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Abstract. A study is made of the influence of the longitudi-
nal magnetic field and density inhomogeneity on the super-
sonic shear flow instability at the magnetospheric tail bound-
ary. It is shown that the most unstable are slow oblique (3D)
disturbances, with a phase velocity approaching at a suffi-
ciently large angle (with respect to the flow direction) the
magnetosonic velocity. Their growth rate and spectral width
are much larger than those of the usually considered lon-
gitudinal (2D) supersonic disturbances. The magnetic field
reduces the compressibility effect and, unlike the subsonic
case, has a noticeable destabilizing effect on the excitation
of oblique disturbances.

1 Introduction

The shear flow instability at the magnetospheric boundary is
known in the geophysical literature as the Kelvin-Helmholtz
instability (K-HI). This instability is considered as the key
excitation mechanism for magnetopause oscillations and as-
sociated geomagnetic pulsations (Dungey, 1955; Moskvin
and Frank-Kamenetsky, 1967; Southwood, 1974; Kovner
et al., 1977). Besides, the K-HI can play an important role in
the solar wind - magnetosphere interaction by ensuring the
momentum transfer to the magnetosphere and forming dif-
fuse boundary layers (Boller and Stolov, 1970; Mishin, 1979;
Southwood, 1979). The K-HI theory was developed mainly
for subsonic disturbances which are dominant at the day-
side magnetopause and at the near geomagnetic tail bound-
ary (|x| < 50RE). In this region, the magnetosheath mag-
netic field plays a stabilizing role (Boller and Stolov, 1970),
increasing with the azimuthal interplanetary magnetic field
(IMF). This is in a qualitative agreement with the behavior of
daytime geomagnetic Pc3 and Pc4 pulsations (Mishin, 1981).
On the other hand, at the far tail boundary, the flow veloc-
ity is a hypersonic and hyper-Alfvenic one. Because of the
strong compressibility, it is commonly believed that the K-
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HI plays only a minor role (if any) in this case (Miura, 1990,
1992). However, the observed broad boundary layers, long-
period (10 min) boundary oscillations (Sibeck et al., 1987),
and high-latitude geomagnetic pulsations (Pudovkin et al.,
1976) are hardly explainable, unless the K-HI develops at
the far tail boundary. The objective of this paper is to demon-
strate that this is actually the case.

Previous instability analyses use essentially the tangential
discontinuity approximation (Landau, 1944), just with which
the name “K–HI” is associated (Sen, 1964; Parker, 1964;
McKenzie, 1970; Ershkovich and Nusinov, 1972; South-
wood, 1979; Pu and Kivelson, 1983; Kivelson and Chen,
1995). Within this approximation, the stabilizing influ-
ence of the magnetic field is analytically described when
the velocity difference is subsonic. However, this long-
wavelength approximation is not applicable for the most un-
stable short-wavelength disturbances (Chandrasekhar, 1962;
Moskvin and Frank-Kamenetsky, 1967), as well as for the
supersonic velocity difference (Landau, 1944).

In this paper, the shear flow instability is studied beyond
the tangential discontinuity approximation. The boundary is
approximated by a diffusive shear layer of thicknessD = 2d
near the planez = 0. On the layer there occur variations
of the flow velocityv0(z), densityρ0(z), temperature, and
magnetic fieldB0(z). These are assumed to vary along the
axis z, and the vectorsv0(z) andB0(z) are collinear to the
planez = 0. For the sake of simplicity, it is assumed that
only the magnitudes of the velocity and magnetic field vary
with z, while their direction remains unchanged.

The dispersion properties of the shear flow instability
with a smoothly–varying velocity profile (v0(z) ∝ tanh(z))
have been thoroughly studied within the approximation of
an incompressible medium (Chandrasekhar, 1962; Michalke,
1964; Moskvin and Frank-Kamenetsky, 1967; Chandra,
1973; Walker, 1981; Morozov and Mishin, 1981; Miura,
1982). This approximation holds if the velocity difference
on the shear layer4v = vII − vI is small compared to the
magnetosonic velocitycm =

√
c2
s + a2, i.e. whenMms =

4v/(2cm) � 1. Herec2
s = γP0/ρ0, and a2

= B2
0/(4πρ0),
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respectively, are the sound and Alfven velocities squared;P0
is thermal pressure; and the indices I and II correspond to the
magnetosphere and the magnetosheath, respectively. Sub-
sonic disturbances are surface ones, as their amplitude de-
creases rapidly with distance away from the shear layer. With
its longitudinal (with respect to the flow directionv0) com-
ponent B0 = B0||, the magnetic field reduces the maximum
growth rate of the generated disturbances and narrows their
frequency range (Chandra, 1973; Miura, 1982; Mishin and
Morozov, 1983; Shukhman, 1998). A similar effect is ex-
erted by the compressibility of the medium (Blumen, 1970;
Blumen et al., 1975).

The density gradient shifts the maximum growth rateγ =

Im(ω), and the short–wavelength instability boundary(kd)b
towards shorter length–scales along the axiskd, wherek is
the wave number (Morozov and Mishin, 1981). Thus the ef-
fects of the magnetic component aligned with the flow and
of the compressibility are opposite to that of the density in-
homogeneity. It turns out that the influence of the com-
pressibility upon the instability is essential at the magne-
tospheric boundary near the dawn–dusk meridian (Mishin,
1981) where the flow is supersonicv0/cm ≥ 1. There-
fore, when, for analyzing the dispersion properties of the
shear flow at the magnetospheric flanks, it is necessary to
simultaneously take into account the influence of the fol-
lowing three factors, as follows: the density inhomogene-
ity, the magnetic field, and the compressibility. Such an
analysis was never performed for the magnetopause insta-
bility (Sen, 1964; Parker, 1964; Moskvin and Frank-Kame-
netsky, 1967; McKenzie, 1970; Ong and Roderick, 1972;
Ershkovich and Nusinov, 1972; Southwood, 1979; Walker,
1981; Pu and Kivelson, 1983; Kivelson and Chen, 1995;
Miura, 1982, 1990, 1992, 1996, 1999; Farrugia et al., 2000).
Apparently, this can distort results of a nonlinear modeling of
the shear flow instability (Wu, 1986; Belmont and Chanteur,
1989; Miura, 1990, 1992, 1996, 1999; Shen and Liu, 1999) as
well as analysis results on the excitation of waveguide modes
(Mann et al., 1999).

