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Characteristic scales of earthquake rupture from numerical models

M. H. Heimpel
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Abstract. Numerical models of earthquake rupture are usedphysical and geometrical constraints, at both small and large
to investigate characteristic length scales and size distribuends of earthquake size-frequency distributions, indicate the
tions of repeated earthquakes on vertical, planar fault segeffect of characteristic scales of the fault or fault system.
ments. The models are based on exact solutions of static There is a large body of previous literature on earthquake
three-dimensional (3-D) elasticity. Dynamical rupture is ap- scaling, with contributions from observational, experimental,
proximated by allowing the static stress field to expand fromtheoretical and numerical work. Several studies have shown
slip motions at a single velocity. To show how the vertical that, for large shallow earthquakes, where the lateral extent of
fault width affects earthquake size distributions for a broadseismogenic slip becomes larger than the seismogenic thick-
range of fault behaviors, two different fault strength mod- ness, the size distribution changes, such that the probabil-
els are used; a smooth model and a heterogeneous asperity of a larger event is lower than that inferred from smaller
model. The smooth model is a simplified version of the quakes (e.g. Pacheco et al., 1992; Okal and Romanowics,
Dieterich-Ruina rate and state dependent friction law. The1994; Scholz, 1994). Lateral fault terminations also put con-
heterogeneous asperity model uses a slip-dependent randostraints on the shape of earthquake size distributions. A sim-
powerlaw strength distribution. Itis shown that the character-ple example is an oceanic transform fault, bounded by mid-
istic scale of fault segmentation is proportional to the verticalocean ridge segments. In that case, a scaling change is asso-
width of a seismogenic fault. This conclusion holds for both ciated with the maximum magnitude, which is characteristic
the smooth and the heterogeneous models. For the smootf the fault area (Hyndman and Weichert, 1983). Smaller
models characteristic quake distributions result, with popula-scale fault discontinuities, as well as jogs and bends have
tions of large events that are obviously distinct from smallerbeen shown put strong constraints on rupture propagation
events. The distributions of large events have well-definedand arrest (Nielsen and Knopoff, 1998).

mean lengths and moments. The heterogeneous models re- paleoseismology provides useful information on large
sult in Gutenberg-Richter (GR) powerlaw distributions of earthquakes over several earthquake cycles. Models based
event sizes up to a characteristic quake size. Quakes larggi paleoseismicity data emphasize the recurrence of large
than the characteristic size fall off the GR distribution suchevents that are characteristic of the fault system geometry
that the powerlaw would greatly overestimate the probability(e_g_ Schwartz and Coppersmith, 1984; Wesnousky, 1994;
of occurrence of the larger events. Sieh, 1996). In those studies characteristic events are indi-
cated by a local peak in the earthquake size-frequency dis-
tribution. The well-studied earthquake data on the Parkfield
segment of the San Andreas fault, which features powerlaw
moment-frequency scaling for small events and a quasiperi-

In this paper we investigate how the width and length aﬁectsOdiC sequence of moderately large events, represent a good

earthquake scaling on shallow faults. It is well known that example of charactecteristic earthquake behaviour over a rel-
the powerlaw moment-frequency scaling implied by the GRatVely shorttime scale (e.g. Ben Zion and Rice, 1993).
relation indicates that the earthquake rupture process is scale Various types of numerical models that result in syn-
invariant (Andrews, 1980; Rundle, 1989). Thus, it follows thetic earthquake catalogues have previously been used to

that deviations from the GR relation, which are expected, bylnvestigate earthquake scaling. These include mass-spring
slider models (Burridge and Knopoff, 1967; Carlson and

Correspondence tavl. H. Heimpel Langer, 1989), cellular automaton and rule-based models
(mheimpel@phys.ualberta.ca) (Gross, 1996; Steacy and McClosky, 1999), quasistatic elas-
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Table 1. List of symbols

M. H. Heimpel: Characteristic scales of earthquake rupture

Notation Units
A fault area s

G shear modulus N 2
K rate-state friction constant *

L rupture length m

L* dimensionless rupture length *
L. rate-state friction: critical slip distance m
Ly heterogeneous friction: mean slip distance m
M seismic moment m
M* dimensionless seismic moment *

N cumulative number of events *

P pore pressure N P
T tectonic loading time S

c stress transfer velocity, shear velocity mis
dy nucleation size m

8ij stress transfer kernel NT?
h vertical fault width m

k rate-state friction constant s

P, q lateral and vertical number of cells *

s event size #

t time S

u slip m

r rupture velocity msl
Ve two-sided horizontal expansion rate mls
Vs slip velocity mst
X lateral coordinate m

z vertical coordinate m

o modified GR distribution parameter #

B moment-frequency relation powerlaw exponent *
BL* length-frequency relation powerlaw exponent *

