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Abstract. A model of vortex with embedded discontinuities
in plasma flow is developed in the framework of ideal MHD
in a low β plasma. Vortex structures are considered as a re-
sult of 2-D evolution of nonlinear shear Alfvén waves in the
heliosphere. Physical properties of the solutions and vector
fields are analyzed and the observational aspects of the model
are discussed. The ratio of normal components to the discon-
tinuity Br/Vr can be close to−2. The alignment between
velocity and magnetic field vectors takes place. Spacecraft
crossing such vortices will typically observe a pair of dis-
continuities, but with dissimilar properties. Occurrence rate
for different discontinuity types is estimated and agrees with
observations in high-speed solar wind stream. Discontinu-
ity crossing provides a backward rotation of magnetic field
vector and can be observed as part of a backward arc. The
Ulysses magnetometer data obtained in the fast solar wind
are compared with the results of theoretical modelling.

1 Introduction

Convected structures, series of Alfvénic fluctuations, mi-
crostreams were observed in the heliosphere (see Goldstein
et al., 1995; Kallenrode, 2001 and references therein). Non-
linear phenomena in the solar wind flow involving dispersive
Alfv én waves were analyzed in a number of papers ( see,
for example Buti et al., 1999) with taking into account finite
plasmaβ effects and mode coupling. Spatio-temporal evolu-
tion was studied using one-dimensional hybrid simulation. A
number of nonlinear equations was derived to describe one-
dimensional MHD waves propagating under different angles
to the ambient magnetic field (Petviashvili and Pokhotelov,
1992). If MHD mode coupling or anisotropy effects are in-
cluded into consideration, the problem becomes essentially
two- or three-dimensional. Two-dimensional effects mani-
fest themselves in modification of MHD wave spectra and
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appearance of plasma instabilities. There are several ways
to generalize nonlinear wave equations for two-dimensional
case. Incompressible disturbances in a cold plasma with
strong magnetic field are described by stream function and
field-aligned component of the vector potential (Kadomt-
sev and Pogutse, 1973; Strauss, 1976). Plasma with finite
β requires extra variables to include compressional effects
and field-aligned disturbances associated with slow magneto-
sonic waves. In general, a creation of vortices is intrinsic fea-
ture of both Alfv́en and drift nonlinear waves (see Horton and
Hasegawa, 1994 and references therein). They are caused
by vortex nonlinearity and, for the simplest cases, studied in
terms of Hasegawa-Mima and Petviashvili-Pokhotelov equa-
tions which admit vortex solutions. It was shown that pres-
ence of long-lived organized coherent vortices plays an im-
portant role in two-dimensional plasma dynamics. These 2D
vortex structures are quite common in space plasmas and
were observed in ionosphere (so-called black aurora) (John-
son and Chang, 1995), solar wind (Polygiannakis and Mous-
sas, 2000), the Earth distant magnetotail (Hones et al., 1978)
and plasma sheet (Verkhoglyadova et al., 2001). It should
be noted that vortex structures were extensively studied in
the ionosphere and the magnetosphere of the Earth. Theo-
retical models and numerical simulations revealed monopole
vortex, dipole vortex and vortex chain solutions for nonlinear
equations described drift and inertial Alfvén waves in a low-
beta plasma (Chmyrev et al., 1988). Qualitative agreement
with satellite data and ionospheric measurements has been
shown (Chmyrev et al., 1991). Another approach was devel-
oped for Alfvén vortices in a magnetized electron-positron
plasma. It was shown that finite amplitude shear Alfvén
waves evolve to vortex structure which process affects both
particle and energy transport in the pulsar magnetosphere (Yu
et al., 1986).

The solar wind plasma shows many features of fully devel-
oped magnetohydrodynamical multiscale turbulence. Exper-
imental data provide an evidence that quasi two-dimensional
structures exist in nearly incompressible regions of the solar
wind. The slab turbulence and quasi two-dimensional tur-
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bulence are both present and well separated (Ghosh et al.,
1998). The latter one is associated with Alfvénic type distur-
bances, which are predominant in the fast solar wind. Typi-
cal MHD vortex turbulence is characterized by a power law
spectrum with the index being close to−3...−1.5 (Hasegawa
and Horton, 1994). The experimental data gives the values
varying from−2.2 to −1.7 (Burlaga, 1992; Goldstein et al.,
1995).