2 On the modification of the algorithm for numerical
analysis of the supersonic instability

We investigated the instability of a supersonic shear flow
with a smooth velocity profile given byv0(z) = u · [1 +

tanh(z/d)] about two decades ago (Morozov and Mishin,
1981; Mishin and Morozov, 1983). Those computational re-
sults on subsonic disturbances have remained unaltered to
date. The position of a maximum of the dispersion curves
ω(k) relative to the axisα = kd was determined sufficiently
accurately for the supersonic velocity difference. However,
the accuracy of calculations of the absolute values of the
growth rate of supersonic disturbances was low, viz. their
values were too high. On this basis, the conclusions drawn
by Mishin and Morozov (1983) about the predominance of
near–sonic disturbances over the value of the growth rate
might well appear as not obvious. It is for that reason that

this paper carries out a more accurate numerical analysis of
the supersonic shear flow instability and of its characteristics
on the geomagnetic tail boundary, with due regard for the
influence of the inhomogeneities of density and the longitu-
dinal magnetic field.

The density, velocity and magnetic field profiles are spec-
ified in the same manner as done in (Mishin and Morozov,
1983):

ρ(z) = ρ00{1 + % · [1 + tanh(z/L)]}/(1 + %); (1)

v0x(z) = u · {1 + tanh(z/d)}; (2)

B0(z) = b00 · {1 − δ[1 + tanh(z/h)]}/(1 − δ). (3)

The temperature profileT (z) is obtained upon substi-
tuting the expressions (1)–(3) into the equilibrium condition
which in the absence of fields of external forces,g = 0,
implies a constancy of total pressure

P0(z)+ B0(z)
2/(8π) = const.

When the profiles are specified in Eqs. (1)–(3), the layer
of a “sharp” change lies near the planez = 0, and the scales
of variation of all parameters may not coincide in the general
case. Furthermore, by appropriately choosing the amplitudes
involved in the expressions (1)–(3), it is possible to approxi-
mate sufficiently well the actually observed profiles. For the
sake of simplicity, in the subsequent discussion the scale of
density and field variation will be considered equal to the
scale of velocity variationL = h = d.

Upon linearizing the MHD equations for disturbances:

f1(x, y, z, t) ∝ f (z)eı(kxx+kyy−ωt)

we obtain (Mishin and Morozov, 1983) the following sys-
tem of differential equations for vertical displacement am-
plitudesξ and for a total pressure perturbation51 = P1 +

B0·B1/(4π):

51 = ρ0
�2

χ2
ξ ′ (4)

5′

1 = ρ0�
2ξ (5)

Herek = {kx, ky, 0 } is the wave vector,ω is the cyclic fre-
quency, the prime′ designates the derivative with respect to
the coordinatez, �2

= ω̃2
− (k · a)2; ω̃ = ω − (k · v0);

χ2
= k2

−
ω̃4

[ω̃2(c2
s + a2)− (k · a)2a2]

(6)

The system of Eqs. (4)–(5) with the specified distributions
of equilibrium parameters, along with the decrease condition
lim|f ′

1(z) + χf1(z)| → 0 whenz → ∞, represents a prob-
lem of seeking the eigenfunctions51, ξ and the eigenvalues
of ω, which we solved in the following way. The domain of
integration of Eqs. (4)–(5)|z| ≤ R was chosen such that
the conditionR = 5d is satisfied. Then, when|z| ≤ R the
solution off1(z) must approach in character the solution of
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the problem of the tangential discontinuity (TD) instability,
i.e. f1(z) ∝ exp(−χ |z|), when Re(χ) ≥ 0. Therefore,
f1(z) = f0 exp(−χ |z|) whenz = −R was substituted into
equations (4)-(5), and the resulting quadratic algebraic equa-
tion was used to determine the value ofχ as a function of
the complex value of the frequencyω (the sign of the root
of χ was chosen in accordance with the decrease condition
from the boundary).

After that, whenz = −R, for dimensionless quantities it
was assumed thatf̃1(z = −R) = ε and f̃ ′

1(z = −R) =

χ̃ f̃1(z = −R) (the symbol ˜ designates a dimensionless
quantity), and with these initial conditions, Eqs. (4)–(5) were
integrated over the real axisz right up toz = R. Further-
more, the presence of a finite growth rate is assumed. To
avoid the inclusion of singular points in the path of integra-
tion at small values of the growth ratẽγ → 0, it is necessary
to keep track of the fulfilment of the smallness condition of
the integration step compared with the dimensionless growth
rate. Since the trial value ofω for the specified parameters
of the medium is not immediately the eigenvalue of the prob-
lem, the quantityω was treated as the root of the algebraic
equation f̃ ′

1(z = R)+ χ̃ f̃1(z = R) = 0.
The values of the short–wavelength instability boundary

(parameterαb), which we calculated following the technique
described above, are in good agreement with the exact an-
alytical values: both for the tangential (see Chandrasekhar,
1962; Michalke, 1964; Chandra, 1973) and for the linear
profiles (Raleigh, 1894; Moskvin and Frank-Kamenetsky,
1967). Noteworthy is the fundamental importance of our us-
ing the condition of a smooth exponential decrease of the
amplitude for the supersonic velocity difference. The point
here is that the condition for the disturbance amplitude going
to zero at the right–hand edge of the computing box leads,
when4v ≥ cm, to the (above–mentioned) too high value of
the growth rate. Besides, this could bring about a nonphys-
ical solution such as beatings with a large amplitude a short
distance from the boundaries of the computing box and with
its abrupt vanishing at the edge ofz = R.