X fault aspect ratio *

8, 8x, 8y cell size m

y modified GR distribution parameter *

K strength distribution scale parameter *

A modified GR distribution moment scale parameter *
AL modified GR distribution length scale parameter *
m characteristic rupture moment *
WL characteristic rupture length *

v mean of frictional strength distribution *

¢ fault friction coefficient *

%) rate-state friction constant *
b friction fluctuation *

o shear stress N e
00 tectonic stress N m?
on normal stress N m?
0 friction state parameter s

* dimensionless
# indeterminate units
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tic models (Rice, 1993; Ben-Zion and Rice 1993; Heimpellength, respectively. For 1-D and 2-D fault planes, a full-
1997; Nielsen and Knopoff 1998), and elastodynamic mod-space stress transfer kernel is constructed by using 3-D elas-
els (Shaw, 2000; Lapusta et al., 2000). tic solutions for dislocation-lines (Hirth and Lothe, 1982).
Two types of constitutive models have been employedThe free surface boundary condition is then incorporated into
on numerical faults: heterogeneous or asperity models anthe full-space kernel to obtaig); (Groves and Bacon, 1970;
smooth, rate and state dependent models. Heterogeneoldaurrisson and Capella, 1974a, b).
models attempt to represent the observed geometrical com- The periodic side boundary condition is incorporated into
plexity of fault surfaces as heterogeneous properties on &;; by modifying the stress transfer kernel for an elastic half-
planar fault (Ben-Zion and Rice, 1993; Gross, 1996; Heim-space space with a free surface:
pel, 1997; Steacy and McClosky, 1999). All of these result »
in powerlaw moment-frequency relations, although the pow- _ /
erIZw slope may depencczlI on t)r:e details of the f%ult heptero—gij (2) = D ghilx+kl2). )
geneity. Smooth models typically employ a friction formu-
lation based on laboratory experiments of frictional sliding wherex andz are the horizontal and vertical coordinates,
(Dieterich, 1979, 1992; Beeler et al., 1994). Recurring stick! is the fault length, ancg;j is the elastic half-space ker-
slip behaviour may be obtained in the absence of other im+el. The periodic condition is obtained exactly for= co.
posed fault heterogeneity when two necessary conditions arklere, a good approximation is achieved by using: 10. A
satisfied: (1) friction decreases with increasing slip velocity thorough discussion of boundary conditions for this type of
and (2) healing occurs at very slow and/or zero slip veloc-model can be found in Rice (1993).
ity. Large events occur under these conditions if the fric- The bottom boundary, which represents the bottom of the
tion coefficient decreases at a sufficient rate for slip instabil-seismogenic zone, is open. Since slip occurs only down to
ity. Smooth models with adequate spatial resolution resultthe bottom boundary, and stress is transferred in the down-
for unstable slip events, in only a relatively small range of ward direction across the boundary, the open boundary con-
large event sizes. For smooth models to be adequately redition may also be referred to as dissipative. Any stress that
solved, nucleation of unstable slip events must involve a sufis transferred across the bottom boundary is dissipated out of
ficiently large number of numerical cells such that individual the fault domain into a 3-D elastic half-space.
cells cannot behave independently. Whereas resolved mod- Two-dimensional arrays of square cells and one-
els are said to have a continuum limit, under-resolved smootldimensional arrays of rectangular cells are used for the 2-
models, may exhibit powerlaw event size distributions due toD and 1-D models, respectively. The horizontal and vertical
cell-size effects (Rice, 1993). sides of the slip cells are screw and edge dislocation lines, re-
spectively. Slip is constant over a single cell and shear stress
) is calculated at cell centers, thus avoiding stress singularities.
2 Model formulation Slip is quantized so that, if we normalize the quantum of slip

. . 0 unity, g;; is the shear stress per unit slip at cetlue to
Here, repeating earthquake models are studied, for smooth single quantum of slip at cefl. The quantum of slip is

and heterogeneous friction on planar faul_ts, varying the fau“scaled to parameters in the friction formulation, which are
geometry, represented by the aspect rgtie- L/h, where discussed in Sect. 2.1 below

L is the fault length and is the vertical fault width. In all The models wo'rk'like a c.ellular automaton. The back-
the models the faults are vertical and strike slip, and only )

the shear stresses are considered to vary in the elastic stre%round tectonic stress is increased uniformly over the fault
transfer y gtween model quakes. A slip event is initiated when the