It seems reasonable to consider formation of magnetic vor-
tices at strongly nonlinear stage of Alfvén waves evolution
in heliosphere. Special kind of solutions represents magnetic
field depressions with a core bounded with a discontinuity,
which could contribute to the theory of magnetic holes in
the solar wind. This model can be considered as develop-
ment of one-dimensional nonlinear model proposed in Buti
et al. (2001). Similar approach was developed in the pa-
pers Shukla and Stenflo (1999), Verkhoglyadova et al. (2001)
and incorporated both shear Alfvén and compressional dis-
turbances in a warm inhomogeneous space plasma. Experi-
mental features of the model will be discussed.

2 Model for 2D nonlinear Alfv én waves in plasma
with flow

We consider homogeneous cold plasma with background
magnetic field directed alongZ–axis and restrict our model
to incompressional limit. This approach is different from one
developed in the paper Zank and Matthaeus (1993). We study
low β plasma with purely MHD Alfv́enic disturbances and
no compressional corrections at the first step. The basic set
of equations can be written in terms of two scalar functions,
velocity flux9 and field-aligned component of magnetic po-
tential A (Kadomtsev and Pogutse, 1973; Petviashvili and
Pokhotelov, 1986):

d

dt
1⊥9 +

d

dz
1⊥A = 0 ,

d

dt
A +

∂

∂z
9 = 0 ,

where d
dt

=
∂
∂t

+ {9, ...} , d
dz

=
∂
∂z

− {A, ...}, and the
operator{..., ...} denotes the Poisson’s brackets. The non-
linearity originates from the operatord

dt
=

∂
∂t

+ (V ∇) in
the Navier-Stokes equation. Dimensionless variables are ob-
tained by scaling with proton gyroperiod and Alfvén veloc-
ity. Magnetic field disturbancesB = ∇A × ez and flow
velocityV = ez × ∇9 are expressed through the flux func-
tions. Convective electric field is defined byE = −∇⊥9.

Standard approach is used to find a partial vortex solution,
which is a localized structure moving with velocityu in a
plane(ξ, y) , whereξ = x−ut +αz, and the angleα denotes
inclination of a vortex axis to the background magnetic field
(Horton and Hasegawa, 1994; Petviashvili and Pokhotelov,
1992; Verkhoglyadova et al., 2001). The set of equations
reduces to the form:{
9̃, 1⊥9̃

}
−

{
Ã, 1⊥Ã

}
= 0, 9̃ = 9 + u y{

9̃, Ã
}

= 0, Ã = A + αy

We will seek for the simplest functional dependence ofÃ

on 9̃, i.e. solutionA = s9, where the parameters = α/u is
taken from the localization condition at infinityx, y → ∞ :

9, A → 0, 9̃ → u y, Ã → α y. Then the first equation of
the set takes the form:

1⊥9 = −k2 (9 + uy) , r ≤ a ;

1⊥9 = p2 9, r > a .

Polar coordinates(r, θ) are introduced in the plane. Vortex
solution of an arbitrary radiusa takes the form (Larichev and
Reznik, 1976):

9 =
(C1J1 (kr) − ur) sinθ, r ≤ a ;

C2K1 (pr) sinθ, r > a ;
(1)

HereJ1 is the first-order Bessel function of the first kind,
K1 is a first-order modified Bessel function of the second
kind. Solution (1) describes a plane structure moving with
a velocityu within r ≤ a. The solution in outer regionr > a

corresponds to the case ofu = 0 and describes a motion-
less, but disturbed plasma (see Fig. 1). One can consider this
nonlinear wave structure as a generalization of MHD vortex
rings or convective cells associated with linear Alfvén waves
(Alfv én and Falthammar, 1963). Fors = ±1 we obtain a par-
tial case of a plane wavefront and linear shear Alfvén wave.

There is a number of free parameters
(u, a, α, k, p, C1, C2) in the solution. We set the con-
tinuity condition at the vortex boundary(r = a) to
determine the amplitudes (Petviashvili and Pokhotelov,
1992):

[9] = 0 , (2)

where[9] = 9 (r = a + 0) − 9 (r = a − 0) is the notation
for a jump of9. Introduce the generalized vorticityg0 at the
boundary,9 (r = a) + u a sinθ = g0 sinθ . Thus we define

C1 =
g0

J1 (k a)

C2 =
g0 − ua

K1 (pa)

(3)

According to the standard approach the continuity condi-
tion[
∂9

∂r

]
= 0 (4)

is assumed and the parameterp is defined. The number of
free parameters reduces to five:(u, a, α, k, g0).