3 Instability of longitudinal k ||v0 disturbances

Here we consider the instability of longitudinal disturbances
(k is parallel to the direction common tov0 andOx, k = k||)
for the following case: 1) in the absence of the magnetic
influence, and in the presence of 2) the transverse (k⊥B0),
and 3) the parallel (k‖B0) magnetic field.

3.1 On the instability in the transverse flow case:v0⊥B0
and its characteristics whenM ≥ 1

From the outset, we discard the influence of the magnetic
field: firstly, its pressure will be considered weak, (β =

8πP0/B
2
0 � 1), and, secondly, we specify the direction of

the magnetic vector to be orthogonal to the vectorsk and
v0: (k||v0||Ox, B0||Oy). Results of calculations for longi-
tudinal (with respect to the flow direction) disturbances are
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Fig. 1. Influence of the compressibility of the medium on the de-
pendence of the growth ratẽγ (kd) of longitudinal disturbances (k
parallel to the flow velocityv0, or k = k||), for different values of
the M number. Curves 1, 2 and 3 correspond to the following values
of the M number: 0.5, 0.8, and 1.2.

presented in Fig. 1. The figure plots the dependence of the
dimensionless growth ratẽγ = γ d/u on the dimensionless
wave numberα = kd.

As is evident from the figure, the compressibility of the
medium reduces the growth ratẽγmax (as would be ex-
pected), and displaces it to the left, i.e. toward long–
wavelengths, both the position of its maximum (αmax) along
the axiskd and the position of the instability boundaryαb
(i.e. it decreases the instability range). It is easy to see that
the influence of the compressibility of the medium (i.e. the
variations of the numberM) is similar to the influence of
the longitudinal magnetic field whenM < 1: with an en-
hancement of the compressibility of the medium, there is a
decrease of the maximum growth rateγ̃max , and a narrow-
ing of the range of unstable disturbancesαb. The valuesαb
of subsonic perturbations (curves 1 and 2) satisfy Howard’s
semicircle theorem (Blumen, 1970), determining the posi-
tion of αb on the plane (α,M): α2

b + M2
= 1. Further-

more, our computational results for supersonic disturbances
are in good agreement with the findings reported in (Blumen
et al., 1975; Drazin and Davey, 1977), where in the ordi-
nary hydrodynamics (with no magnetic field) the influence
of the compressibility of the medium was studied for the first
time. Specifically, the cited references investigated in detail
the instability of supersonic shear flows which are stable in
relation to longitudinal disturbances within the TD approxi-
mation (Landau, 1944).

Blumen (1970) and Blumen et al. (1975) reported the fol-
lowing important characteristics of supersonic disturbances.

Firstly, their growth rate is significantly smaller than that
of subsonic disturbances whenM < 1. Thus, as the number
M varies from 1 to 2, the value of the dimensionless growth
rate decreases from̃γmax = 0.035 (whenαmax = 0.15) to
γ̃max = 0.002 (whenαmax = 0.125). Furthermore, with a
rapid decrease of the growth rate, the short–wavelength insta-
bility boundary is displaced rather weakly— fromαb ≈ 0.4
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(M = 1) to αb ≈ 0.26 (M = 2).
Secondly, it is the quasi–radiative character where the

functionχ , characterizing the exponential decrease of an am-
plitude for supersonic disturbances becomes nearly imagi-
naryRe(χ) → 0, |χ)| ≈ |Im(χ)|. In this case, our earlier
use of the condition of the eigenfunctions of Eqs. (4) and (5)
going to zero at the edge of the counting intervalz = R,
which was valid for subsonic (fast decreasing inz) distur-
bances, can be violated whenM ≥ 1.

The above characteristics of supersonic disturbances re-
quired for carrying out an adequate analysis and, accordingly,
for improving the accuracy of calculation, (1) introducing the
double counting accuracy; and (2) achieving a more rigor-
ous fulfilment of the amplitude decrease condition, instead
of the (well-satisfied within the approximation of an incom-
pressible medium) requirement for the amplitude becoming
zero whenz → R, by analogy with (Blumen, 1970; Blumen
et al., 1975; Boller and Stolov, 1970; Chandra, 1973; Chan-
drasekhar, 1962; Drazin and Davey, 1977), we chose to use
the condition of an exponential decrease of the amplitude of
eigenfunctions. A modified computational algorithm permit-
ted us to carry out an analysis of the MHD instability of su-
personic shear flows with due regard for such important fac-
tors as the external magnetic fieldB0 6= 0, and the inhomo-
geneities of the density and of the field. These factors were
not taken into account in (Blumen et al., 1975; Boller and
Stolov, 1970; Chandra, 1973; Chandrasekhar, 1962; Drazin
and Davey, 1977) in terms of the ordinary hydrodynamics.