. . . . stress of a numerical cell reaches the yield value, which is
Elastic stress transfer is calculated with the following 98N Jofined by the frictional constitutive relation (see Sect. 2.1
eralized equation be y the trict : s
elow). Each individual slip event causes the corresponding
static stress field to expand radially from the slip center at
the stress transfer velocity Individual cells may slip once
or many times. Under appropriate frictional conditions, rapid
whereo; () is the shear stress at the center of telle toslip  and large scale slip events occur due to cascades of individ-
u; atcell j, andg;; is the static elastic stress transfer kernel, ual sub-events. An event cascade proceeds until the entire
which includes free surface and lateral periodic boundaryfault is at a subcritical stress.
conditions. The second term on the left-hand side of equa- The introduction ot represents an improvement over the
tion 1 is the uniformly increasing tectonic stress, whege formulation of quasistatic stress transfer used in the models
is a reference shear stregss time, andT is the tectonic  of Heimpel (1997). It introduces a fundamental timescale
timescale (see Sect. 2.1.1 for a discussiofi pf h/c, which is the transit time of stress across the vertical
The numerical domain is a rectangular plane surface, diswidth # of the fault, eliminates unphysical spatial ordering
cretized intop x g square or rectangular cells. The domain of sequences of rupture sub-events, and results in a more ac-
represents a vertical fault plane of widji, and lateral ex-  curate representation of the rupture propagation process. The
tent pé,, whered, andé, are the vertical and lateral cell rupture propagation velocity., which arises naturally as the

k=—p

oot

oi(t) = Zgi,/u,/ + 1)
J
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result of an event cascade, may have a range of values, suc’
thatv, < c¢. Since only shear stress is variable in these mod-

els, c is analogous to a shear wave velocity. It is noted that,
although the transfer of stress and associated friction evolu- 240
tion during slip events in the model is dynamical, the ampli-

tude of stresses neglects inertia. This approximation may be
referred as a “pseudo-dynamical approximation” in a similar _§ 200
sense that this phrase has been used by Heaton (1990). >

220

1801

2.1 Fault constitutive equations Le0l

The geometry of natural faults includes offsets, bending and .
fault surface topography. Thus, the planar geometry of the
fault model represents a drastic approximation with respect  120c
to natural faults and fault systems. Two major consequences
of this approximation are (1) variations in normal stress are
neglected and (2) fault heterogeneity must be introduced vidig. 1. Depth averaged slip pattern for the smooth fault model. The
an imposed friction model. Both of these consequences areertical, two-dimensional fault plane has aspect ratie: 128. The
important in considering the meaning of the formulation of Numerical domain is composed of 20486 square cells. Fault slip
the fault constitutive equation. In fact, the constitutive mod- is governed by a simplified version of Dieterich-Ruina rate and state
els chosen here are acknowledged not to be realistic reprél€Pendent friction (see text for explanation). The patter is pro-
sentations of fault rheology. Rather, they are chosen to givéiuced by plotting the slip distribution every time a relatively large

. . ’ ' lip event occurs. Slip, position along the fault, and timer are
relatively simple end-member behaviour, so that the scale OE :

. . i caled byL., h andT, respectively.

earthquakes and fault segmentation may be identified as a
function of the fault dimensions. We study two different fric-
tion models. Both the smooth model and the heterogeneou§noWn as the “slowness” law, where the direct velocity ef-

model result in repeating earthquakes and an asymptotigsct has been neglected (Dieterich, 1979, 1992; Beeler et al.,
steady state (i.e. constant time- and space-averaged stres§b94)_ The state parametehas units of time and gives the

which is obtained after several quake cycles. The smoothyge of the fault — an older fault has had more time to heal and
model yields a quasi-periodic sequence of large events that s stronger.

have a well defined mean size. This behavior is similar to that The constanL. has a special significance for the scaling

of the characteristic earthquake model. The heterogeneoys rictional slip. Itis the slip distance over which friction de-
modgl y|eId_s powerlaw size dlstrlbuuor_\s with _an.exponentcreases during sudden, rapid slip. In more precise language,
that is consistent with the Gutenberg-Richter distribution.  ;iq the slip distance over which the time dependent part of

6 decreases by/% of its previous value (as can be seen by
integrating Eq. 4). In the models presented here, slip is quan-

For the smooth model rate and state dependent friction idized such that each individual slip has a valueLgf500.
used. Friction is defined as the ratio of shear and effectivd addition, the size of slip cells is set so that the relation
normal Stresa) = G/(Un — P), Whereo-n is the Compressive § K du is SatiSfied, wheré is shorter |eg ofa rectangular
normal stress and is the pore pressure. Although variations Cell, andd, = L. G/[(, — P)K], is called the nucleation

in pore pressure can account for various interesting fault beSize, whereG is the shear modulus (Rice, 1993; Rice and
haviours during an earthquake cycle (e.g. Sleep, 1997; AnBen-Zion, 1996). This assures that, for events of significant
drews, 2002), we seek a relatively simple fault constitutive Magnitude, the model is spatially resolved and the results are
relation, allowing a clear assessment of the effect of fault geJndependent of the cell size.

