that as the mean stress inc easejmearly with stress on the diagonal, and to have a (small)

the amount of hysteresis in the volumetric strain decreases. tant back d that ts for the hvst is (off
In Fig. 7 we show volumetric strain versus mean stress afonstant backgroun at accounts for the hysteresis (off-

fixed radial stress, for the three base mean stresses, loo éagonal elements). Since the nonlinearity decreases with

. . increasing stress, we expdétto be negative.
502, 102, 2W2. At constant radial stress there is very mod- ; 20
est hysteresis in the volumetric strain. Compare this to the Given the model for number density in Egs. (25) and (26),

hysteresis in the shear strain in Fig. 5. thg strainsc andy can be calculated for closed stress loops
using Egs. (19)—(24). For a closed loep — o2 — o1

(k1 — k2 — K1), the strain as stress is increasing fregto

o2 is given by

(D + Heo)d(op — 0¢) + oy, (25)

4 Analysis

1

In this section, we describe analysis of the data using the PMup(9) = k1 + ko [(5(% — Hoof — DK01>
space model. We use a simple analytic model for the number 1
densities, fit the stress-strain data to appropriate functions, + (Dy — apo1)o + = (o + HK)O’Z] , (27)
and use the results to predict the dynamic modtiiyn and 2
Gayn, in the mean stress — shear stress space of the expesnd the strain as stress is decreasing fronto o1 is given
iment. Measurements of the compressional and shear vey
locities on the sample (Boitnott, 1997) yielded values of the
dynamic moFJuI| which we compare to thHegyn and Gayn kdn(0) = K2 — Ko [(}(W + HK)GZZ + sz)
surfaces derived from quasistatic data. 2

Based on observations of the stress-strain data, we argue

1 2
for a simple model for the number density of elastic units. — (D + ac02)0 + (e — Hio ] : (28)
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for o constant. for o constant.

Similarly, for a closed loop1 — 12 — 71 (Y1 — 2 — 1), that a propagating wave is just a very small stress-strain loop.

the strain as stress is increasing fromto 7, is given by Lettingo1 = 6,0 = 6 +80, andk —k1 = 8k in Eq. (27) (or
equivalently, lettingr, = 6, 0 = & — §o, andkz — k = 8k
! 2 in Eq. 28 find
vup(t) = 71+ 0| | 5(@y — Hy)tp — Dy in Eq. 28), we fin
Sk 1
1 — = =ko(D, + H,0o). 36
+ (Dy —ayt)T + E(a,, + Hy)12:| , (29) S0 Kayn o(Dyc «0) (36)

That is, the dynamic bulk modulus depends only on the diag-

and the strain as stress is decreasing frpfio =, is given by onal part of the number density characterizing the volumet-

1 2 ric stress space. A similar calculation for the shear modulus
van(t) = v2—yo || 5(@y + Hy)3 + Dy 72 yields
(D, + 0,127 + ~(@, — Hy)7? @0 (D, + H,7) 37
— o -y — . _— = = .
Y yT2 >\%y Y 57 Gayn Yoy yT (37)

Thus, by fitting the experimental strain to a quadratic equa—Kd—}] is explicitly dependent only on, and Ggln is explic-
tion in stress, we can find the parametérsH, anda that itly dependent only orr. However, each loop from which
characterize the number density of the PM space model. Thate moduli are determined follows a trajectory in the two-
i;, if the experimental data can be characterized by the equayimensional space dfs, 7). Thus the moduli are implicitly
tions dependent on both stresses.