Using results from (Blumen, 1970; Blumen et al., 1975;
Boller and Stolov, 1970; Chandra, 1973; Chandrasekhar,
1962; Drazin and Davey, 1977) obtained forB0 = 0, we
now verify the results of our calculations of the MHD insta-
bility for the case of an arbitrary (in absolute value (β ' 1)),
but transverse (in direction) magnetic field. To do so, we
take into consideration that in this case the effective “Mach”
number decreases. As follows from Eqs. (4)–(6) (see also
Sen, 1964; Ong and Roderick, 1972), instead of the number
M = u/cs , for characterizing the compressibility influence
when B0 6= 0, one has to take the “magnetosonic Mach
number”:

Mms = M/

√
1 + a2/c2

s = M/
√

1 + 2/(ϒβ).

(Hereϒ is the polytropic index). The decrease of the com-
pressibility influence by the magnetic field (i.e. actually the
enhancement of the instability – the increase of the growth
rate and of the instability range) can be accounted for by
the fact that the magnetic field increases a total pressure
50 = P0 + B2

0/(8π).
This is easy to verify analytically; whenM � 1, within

the TD approximation (which holds whenkd → 0), it
is possible to show that the decrease of the growth rate
δγ̃ with respect to the usual “incompressible” growth rate
γ̃incomp at the expense of the weak compressibility isδγ̃ ≈

{u2/c2
m}γ̃incomp, where the denominator now involves not

simply the sound velocity squared but the magnetosonic ve-
locity squaredc2

m = c2
s + a2.

kd
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Fig. 2. Influence of the magnetic componentB0⊥ (perpendicular to
the flow velocityv0) on the dependence of the growth rateγ̃ (kd) of
supersonic longitudinal disturbances (k parallel to the flow velocity
v0, or k = k||) when M = 2. Curves 1 and 2 correspond to the
following values of the parameterβ: β = 100(Mms ≈ M = 2)
and β = 2(Mms = 1.58).

The results of calculations presented in Fig. 2 are in agree-
ment with those obtained by Blumen et al. (1975) for the case
of B0 = 0 for the values ofM = 2 andM = 1.58.

Thus, in the case of “hydrodynamic” longitudinal distur-
bances (k parallel to the flow velocityv0) the magnetic field
B0 = B0⊥ (perpendicular to the flow velocityv0) reduces the
compressibility effect of the medium (the value ofMms) thus
exerting a destabilizing influence on the shear flow, increas-
ing the value of a maximum growth rate, and expanding the
instability range.

3.2 Influence of the longitudinal magnetic field

Let us consider the instability in the domain of sufficiently
large values of the “Mach” numberM > 1 in the case of
flow along the magnetic fieldB0‖v0, where calculations are
difficult because of the smallness of the growth rate. Figure 3
is plotted for the following values:M = 2, and β = 2. We
examine the longitudinal (with respect to the flow velocity
vector) disturbancesk = k||.

As has been shown above, the degree of influence of
the compressibility depends on the magnetic field strength.
Therefore, we shall investigate the influence of Maxwellian
tensions (described in Eqs. (4)–(6) by the terms∝ (k · a)2 =

(ka cosψ)2) at a given value of the magnetic field mod-
ulus by varying the angleψ between the magnetic field
and the wave vector. In this case the change of the value of
cosψ = k · B0/(kB0) from 0 to 1 corresponds to the rota-
tion of the vectorB0 from the direction normal to the vectors
k, and v0 (cosψ = 0) by the angle1ψ = π/2, i.e. to the
direction common tok and v0.

It is evident from the figures that in the case of supersonic
disturbances, an increase of cosψ is accompanied by a de-
crease of the maximum value of the growth rateγ̃max . Fur-
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Fig. 3. Influence of the magnetic field on the growth rate of longi-
tudinal (k parallel to the flow velocityv0, k = k||) supersonic dis-
turbances (M = 2). The value of cosψ = k · B0/(kB0) is shown
above the curves. ”weak field” : β = 2, Mms = 1.58, −γ̃ 6= 0
when cosψ = 1.

thermore, unlike subsonic disturbances, the instability range
does not narrow with an increase of Maxwellian tensions (for
values of γ̃ ≥ 0.001 at least).

The position of the short-wavelength boundary of super-
sonic disturbances is determined by the compressibility level
characterized by the value of the “magnetosonic Mach num-
ber” Mms which decreases with an enhancement of the
field (with a decrease of the parameterβ), which causes this
boundary to be displaced toward shorter wavelengths. Fig-
ure 4 was calculated for the caseβ = 1.2 whencs = a. As
our calculations showed, with such a strong magnetic field,
the disturbances propagating along the field cosψ = 1 reach
total stability (γ̃ = 0) for all wavelengths. This coincides
with a stabilization of the TD with respect to longitudinal
disturbances in the case of a flow along the fieldcs = a

(Parker, 1964). At the same time, as is intimated by Fig. 3,
no such stabilization occurs whencs > a (β = 2), i.e. in
total agreement with results obtained within the TD approx-
imation (Parker, 1964).

Thus the magnetic field influence on the development of
supersonic disturbances is not uniquely manifested. On the
one hand, the field increases total pressure thus reducing
the compressibility effect. This results in an increase of the
growth rate of “hydrodynamic” longitudinal disturbances (k
parallel to flow velocityv0, or k = k||) in the caseB0 = B0⊥

(perpendicular to flow velocityv0) and an expansion of the
instability range for all values of cosψ . Furthermore, the
growth rate increases for the flow both in the transverse mag-
netic field and over a reasonably wide range of values of
the angleψ : | cosψ | ≤ 0.7. Also, the stabilizing effect
of Maxwellian tensions still shows up only slightly ((k · a)2

∝ (cosψ)2), and hence the field influence manifests itself
mainly via an increase in total pressure and a decrease of the
value ofMms , which leads to an enhancement of the insta-
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Fig. 4. Influence of the magnetic field on the growth rate of longi-
tudinal (k parallel to the flow velocityv0) supersonic disturbances
(M = 2). “Strong field” : β = 1.2, andMms = 1.41; when
cosψ = 1 there is stability:γ̃ = 0.

bility. However, at sufficiently large values of the parame-
ter | cosψ | > 0.7, the effect of the stabilizing influence of
Maxwellian tensions becomes distinguishable, which when
cosψ → 1, i.e. in the case of common direction ofk, v0,
andB0, ultimately leads to a total stabilization of longitudi-
nal disturbances whena ≥ cs (β ≤ 1.2).