ometry. Thus, in this paper, — P is taken to be constant, so ~ In the numerical implementation of Egs. (1), (3) and
that the effect of variations in normal stress are neglected(4), two timescales are present; the slip and stress trans-
This condition is valid in the case where pore pressure isfer timescaleiz/c, and the tectonic timescal€ . These
proportional to lithostatic pressure and the maximum sheafimescales correspond to stress changes calculated when the

stress direction is parallel to the fault plane. The rate andault is slipping and locked, respectively. During slip events
state dependent fault friction is given by the tectonic stress, which is the second term in Eq. (1), is

constant and time in Eq. (4) represents the stress transfer

2.1.1 Smooth friction

¢ =g¢o+ KIn@/k+1 3) time. Between events the slip velocity= 0 so that Eq. (4)
d_9 —1—6v/L. (4) reduc_es tal6/dr = 1, the first t_errr_1 in Eq. (1) is C_onsta_\nt,
dt andr is replaced by the tectonic time. The relationship

whered is a the state parametét, K, andL. are constants between the two time variables i = ¢ Tc/h, whereT
described below. Equations (3) and (4) are a simplified ver-scales the inverse rate (or slowness) of background (i.e. tec-
sion of the well-known Dieterich-Ruina friction relation, also tonic) stress accumulation between rupture events. Here, we
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Fig. 2. Development of slip during a rupture event. The cumulative 10%}
slip at the time of nucleatiort{/h = 0) is subtracted out. Elapsed
time after nucleation is shown at the top of each successive image

Slip u is scaled by the critical slip distandg.. Time during rup- 10°¢ E
ture is scaled by:/c, wherec is the elastic wave velocity and
is the vertical fault width. The rupture process can be described in 10t |

three stages: (1) a nucleation stage, with very slow rupture propaga-
tion, lasts about 10 time units (top image); (2) break-out, followed
by rapid propagation at a large fraction of the elastic wave speed 1¢° - — —

(here, the average horizontal expansion taje ~ 0.9); (3) arrest, 10 10 10
typically occurring at previous arrest sites.

Fig. 3. Event size distributions for the model shown in Figs. 1 and 2.

The data interval and bin size for the cumulative and binned distri-
take Te/h = 1 x 108, Using the smooth constitutive re- butions respectively is.05log g M*, whereM* is the dimension-
lation and takinge = Skm/s as a shear velocity, a model less momen(a), and similarly for the dimensionless rupture length

fault scaled to 15km width give§ = 3 x 1s, and re- L*. Each of the bins for the length distributi@in) contain the same

sults in a recurrence time of roughly 1 year for large eventsquakes as the corresponding moment bins. Thus the two different
guake populations are identical in the moment and length distribu-

(see Figs. 1 and 7). This short rec_urrence interval, WhIChtions. The smaller events (crosses) are associated with subcritical
corresponds to a fast background slip rate, represents a Nysjjyre preceding and subsequent to unstable slip events (circles).
merical compromise balancing realistic fault behaviour andThe unstable slip events involve substantial rupture propagation and
the following time resolution considerations. For very slow account for almost all of the accumulated slip. See the text for an
tectonic stress accumulation, due to the logarithmic nature oéxplanation of the moment and length scaling. The distribution of
the Dieterich-Ruina friction formulation, the differences in large quakes shown here and in Fig. 1 clearly indicates that the rup-
time intervals after an event become very large, making theure lengths and moments are characteristic of the model system.
resolution of time steps impractical. This can be seen by ex-

amining Egs. (3) and (4) during and after a slip event. During

a slip even® drops asv > 0 in Eq. (4). When slip ceases, resolution of time steps.

typically & ~ 0. During the healing phase,= 0 in Eq. (4). For fast tectonic stress accumulation (i.e. small values of
Combining Egs. (3) and (4) we obtaity /dt = K /(0 + k) T), the earthquake scaling is affected such that the ratio of
for the healing phase, were we have ugee- 1. It thus  small to large events increases. Small events are those for
follows that, directly after an even$y ~ ¢o, andd¢/dt is which the total slip, and resultant frictional decrease, is insuf-
maximum. ForTc¢/h > 1 x 10°, most of the fault heal- ficient to cause onset of unstable slip. Bar/h < 3 x 106,

ing can occur over one or a few time steps, thus limiting thecorresponding to very rapid tectonic loading, the slip is char-
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Fig. 4. Depth-averaged slip pattern for the heterogeneous fault s
model. The model geometry and boundary conditions are similar
to the smooth model shown in Fig. 1. Here, fault slip is governed _ P - g
. . o X tc/hh=263 a1 . : ]
by a simple yield criterion and a highly heterogeneous and random e o : o
fault strength (see text for details). The aspect ratip is 64. The :
pattern is produced by plotting the slip distribution at equal time  10.0 125 15.0 175 20.0
intervalsét/ T = .0005. "
xXh——

acterized by a creeping motion, consisting of large numbergzig-t5- A “Coseis?jiC” slip event ft()jr_f:he h?ttirog?r:]efrs rtr;]o(f[iel, Th?h
of small events and a lack of large events. Although the' P''€ Propagation process is diierent than fhat for that smoo

ing behavior is interesting, here we focus on earthquakmOdel' Here the slip distribution is discontinuous, with weaker parts
creepmg . ; O §t the fault yielding early before subsequent slip catches up. The
scaling dominated by stick-slip motion. We have found thathorizontal expansion rate,/c ~ 0.35 is more variable and, on
when sufficiently high values are used, the mean quake Sizﬁverage, slower than that for the smooth model.
is quite insensitive to variations ihand 14 < T¢/h < 10°

gives consistent results.