(31) We can compare our results to the traditional model of

kup(0) = ao + a10 + az0?, . e :
nonlinear elasticity by noting

Kdn(0') = bo + b1o + bo?, 32

" ' (20 _de _ ok, e )
then Kayn do  do ' 91 00

1
koD, = E[al + b1+ (02 — 01) (b2 — a2)], (33)  and similarly forGgyln. The dynamic moduli from traditional
xoH, = a» + bo. (34) nonlinear elasticity theory are determined by derivatives of
Egs. (14) and (15),
Koo, = az — bo. (35)
1 1 4 9t

Similar equations hold for the shear stress versus shear straiy = % — Iio — §T2£fv (39)
loops. tyn

One of our goals is to relate quasistatic stress-straindata 1 1 T do T 40
to dynamic moduli, and thus to acoustic velocities. Recall Gq, ~ G~ 2\ tort) s (40)
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Table 1. The values oD, H, and« for each of the 18 stress-strain loops

Loop oDy, GPal «oHc,GPa? «oae,GPa? yoD,,GPal yH,,GPa? ypa,, GPa?

5r2 0.185 -7.54 358 ; - -
102 0.130 -2.80 1.80 - - -
20r2 0.089 0.58 0.74 - ; ;
502 0.197 -12.84 0.00 0.155 -9.18 6.21
1002 0.182 -7.32 0.00 0.121 -4.76 3.73
202 0.118 1.85 0.00 0.087 -1.16 1.64
502 - - - 0.124 -0.45 11.38
1002 - - - 0.103 -0.49 5.14
2002 ; - - 0.082 -0.03 1.72
5u2 0.172 -7.42 2.13 0.153 -10.6 4.21
10u2 0.133 -3.17 0.97 0.115 -4.63 2.60
2012 0.098 0.95 0.42 0.088 -1.47 1.45
12 0.16 , , , ,
& 10 L . "
g & 0.14] ]
S sl 1 5
= 3
3 6f 1 B 0.12] ]
o E
O 41 4 O
2 5
S 2| | g 0.10} ]
g p
g Of . 2
@ g 0.08| |
-2 . . . . £ . . . .
0 5 10 15 20 25 0 5 10 15 20 25

Base Mean Stress (MPa) Base Mean Stress (MPa)

Fig. 10. The off-diagonal constantga, andygay,. The squares,  Fig. 11. Kd_yln and Ggyln for t = 1MPa. The squares, circles,
circles, and diamonds connected by dotted linescgsg , for 0, t,

. - *» and diamonds connected by dotted lines Afg>, for and
andu constant respectively. The triangles connected by solid lines y n b

areyoa, : triangles pointing up foé constant, right triangles fqr wu constant respectively. The triangles connected by solid lines are

—1. 4 - . .
constant, and triangles pointing down foconstant. Gdyn' triangles pointing up fop constant, right triangles for
constant, and triangles pointing down foiconstant.

Analysis of the experimental data will yielﬁ&%\(o, 7) Egs. 31, 32), and determined the parametgB,, koH,,

and Gayln(@ 7) through Egs. (36) and (37). The partial K0% yoD,,_, voH,, andyow, that charac_:terizg the number
derivativedt/do depends on the stress protocol, and can bedensity (using Egs. 33-35). These are listed in Table 1. Note
determined from the slopes of the— o relations shown in that for the constarft mean stress loopa,was arbitrarily set

Fig. 3. Thus, the linear and nonlinear modi&li G, A, B to zero. To within the noise in the data, these curves have no
and C can be determined using the experimental data, and'YSteresis, as shown in Fig. 7. _
Egs. (39) and (40). Figures 8, 9, and 10 show the values in Table 1 as a func-

tion of the base mean stress of the stress-strain loops. As ex-
pected,D, |H|, anda all decrease as mean stress increases.