4 Role of oblique disturbances in the instability of a
supersonic shear flow

In the foregoing discussion we have considered the longitu-
dinal disturbances (k parallel to flow velocityv0, or k = k||)
However, within the TD approximation, Syrovatsky (1954)
showed that in the case of a supersonic velocity difference,
even if the Landau stability criterion (Landau, 1944) is sat-
isfied: 4v ≥ 2

√
2cs (which holds for longitudinal distur-

bances), the oblique disturbances, for which the wave vec-
tor k in the plane(x, y) is directed at an angle to the ve-
locity vector v0), can be unstable. This is because the pro-
jection of the flow velocity upon the phase velocity direc-
tion can become smaller than the effective sound velocity
cm, which would lead to a decrease of the wave parameter
M̃2

= (ω − k · v0(z))
2/(kcm)

2
= (ω̃/(kcm))

2 and, accord-
ingly, to an increase of the growth rate (see also the discus-
sion of the role of three-dimensional disturbances in (Dunn
and Lin, 1952; Fejer and Miles, 1963).

In spite of the fact that in the hydrodynamics the impor-
tance of oblique disturbances is, in principle, known (Blu-
men et al., 1975; Goldstein and Choi, 1989), it is customary
to neglect their role in analyses of the instability of particular
supersonic shear flows in geospace plasma. For that reason,
it was of interest to us to prove our conclusions about the pre-
dominance of oblique disturbances using supersonic shear
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Fig. 5. Influence of cosφ on the dependence of the growth rate
γ̃ (kd) for the magnetic field aligned with the flowv0, or B0 = B0||

whenM = 2, β = 1.5, Mms = 1.49, andρ = const . The value
of cosφ is shown above the curves.

flows at the magnetospheric boundary (Mishin and Morozov,
1983) and in the solar wind (Korzhov et al., 1984).

The influence of the inclination angleφ of the wave vec-
tor with respect to the flow velocity direction (cosφ =

(k · v0)/(kv0)) is shown in Fig. 5. Consider the case of the
magnetic field aligned with the flow, orB0 = B0||, where
the stabilizing effect of Maxwellian tensions is maximal.

For the parameters selected, the magnetosonic Mach num-
berMms = 1.49 (Ma =

√
5). Since the phase velocity

vph ∝ cosφ, the “Mach wave” number̃M = ω̃/(kcm) obeys
the relationship:M̃ ∝ cosφ (see Squire’s transformation in
Blumen, 1970). Hence a decrease of cosφ is accompanied
by a decrease of̃M, and when cosφ ≤ 0.7 there occurs
a transition to subsonic disturbancesM̃ ≤ 1. This implies
not only an increase of the growth rate but also an abrupt de-
crease of the imaginary part of the coefficientχ , as well as a
significant displacement of the boundaryαb toward shorter
wavelengths.

Besides, additional calculations showed that in the case of
a change of the angleψ between the magnetic field and
the wavevectork, the pair of the upper curves and the pair
of the lower curves show a difference in the behavior of the
short-wavelength boundary. Thus, for subsonic disturbances
(upper curves), with an increase of cosψ (with an increase
of Maxwellian tensions), the boundaryαb is displaced to
the left – in accordance with results reported by Chandra
(1973) and obtained within the incompressibility approxima-
tion. For supersonic disturbances (lower curves), however,
the value ofαb will remain unchanged (cf. Fig. 3).

Since the decrease of cosφ is accompanied by a de-
crease of the influence not only of the compressibility of the
medium but also of Maxwellian tensions (cosψ = cosφ),
the dependencẽγ (φ) at a given |k| must have a maximum.
In the case under consideration, subsonic disturbances un-
dergo the most intense excitation when cosφ ≈ 0.3 − 0.4.

Thus the most dramatic (in our opinion) manifestation of
the influence of the compressibility of the medium involves
the predominance of slow oblique disturbances when com-
pared with supersonic longitudinal disturbances, both in re-
gard to the instability range (whenMms cosφ < 1 it expands
sharply to αb ≥ 0.8), and in the value of the growth rate
γ̃max .

5 Instability at the magnetospheric tail boundary

We now examine the instability having regard to the density
and magnetic field inhomogeneities, as well as the supersonic
velocity difference at the geomagnetic tail boundary for a set
of parameters obtained by the ISEE-3 satellite in the distant
tail region (−220RE < x < −50RE) (i.e. for the set of
parameters analyzed in Mishin and Morozov, 1983).

According to the data reported in (Bame et al., 1983), in
the magnetosheath (region II) we havenII = 8.5 cm−3,
TII = 2 · 105 K, and vII = 500 km/s, while in region
I (plasma mantle or outer region of the plasma sheet, or
low–latitude boundary layer),nI = 1 cm−3, and TI =

(3 − 10) · 105 K. By specifying the value of the magnetic
fieldBI for one side of the boundary, it is easy to determine
its value for the other side from the balance condition of ther-
mal and magnetic pressures. Thus forBII = 6 nT we obtain
BI = 9 nT.