2.1.2 Heterogeneous friction

the critical distancd.. correspond to frictional stress drops
that result in large events. Also similar to the smooth model,
slip is quantized such that each individual slip has a value of
L, /500.

For the heterogeneous models, the friction is given by

p=do+ s )

where¢ ¢ is the fluctuating part of the frictional strength.
It is modeled using a yield strength probability distribution

(Heimpel, 1996, 1997): The heterogeneous friction model is rule-based. For ev-

ery quake, each cell that slips at least once is assigned a new

2¢ s ¢12, -2 strength from Eq. (6) after the initial slip. This new strength
p@r) = 2 1+ 2 (6) value is retained for subsequent slip during the earthquake
(Heimpel, 1997). Thus, in contrast to the smooth model,

wherex is a scale parameter and= (/2)« is the mean. the yield strength formulation allows sudden, appreciable
Many friction models based on random heterogeneity re-changes in strength, even for a single slip quantum. This
sult in earthquake size distributions with powerlaw statistics.means that, in the language of Rice (1993), the heteroge-
The specific form of this friction model is chosen becauseneous model is inherently discrete.
it results in synthetic moment-frequency distributions with
powerlaw exponent similar to those observed in earthquake The heterogeneous friction model yields distributions with
moment-frequency distributions. The model is essentiallythe following powerlaw exponentg = 2/3 for events ex-
parameterless; (or v) only changes the mean stress drop, panding in two dimensions on a fault of infinite area (2-D
not the shape of size-frequency distributions. rupture geometry), anfl = 1/2 for events expanding hor-
To scale the slip in the heterogeneous models, a criticalzontally on a fault of infinite length and finite width (1-D
slip distancd.;, is defined as the slip distance over which the rupture geometry). Considering standard relations between

friction drops, on average, an amount This is a natural
slip distance scale sinaeis a typical stress drop for large

seismic moment, magnitude and fault area for 1-D and 2-D
ruptures, both of the aboyg values correspond tb = 1 in

events. Similarly, in the smooth model, ruptures that slip tothe GR distribution (Heimpel, 1996).
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Fig. 6. Event size distributions for the model shown in Figs. 4 and Fig. 7. Slip pattern for the smooth fault model. The aspect ratios
5. Figures 6a and b show results for dimensionless momg&nt  arey = 256 andy = 128 for Figs. 7a and b, respectively. In these
and dimensionless length*, respectively. For data interval and models, the vertical fault plane is one-dimensional, and composed
bin information see Fig. 3. The modified GR relation (see Eq. 7) of 2048 x 1 rectangular cells. As for the model of Fig. 1, fault

is used to model the size distributions. A good fit is obtained for slip is governed by a simplified version of Dieterich-Ruina rate and
values of the parameteys A, andy, shown in the figures. The state dependent friction. This figure shows that the time of quake
size distributions obey a powerlaw for smaller events. Both of therecurrence and the length of fault segmentation scales with the fault
moment and length distributions are consistent with 1, whereb depth.

refers to Gutenberg and Richter’s b-value. A change in slope occurs

for larger events. In Fig. 6B, = 7 gives the value wherg* falls

off the GR distribution. This critical length scale is interpreted here

to be characteristic of the fault width. must use sufficiently large aspect ratios. The first model fault

consists of 2048 16 square dislocation cells. Thus the as-
pect ratio of the faultigy = 128. Scaling the model to a shal-

3 Results low fault of 15 km depth would represent a fault of 1920 km
(i.e. about 50% longer than the San Andreas fault).
3.1 2-D Faultin an elastic half-space Two calculations are performed for 2-D faults with square

slip cells; the first using the smooth friction model and the
For models using the smooth friction model, and aspect rasecond using the heterogeneous friction model. Figures 1-3
tios smaller than aboyt = L/h = 20, large model quakes show results from the smooth model calculation. Figure 1
quasi-periodically rupture the entire fault and smaller eventsshows the spatio-temporal slip pattern over about 15 recur-
do not occur. This happens because, for those models, theence time intervals for the model fault. This represents
characteristic length of large events have an aspect ratio ambout one third of the total calculation time. The slip pat-
proaching that of the entire fault. In order to obtain repeatedtern after several cycles have been completed is indicative of
ruptures that terminate before rupturing the entire fault wea system that is in an asymptotic steady state, meaning that
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Table 2. Summary of calculations. The unsubscripted parametgfs » andy refer to moment; subscripted parameters refer to length (