5 Results The moduliKgyn and Ggyn depend on the inverse combina-
tion of D and H (Egs. 36, 37). Thus, the decreas®iim-

For each of the 18 stress-strain loops listed in Table 1, Yicates that the material is hardening as the base mean stress

covering regions ofo., 0,)-space and 9 covering regions is increased. The decrease|#i| indicates that the overall

of (z., 1,)-space, we made quadratic fits to the data (as incurvature of the stress-strain loop decreases as the base mean
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Fig. 12. Planes describing the inverse dynamic bulk modulus. TheFig. 13. Planes describing the inverse dynamic shear modulus. The
modulus plane explored is determined by the experimental prototop plane describes the modulus for constanthe middle plane

col. In the figure, the top plane describes the modulus for constanis for constan®, and the bottom plane is for constant The di-

7, the middle plane is for constapt, and the bottom plane is for amonds are the result of dynamic measurements as a function of
constan®. The diamonds are the result of dynamic measurementanean stress.

as a function of mean stress.

stress is increased. The decrease indicates that the hys- 1092, and 202, will lie on a plane in(o, t) space. Because
teresis in the stress-strain loops decreases as the base megirthe partial derivativéiz /9o in Eq. (39), the inverse mod-
stress is increased. ulus plane derived for constafiexperimental protocols will

In F|g 10, it is clear that shear stress |00ps are more hysbe different from the plane derived for other eXperlmental
teretic than mean stress loops, i.e. df@connected by solid  Protocols. That is, we should find three planeskgf, and
lines are uniformly larger than those connected by dottecthree planes oGd ., one for each experimental protocol.
lines. Figures 4—7 confirm this point. From a practical stand- We performed a least squares fit of Egs. (39) and (40) to
point, this means that shear strain will generally be harder tahe inverse dynamic modulus lines produced by Egs. (36) and
predict than volumetric strain, in the absence of data. Hys<(37), where the fitting parameters weke G, A, B, andC.
teresis is an important component of shear strain respons@ur results ar& = 8.0 GPa,G = 7.3GPa,A = 1900 GPa,
to shear stress changes. The constashear stress loops B = 120GPa, and” = 140GPa. The values of, B,
are particularly interesting (see examples in Figs. 4 and 5)andC are not unreasonable, but are difficult to verify easily.
They feature small change i and H (almost no average Previous measurements of nonlinear elastic coefficients vary
curvature to a stress-strain loop), and yet very large valuesvidely (Winkler and Liu, 1995). Figures 12 and 13 show the
of a. Thus the average trend of the data is almost linear, butinear modulus planes described by our best fit parameters,
the hysteresis is very large! An explanation can be found inand Egs. (39) and (40). Also shown are results from time
the loops displayed in Figs. 4 and 5, where we see that thef flight measurements of moduli (Boitnott, 1997), where
curvature of constant loops changes sign when the applied ¢ = 0 and thes = 5, 10, 20 MPa (equivalent mean stress).
stress changes direction; thus, the average stress-strain is @ur predictions are consistent with the time of flight modulus
most linear, even though the loop is quite fat. In contrast, themeasurements, and quite close to the measurements of bulk
constant) mean stress loops shown in Fig. 7 have curvaturemodulus. The spread in the planes defined by the different
(large values oD and H), but no hysteresisx). protocols is also larger for the bulk modulus.

Using Egs. (36) and (37) and the valuesidfand H in The analysis described here demonstrates the use of the
Table 1, we can predict inverse dynamic moduli for the vari- PM space model to explore the relationship between nonlin-
ous experimental protocols. In Fig. 11 we show the predictecear, hysteretic stress-strain measurements, and dynamic elas-
inverse dynamic moduli at = 1 MPa, andb = 5, 10, and  tic measurements. The PM space model allows us to use
20 MPa. Each point in Fig. 11 is the first point of a line seg- quasistatic data to predict dynamic elastic properties of con-
mentin(o, T) space, e.g. th® andH values derived for the solidated materials, and produces results consistent with in-
562 loop are valid on a line from (5 MPa, 1 MPa) to (10 MPa, dependent measurements of dynamic quantities. In practice,
8 MPa) (see Fig. 3). Furthermore, given Eqs. (39) and (40)this kind of measurement and analysis is time consuming and
we expect that the three lines K{j}}] derived for loops 82, difficult, and is unlikely to be done routinely. Currently, the
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