Plasma flow in the high–latitude boundary layer of the ge-
omagnetic tail is aligned with geomagnetic field lines (B0 =

B0||) whereas in the magnetosheath the magnetic field can
also have a componentB0 = B0⊥ (perpendicular to the flow
velocity v0). Using ISEE-3 data we calculated the depen-
dence γ̃ (kd) in the least favorable (for the development
of an instability) magnetic field aligned with the flowv0, or
B0 = B0|| for the following (describing quite well the ISEE-
3 observations) parameters,% = 3.75, ρ(z = 0) = ρ00 =

4.75, δ = 1/6, βI = 0.125, β00 = β(z = 0) = 0.65, and
βII = 1.65.

5.1 Instability as a function of the velocity difference

Calculations were performed for three possible values of the
velocity difference at the boundary: 1–1v = vII /2 =

250 km/s, 2–1v = 335 km/s, and 3–1v = vII =

500 km/s. The point here is that the flow velocity can be
lower than the solar wind velocity at the boundary of the
“near” tail (x > −50RE). Besides, a velocity difference
can be taking place in two stages: initially, a dramatic dif-
ference at the outer edge of the boundary layer, and then a
smoother difference inside the edge. Figure 6 shows the in-
fluence of the change of the cosine of the angleφ (shown
above the curve) between the wave vector and the velocity
vector for the value ofM00 = M(z = 0) = 2.24, i.e. for
the velocity difference1v = 2u = vII /2 = 250 km/s at the
boundary. As is evident, even with such a relatively small ve-
locity difference, there arises an instability with a sufficiently
significant growth rateγ̃ ≤ 0.02.



V. V. Mishin: Supersonic shear layer instability 357

0 .0 0 .4 0 .8 1 .2
0 .0 0

0 .0 1

0 .0 2
0 .7

0 .6

kd

1

0 .9γ~

Fig. 6. Instability of the high–latitude boundary layer of the geo-
magnetic tail for the velocity difference1v = 250 km/s (M00 =

2.24) as a function of cosφ. The case of the magnetic field aligned
with the flowv0.

Note that using the TD approximation McKenzie (1970)
and Ershkovich and Nusinov (1972) obtained a more strin-
gent condition for K-H instability development at the tail
boundary:1v > 400 km/s. Satellite data (Sibeck et al.,
1987) show, however, the presence of tail boundary oscil-
lations when1v ≥ 250 km/s. This does confirm the results
presented in Fig. 5. A strong longitudinal magnetic field,
in addition to having a stabilizing effect of Maxwellian ten-
sions, reduces significantly the influence of the compress-
ibility: when β00 = 0.65 we haveMms(z = 0) = 1.33. In
fact, however, the “effective” value of the Mach wave num-
ber< M̃ >∼ 1, because the ratio|χim/χre| is large only
for longitudinal disturbances cosφ = 1, but already when
cosφ ≤ 0.9 the phase velocity becomes subsonic, and the
disturbances become surface disturbances|χim/χre| ≤ 1.
The large values ofMms are caused by a strong velocity dif-
ference.

It seems likely that because of the large field strength
(Ma00 = Ma(z = 0) = 1.65), with an increase of the
angle φ, there occurs a narrowing of the instability range,
i.e. a decrease of the value ofαb. Thus, if we remove
the stabilizing influence of Maxwellian tensions by putting
cosψ = k · B0/(kB0) = 0, then (see Fig. 7), in addition to
an increase of a maximum growth rate by about a factor of 4,
we can see a displacement of the instability boundary toward
shorter–wavelengthsαb with an increase of the angleφ and
with a corresponding decrease ofMms , similar to what is
taking place whenβ > 1 and ρ = const . Such an insta-
bility enhancement must occur at the low–latitude boundary
layer of the tail where there is a significant component of the
geomagnetic field perpendicular to the flow direction.

As the velocity difference at the boundary increases, the
compressibility influence is enhanced, and the influence of
Maxwellian tensions decreases. Figure 8 illustrates the case
M00 = 3, and Ma00 = 2.2 corresponding to the value of
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Fig. 7. Instability of the geomagnetic tail boundary layer for the
velocity difference1v = 250 km/s (M00 = 2.24) as a function of
cosφ. The case of the absence of Maxwellian tensions:B0⊥k.
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Fig. 8. Instability of the boundary layer of the distant tail for the
velocity difference1v = 335km/s (M00 = 3) as a function of
cosφ. The case of the magnetic field aligned with the flowv0.

the velocity difference,1v = 335 km/s. With these param-
eters, the longitudinal field influence is markedly weak, and
the character of the influence of the angleφ is the same as
in the absence of Maxwellian tensions in the preceding fig-
ure. At the same time, an increase of the numberM to 3 (see
Fig. 8) manifests itself in the decrease of the growth rate of
longitudinal (cosφ ≤ 1) disturbances and in the expansion of
the opening of the angleφ of generation of supersonic dis-
turbances — the transition to surface disturbances is taking
place when cosφ ≤ 0.7.

In the case of a maximum possible velocity difference at
the boundary1v = vII = 500 km/s, we have an enhance-
ment of the compressibility influence, which is manifested in
the generation of supersonic disturbances over a wider range
of values of the angleφ (cosφ ≤ 0.5), but with smaller
growth rates as a consequence of an increase of the magne-
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Fig. 9. Instability of the boundary layer of the distant tail for the
velocity difference1v = 500km/s (M00 = 4.5) as a function of
cosφ. The case of the magnetic field aligned with the flowv0.

tosonic Mach number:Mms00 ≈ 2.6. In this case the role of
the Maxwellian tension becomes weak because of the large
value of the Alfven Mach number (Ma00 ≈ 3.3). Note that
within the approximation of a weak compressible medium
the stabilizing influence of Maxwellian tensions is stronger
for Ma00 =

√
2 than forMa00 = 2.