figure(s) grid size  friction model x i B A y wrs  Brx  Apx  ypx
1,2,3 2048« 16 smooth 128 210 - - - 231 - - -
7a,8a,8c 204& 1 smooth 256 210 - - - 18.1 - - -
7b,8b,8d 2048 1 smooth 128 177 - - - 18.7 - - -
4,5,6 1024x 16 heterogeneous 64 - 0.7 195 0.9 - 1.00 7.0 2.0
9a 1024x 1  heterogeneous 128 - 0.52 10.0 0.50 - 105 7.7 16
- 1024x 1  heterogeneous 64 - 050 15.0 0.50 - 094 75 16
- 1024x 1  heterogeneous 32 - 049 170 0.60 - 090 85 17

the slip rate and stress, averaged over several quake cyclethe average length & = A/h and the dimensionless length
is relatively constant. isL* = L/h = A/h?. For the 1-D fault models, the di-

Nucleation and arrest are controlled by undulations inmensionless length is simply* = L/h whereL is the rup-

shear stress, which result from spatially variable slip. Weture length. Both moment and length distributions clearly
note that the first large event ruptures the entire fault, wrap$Show that, for the smooth friction model, a characteristic
around and eventually arrests on slight undulations in S"pevent S|ze_d|str|but|on is obtained. Two dllst|r_1ct pqpuIanns
(and stress) formed during nucleation. Subsequent eventdf event sizes (small and large) are easily identified. The

then tend to arrest on stronger slip undulations that definémount of moment accumulated in large events is about 3 or-
the terminations of previous events. Slip patterns inclug-ders of magnitude greater than that released in small events.

ing smaller events emerge as a result of stress undulationsC' the population of large events, the depth averaged mean
on faults with relatively large aspect ratios. Slip and stress(0r characteristic) length is 23.1 fault widths. For a fault of
gradients are greatest where ruptures terminate. As a resuft? km width that would give a characteristic rupture length
rupture terminations are typically identified as the nucleation®f 346.5km (see Table 2).

sites for subsequent ruptures; that result was also observed ] ] )

in numerical models of Shaw (2000). Nucleation and arrest 1 he results of the calculation using the heterogeneous fric-
sites may be discerned by looking carefully at Fig. 1. Eachtion modelon a fault of 2048 16 cells are shown in Figs. 4—
event has two rupture terminations, identified as strong slip?- AS expected, for this friction model the slip pattern is
gradients along the /A axis. Ruptures are typically asym- much more complex than that of the smooth model. Distinct

metrical (i.e. the rupture front travels primarily either to the POPulations of large and small events are not apparent. In
left or the right). One or both rupture terminations is fre- the development of slip during a single rupture nucleation is
quently close to a previous termination. not as well defined as for the smooth model. Slip rapidly

. . . ._expands from the nucleation area. However, the average hor-
The Qeve_lopment 9f slip during a sm_gle rupture_ evgnt Sizontal expansion velocityvt/c ~ 0.35) is in fact signif-
.ShOV.V” in Fig. 2. It is noted that the t|me-scalie in Fig. 2 icantly slower than that of the smooth model (see Fig. 5).
IS dlfferent. (and much shorter) than that of Fig. .1' The The reason for the low rupture velocity seems to be the high
size, duration and character of the evgnt ghown IS typ'qalstrength barriers of the heterogeneous friction model. As the
.Of several oth_er large ruptl_Jre events in this model._ Sllprupture proceeds it builds up slip in an active region of a rup-
in the _nucleatlon_area begins at= 0 The n_uc_leat|on ture and then jumps forward when sufficient slip has accu-
phase is well defmgd and characte_rlzeq by slip in an aréq, jjated such that the boundary of the actively slipping sub-
located near a previous rgpture termination. Nucleation IaSt%wea becomes unstable. As can be seen in Fig. 5, this process
for about 10 time units (i.e. about 25% of the total event can lead to patchy propagation, where slip skips over high

tl:ne)t. Alter nucleatlontthe fruptture breakt_s out_ar;cljj iqceler'strength regions (or asperities) to form new patches, which
ates to an average rupture front propagation spedtat is may or may not propagate further.
a large fraction of the stress transfer speedror the event

shown in Fig. 2, the faster rupture front travels to the right
atv,/c ~ 0.65. The time-averaged two-sided horizontal ex-
pansion rat@,/c ~ 0.9.

Quake moment- and length-frequency distributions that
result from heterogeneous model runs are shown in Figs. 6a
and b. In both figures we obtain a powerlaw distribution of

The event moment- and length-frequency distributions areevent sizes up to a roll-off point, whehe drops off exponen-
shown in Fig. 3. The dimensionless moment is given bytially. Here we are interested in finding the characteristic size
M* = ;TMT[ whereM = u A is defined as the moment, associated with the change in statistics for large quakes. The
andu is the slip, averaged over the rupture areaThe rup-  heterogeneous model quake moment and length distributions
ture length is averaged vertically and scaled horizontally byare fit by the following modified GR distribution, which has
the vertical fault thickness. Thus, for the 2-D fault models, previously been used to fit observed earthquake size distribu-
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(@) (b)

10 — cumulative moment 100 — cumulative moment
*  binned moment *  binned moment

. © binned,617 large quakes, . © binned,324 large quakes,
10° - min =32, max =892, 10°0 *, min =33, max =626,
mean =210

A mean =177

10" 107 10

(c) (d) _ R
o - Cumuive ength o —— cumuiative length Fig. 8. Quake size distributions for the
- = bi d | th . .
<. o binned 617 large quakes, . o Dbinned,324 large quakes, smooth fault model (compare with fig-
10° . min :47.75, max =64.5, 10° L min =6, max =53.75, H H %
mean =18.13 mean ~18.66 ure 7). Dimensionless Momeni/™)

and dimensionless lengt(’.*) distri-
butions for two different aspect ratios.
Figures 8a and 8b are the moment size
distributions for models withy = 256
and x = 128 respectively. Figures 8c
and d are the length distributions for

g models withy = 256 andy = 128
respectively.

tions (Utsu, 1999; and references therein; Kagan, 1997):  length is sufficiently small compared to the total fault length.
s y Figure 7 shows the spatio-temporal slip patterns for models
N = (i) exp[— (f) ] (7 with x = 256 (Fig. 7a) ang, = 128 (Fig. 7b). It is apparent
o A that, for these models, changing the aspect ratio has a negli-
where N is the number of events sizes (which may be  gible effect on the characteristic dimensionless rupture size.
either moment or length)3 is the slope of the GR part of This means that the quake length scales with the vertical fault
the distribution, is the roll-off point ofs andy gives the  width/ for these models. Itis noted that, as the aspectratio is

steepness of the exponential roll-off. decreased, rupture size scaling is strongly affected when the
total fault length approaches aboyt 3, whereu - is the
3.2 Faults of various aspect ratios mean dimensionless rupture length (recall that= L/ k).

o For fault lengths shorter thanu3+, the system commonly
To save calculation time, several model runs were performedocks into a sequence of rupture events that traverse the en-
with & 1-D row of slip cells. Instead of discretizing a vertical tire fault length; this behaviour for short faults is a result of
fault plane into a 2-D grid of square slip cells, the model fault {he periodic boundary condition.
is represented by a single horizontal row of slip cells, which A similar characteristic rupture size distribution scaling is
grids, shear stresses for the 1-D faults are calculated at celgen in Table 2. The characteristic dimensionless rupture
centers. While slip is laterally variable over the 1-D model |gngth ;. has a range that is shown to be relatively con-
fault, it is constant over individual cells. Thus, whereas slip stant over all of the calculations, representing aspect ratios
is variable over depth in the 2-D models, it is constant in, _ 32 64 and 128. Figure 9 shows the spatio-temporal
depth in the 1-D models. Nevertheless, it is found that thegjip distribution and the quake size distribution for the het-
quake size distribution results for the 1-D faults are consis-grggeneous model with = 128. The relative constancy of
tent with the results for the 2-D faults (see Table 2). Thisis; . over a wide range of fault aspect rations implies that the
expected for large events with horizontal extent significantly change in scaling from powerlaw (GR) statistics to an expo-

greater than vertical width since, in that case, a rupture on ential tail for large events is controlled by the width rather
2-D fault expands mostly laterally, similar to a rupture on a than the length of these model faults.

1-D fault.
Several calculations were performed for various fault as-
pect ratios. For both the heterogeneous and smooth frictiom Discussion
models, we find that the characteristic rupture size does not
vary significantly as a function of the length of the fault (see As mentioned in the introduction, earthquake size distribu-
Figs. 7-9 and Table 2), as long as the characteristic rupturéions are characterized by a relatively constant powerlaw
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Fig. 10. Normalized stress ahead of a slip discontinuity with con-
stant displacement across faults of three different vertical widths
(denoted byi). The shear stress is normalized by, the shear
stress at a distanoe = 1km outside the rupture boundary. The
faults of finite width extend from the free surface to deptiStress

o is at a depth oh /2.

Table 2 shows that for the heterogeneous friction model,
B = 0.7 for the 2-D fault (1024« 16 cells), whereag = 0.5
is typical for the 1-D faults (1024 1 cells).