At this point, it is necessary to remark that in all possible
cases of the instability development, the destabilizing role
is played by the density inhomogeneity. This is easy to see
from the expansion of the instability range: the position of
the short-wavelength boundary of subsonic oblique distur-
bances in Figs. 7 and 9 corresponds to the value ofαb ≥ 1 –
i.e. it lies father from the boundary of subsonic disturbances
in the case of subsonic disturbances in the case of a uniform
density. The density inhomogeneity influence implies a de-
crease of the phase velocity of the disturbances generated
(see below) and, hence, a reduction of the compressibility
influence.

Thus we have demonstrated that the distant tail boundary
for actually observed parameters of plasma and the magnetic
field is unstable at all latitudes; furthermore, the influence
of the longitudinal magnetic field (aligned with the flow) is
almost indistinguishable when the velocity difference1v ≥

335 km/s.

5.2 On the frequency and wavelength of the generated os-
cillations

In the last case1v = 500 km/s for oblique disturbances
with a maximum growth rate when cosφ = 0.4 we have
ω = 0.2vII /D, αmax = 0.35, vphmax = 0.28vII .
Note that the phase velocity changes little over the entire in-
stability range: whenα = 0.05 we have vph ≈ 0.3vII ,
and when α = 0.7 we have vph ≈ 0.265vII , so that
the value vphmax virtually coincides with the mean value
of the phase velocity over the entire instability range. For the

sake of comparison, we must point out that within the TD ap-
proximation the phase velocity of longitudinal disturbances
is much larger:vph ≈ 0.9vII . Therefore, longitudinal long–
wavelength disturbances are virtually suppressed by a strong
compressibility.

Let us estimate the period of the most unstable distur-
bances. For the typical value of the high–latitude boundary
layer thickness of the distant tailD = 104 km, we obtained
T ≥ 10 min, which is in good agreement with ISEE-3 obser-
vations of long–period oscillations of the distant tail bound-
ary in the range of periods of 10–40 min (Sibeck et al., 1987).
The wavelength corresponding to a maximum growth rate, is
λ = vphmax · T ≤ 105km ≈ 15RE . To interpret the ISEE–3
crossings of the distant tail boundary in (Sibeck et al., 1987)
when calculating the magnetopause oscillation wavelength,
it was assumed that the value of the wave propagation ve-
locity vph = vII , which is nearly by a factor of 4 larger
than the value of the phase velocity which we obtained. As
a result, a too high estimate of the magnetopause oscillation
wavelength was obtained:λ > 100RE , which led Sibeck
et al. (1987) to incomprehension of how such long waves can
be excited at the magnetopause. To explain this far-fetched
“paradox”, Belmont and Chanteur (1989) chose to look for
the possible nonlinear transformation of the waves into the
long-wavelength region (see also Miura, 1999), which, as we
see, was in fact not needed (but gave interesting results).

The distant tail boundary instability can be the source of
long–period (T ≥ 10 min) geomagnetic pulsations Pc6 ob-
served in the night–time at high latitudes (Pudovkin et al.,
1976), i.e. near the ground projection of the geomagnetic tail
boundary.

6 Discussion

First we discuss some of the assumptions made in this paper.
We have used the MHD approximation and ignored the role
of kinetic effects. Line–tying and kinetic effects can influ-
ence the conditions of instability development on the dayside
and near the dawn–dusk meridian. However, this influence is
small in the far tail. Thus the line–tying effect can have a
stabilizing influence on the instability in the presence of a
field-aligned current. This influence can be substantial when
the Alfven transit timeτa between two ionospheres is com-
parable to or smaller than the growth (e–folding) time (γ−1)
of the K-H instability (Miura, 1996). For the most unstable
disturbances at the far tail boundary we havex = −100RE ,
andd = RE , i.e. an inverse inequalityγ−1/τa � 1 holds.

Next, as regards the influence of taking into account the
kinetic effects. It is known that accounting for the finite Lar-
mor radius is substantial for the dayside magnetopause be-
cause the thickness of the shear layer there is on the order of
several Larmor radii (Nagano, 1978). However, in the far tail
the thickness of the shear layer is much larger,d ≈ RE , and
the value of the proton gyroradius for the parameters used
in the paper isρL ≈ 200 km. For the most unstable distur-
bances (kd = kRE ≈ 0.5), the contribution of the kinertic
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effects is small,kρL ≈ 1/60. Thus, their role (as well as of
the line-tying effect) for the instability development at the far
tail boundary can be safely neglected.

For the sake of simplicity, our calculations use an identi-
cal scale of variation of all plasma and magnetic field param-
eters on the shear layer. In effect the field usually changes
on a smaller scale, and this occurs in the outer part of the
boundary layer, the magnetopause. Therefore, specifying
identical scales enhances the role of the external field (mag-
netosheath field) and attenuates the role of the geomagnetic
field in the layer of a thickness determined by the difference
of the scales of variation of the velocity and the field. In
the case of a longitudinal flow at the far tail boundary, this
leads to an enhancement of the stabilizing influence of the
field-aligned geomagnetic field as well as to a decrease of
the instability growth rate. Consequently, for the real profile
of the magnetic field variation, the value of the growth rate
will be larger. Thus, the values obtained in this paper are the
lower estimates of the growth rate value.

In this paper we neglect the rotation of the magnetic vector
on the shear layer. However, when analyzing the instability
of the geomagnetic tail boundary, we examine the most un-
favorable case of the instability development where the field
is parallel to the flow velocity throughout the entire volume.
Therefore, taking into account the rotation of the field im-
plies an attenuation of its stabilizing influence and, hence, an
increase of the growth rate.