The foregoing discussion addresses only changes in earth-
quake size-frequency scaling due to geometrical considera-
tions. The more profound scaling effect is a result of the

Fig. 9. Slip pattern and quake size distributions for the heteroge-detailed stress field due to fault slip (see Fig. 15 and discus-

neous fault model. The fault plane is composed of 1024rectan-

sion below). The models presented here are consistent with

gular cells. Figure 9a shows the spatio-temporal slip pattern. Figurehe “L-model” (we obtain powerlaw scaling with = 0.5 for

9b shows the cumulative length distribution. For data interval andsmall events). However, considering the full range of event
bin information see Fig. 3. The length (as well as moment) distri- 5jzes the transition from small to large ruptures is accom-
butions for different aspect ratios and different grid geometries arepanied by exponential roll off which increases the apparent

roughly similar for the larger events. This shows that these mod-
els are independent of the size and shape of the model grid for th
larger quakes; the fault depth sets the scale of the larger events.

slope that steepens for larger events. Typicglly 2/3 cor-

e

value of 8. Thus, although the L-model may be valid, an
intermediate transition fron3 ~ 2/3to 8 >~ 1/2 may be
masked by the more severe exponential steepening of the dis-
tribution. We have interpretexd; - as marking the transition
from small to large in earthquake length, where the subscript
L* = L/h refers to the dimensionless length. The result

responds td ~ 1 for a wide range of moderate earthquake for the 2-D model, of..» = 7.0 (Table 2) is roughly con-
sizes, wheres is the moment-frequency scaling parameter Sistent with the result of Yin and Rogers (1996). They ob-
andb is the GR or magnitude-frequency scaling parametertained a scaling transition, which they called the “crossover
The value ofg for large earthquakes is predicted by geo- length” for a rupture length of approximately 5 times the rup-
metrical earthquake scaling models (Scholz, 1994; Heimpelture width (corresponding o, = 5 here). The results here
1996). Given the condition of scale invariance, the values ofalso bear a resemblance to the results of the rule-based nu-
B are implied by the scaling between earthquake moment anénerical models of Gross (1996). There, the author found that
area,M « AY#. For a rupture expanding in two dimensions heterogeneous models produced area versus slip scaling in-
self-similarity implies that8 = 2/3, whereas for a rupture termediate between the “L-model” and the “W-model”.
propagating horizontally, different models give different val-  The scaling of rupture events in this study may be under-
ues ofg. For the “W-model’of Romanowicz (19933, = 1.0 stood in terms of the relationship between fault width and
whereas for the “L-model” of Scholz (19943, = 0.5. The  quasi-static stress transfer. Figure 15 shows the shear stress
results presented here are consistent with the latter modehs a function of distance from the tip of a long slip discon-
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tinuity. Three cases are shown representing different fauldistributions for heterogeneous 1-D faults yigd- 1/2 for
widths; (1) plane strain (i.ek = o0), (2) h = 100km, and  quakes of a small to moderate size. The size frequency distri-
(3) h = 10km. For each of the cases the fault consists ofbutions for quakes of dimensionless rupture length> 7.5

a 1-D array of 2000 rectangular cells of widihand length  fall off the GR distribution exponentially, such that, for the

[ = 1km, such that the total fault length is 2000 km. The heterogeneous modelg+ ~ 7.5. The moment distribution
corresponding aspect ratios are: for casex(t 0; case (2) for the 2-D heterogeneous fault givBs= 0.7 for quakes of

x = 20; and case (3y = 200. Shear stress is taken at  small to moderate size.

mid-depth and is normalized lax, the stress at a horizontal The fault constitutive models discussed in the paper are
distancer = 1km (i.e. one cell length) from the rupture tip. Meant to represent end-member models that give results
In the far field for 2-D elasticity (i.e. plane strain) or at in- SPanning a range of fault behaviour. The smooth models re-
termediate distances for 3-D elasticityfalls off as ¥/72. In sultin characteristic earthquakes with a narrow range of large
the far field for 3-D elasticity ~ 1/-3. The distance of the earthquake sizes. The heterogeneous models yield powerlaw

break in scaling is proportional to the fault dethWe can size-frequency scaling up to a characteristic size, and expo-

i the diff h ._nential roll-off for larger events. As discussed in the intro-
quantify the difference between the 2-D and 3-D cases by iny,ction, earthquake catalogs exhibit a range of frequency-

tegrating the stress from the tip of the slip discontinuity to gjze distributions, depending on the fault system or even the
infinity for the case of plane strain and for a case with finite fault segment represented in the catalogue and the time pe-
h. The difference between the two results is then a measuréiod of observation. This variability in observations has lead
of the stress that is removed through the bottom boundaryo different theories and models of earthquake behaviour. Itis
into the sub-surface. Hence the finite fault depth introducedncreasingly clear that real faults exhibit both self-similarity
stress dissipation that is proportional toil In fact, a sim- ~ as well as the existence of characteristic length scale;, a_ggiin
ple way to introduce dissipation into a non-dissipative elasticdepending on the subset of data observed. Thus, the individ-
system (e.g. plane strain or plane stress) is to define a scal&@ characteristics of earthquake size-frequency distribution
dissipation parameter that takes stress out of the system if2" Potentially be used to guide the identification observable
. . ) 2> length scales associated with faults and fault systems.
proportion to the cumulative slip. Indeed, scalar dissipation
parameters have been used in various kinds of earthquak&cknowledgementsThe author thanks Leon Knopoff for support
models, including elastic models (Heimpel 1997) and ruleat UCLA. The comments of John McCloskey and an anonymous
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