We now describe quantitatively the compressibility influ-
ence of the medium when the magnetic field, the density in-
homogeneity, and the angle of inclination of the wave vec-
tor with respect to the velocity vector of the medium are
taken into account. In the system of Eqs. (4)–(5), this in-
fluence is described by the the functionχ characterizing the
exponential decrease of disturbances. In the absence of this
influence (i.e. whenM = 0, and divv = 0), this term
becomes zero. Furthermore, the index of decrease of the
disturbance amplitude is maximal,χ = Re(χ) = k, and
Im(χ) = 0. In the case of a finite compressibility of the
medium (whenM 6= 0, and divv 6= 0), the coefficient
of exponential decay decreases because of the appearance
of its imaginary part and, accordingly, the decrease of the
real part. The Mach wave number̃M = ω̃/(kcm) must be
taken as the measure of compressibility influence. Since the
“shifted” frequencyω̃ is proportional to the scalar product
M̃ ∝ k · v (i.e. also to the cosine of the angle between
these vectors), the Mach wave number is proportional to the
flow velocity projected onto the direction of the wave vector:
M̃ ∝ u ·cosφ/cm ∝ Mms ·cosφ. Here the proportionality co-
efficient is determined by the difference of the values of the
phase velocity and the local (as a function of coordinatez)
flow velocity: ω̃/k = (ω/k−v(z) ·cosφ). Within the TD ap-
proximation which holds for long–wavelength disturbances,
the value of the velocity is determined by the “mean-mass”
velocity:ω = k ·((nv)I+(nv)II )/(nI+nII ) (Mishin, 1981).
With the density differencenII /nI � 1 existing at the mag-
netospheric boundary, the phase velocity is determined by
the flow velocity projected onto the direction of the wave

vector: ω/k ≤ vIIcosφ. As a result, for long–wavelength
waves we obtain an estimate of the Mach wave number in
the magnetosheath (for the density values used in this paper):
M̃II = ω̃/(kcmII ) ≤ 0.1MmsIIcosφ. Thus outside of the
magnetosphere, the value of the Mach wave number, in view
of the differencẽω/k = (ω/k−v(z) ·cosφ), is significantly
smaller than the value of the magnetosonic Mach number,
which is caused, as has been shown above, by the density in-
homogeneity. Also, inside of the magnetosphere the value of
the magnetosonic Mach number is smaller than that outside
of it because of the large value of the magnetosonic velocity
there. Consequently, the density inhomogeneity reduces the
compressibility influence of the medium of the outer half–
space (magnetosheath) where this influence is the strongest.

Thus the use of the Mach wave numberM̃ makes it pos-
sible to mathematically describe the attenuation of the com-
pressibility influence of the medium through the following
three factors: (1) the increase of total pressure by magnetic
pressure through a decrease of the magnetosonic Mach num-
ber (see Fig. 2), (2) a strong density increase in the magne-
tosheath, and (3) taking into account the oblique disturbances
cosφ 6= 0. That is why at the boundary of the far tail we ob-
tain such an effective excitation of oblique disturbances, in
spite of the large values of the Mach number.

These results can be used in the analysis of the saturation
level of nonlinear development of the instability. Thus Miura
(1990, 1992), based on a numerical simulation, obtained a
dramatic decrease of the oscillation amplitude in the case of
supersonic disturbances. In doing so, he addressed the 2D
problem, namely, he only considered longitude disturbances
(k = k||). If one takes into consideration that the oblique dis-
turbances satisfy the Squire transform (Blumen et al., 1975),
one can calculate the amplitude of steady-state oscillations
caused by transonic oblique disturbances on a supersonic
shear flow. It is found in this case that the linear growth rate
of oblique disturbances forM = 1.5 − 2 is by a factor of
two to four smaller than that of longitudinal ones forM = 1.
For this reason, the saturation level at the far tail boundary
will also be only several times smaller when compared with
M = 1 (rather than by one or two orders of magnitude as
determined by Miura, 1992) for longitudinal disturbances.

We intend to present the specific results derived from cal-
culating the influence of nonlinear effects elsewhere.

7 Conclusions

By analyzing the supersonic shear flow instability on the geo-
magnetic tail boundary, we have demonstrated the validity of
the conclusions drawn by Mishin and Morozov (1983) about
the predominant role of three–dimensional or oblique (with
respect to the direction of the velocity vector) disturbances.
Their phase velocity is significantly smaller (1/4 of the flow
velocity), and the value of the growth rate and the width of
the frequency range are significantly larger than those for
two–dimensional (longitudinal) disturbances. Furthermore,
the value of the dimensionless growth rate of the most un-
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stable oblique disturbances are almost identical to those cal-
culated in Mishin and Morozov (1983), i.e. they are of the
same order of magnitude as in the case of a near–sonic ve-
locity difference.

The magnetic field and the density inhomogeneity atten-
uate the stabilizing influence of the compressibility of the
medium, which leads to an expansion of the instability range
and to an increase of the growth rate over a wide range of
values of the angleφ.

Thus we have confirmed the conclusions from Mishin and
Morozov (1983) that, in spite of the hypersonic character
of the flow around the distant geomagnetic tail, near–sonic
oblique disturbances can play a substantial role in the excita-
tion of MHD waves and in the evolution of the tail boundary.
This applies also to the conclusions drawn in (Korzhov et al.,
1984) about the instability of shear flows in the solar wind
where the generation of oblique disturbances accounts for the
spectrum of the waves observed there, and for the presence
of a wide shear layer (Goldstein, 1995).
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