One can obtain plasma velocity and magnetic field com-
ponents from the flux functions:

Vr = −
1
r

∂9
∂θ

Br = −s Vr

Vθ =
∂9
∂r

Bθ = −s Vθ
(5)

Note, that for linear shear Alfv́en waves, the relation be-
tween dimensionless magnetic field and plasma velocity dis-
turbances isB = −V . This ratio could be modified for non-
linear disturbances with plasma rotation and field line bend-
ing. Vortices ensure a balance between centrifugal force and
tension of magnetic field lines.



O. P. Verkhoglyadova et al.: Model for vortex turbulence with discontinuities in the solar wind 337

Fig. 1. Contour plot of the flux function9 and respective velocity field in for a vortex with dimensionless radiusa = 10 and velocity
u = 0.06. Plots are shown for different values of the parameterk: 0.533(a, b), 0.854(c,d) and 1.17(e,f).

For the solutions (1) and (3), the continuity condi-
tions (2)and (4) imply

[Vr ] = 0 and [Br ] = 0 , (6a)

[Vθ ] = 0 and [Bθ ] = 0 , (6b)

for normal and tangential components to the vortex bound-
ary, respectively.

The Kadomtsev-Pogutse set of equations also permits a
linear wave solution. Consider combined solution of a shear
Alfv én wave and a vortex in the model. This limiting case
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takes place both near the vortex core (r → 0) and far from
the nonlinear structure (r → ∞), where velocity and mag-
netic field disturbances in a vortex are small and close to the
linear ones. We seek for a solution with9 = 9L + 9V

andA = AL + AV = 9L + s9V , where the shear Alfv́en
wave is described by9L andAL. Flux function for a vor-
tex, 9V , is defined by Eq. (1). Thus,AL = 9L and
9L exp(i (ωt − κr)). The set reduces to

∂

∂t
9L +

∂

∂z
9L + (s − 1) {9L, 9V } = 0 ,

∂

∂t
1⊥9L +

∂

∂z
1⊥9L

+ (s − 1)
(
k2

{9L, 9V + u y} − κ2
{9L, 9V }

)
= 0 , r ≤ a ;

∂

∂t
1⊥9L +

∂

∂z
1⊥9L

+ (s − 1)
(
− p2

{9L, 9V } − κ2
{9L, 9V }

)
= 0 , r > a

Assuming almost linear perturbations|9V (r → 0)| � 1
in the regionr ≤ a, we obtain a dispersion relation

ω = κz − (s − 1) κxu

and a condition on flux functions:

{9L, 9V + u y} = 0

The first expression is similar to the dispersion rela-
tion of shear Alfv́en waves in a plasma flowing with the
velocity−uex :

ω = κz − κxu

This assumption is consistent with a vortex velocity field
derived from Eq. (1) atr ≈ 0 and describes plasma motion
through the structure aty → 0. Thus, a continuous transition
between nonlinear structures and linear waves takes place un-
der the condition ofs = 2.

Outside the vortex core(r > a) the similar expres-
sions can be obtained for a vanishing flow at infinity
9V (r → ∞) → 0:

ω = κz and {9L, 9V } = 0 .

They correspond to linear waves in motionless plasma. In
a general case of finite disturbances we can not neglect inter-
action between Alfv́en waves and nonlinear structures.

We studied the model of vortices or convective cells,
which represent 2D large-amplitude shear Alfvén waves in a
plasma flow. They are plane structures inclined to the back-
ground magnetic field. Magnetic field and velocity distur-
bances are related in anti-phase with the factor of 2. Obser-
vational features of the structures will be discussed in next
sections.

3 Vortex with embedded discontinuity

The solar wind is characterized by large-amplitude Alfvénic
turbulence and numerous tangential and rotational disconti-
nuities. We use the above approach to obtain a self-consistent

Fig. 2. Profile of magnetic field magnitudeB (solid) and compo-
nentsBx (long dash),By (short dash) fory = 5 (a) andx = 5
(b).

solution of a nonlinear structure with a discontinuity at the
vortex boundary. This discontinuity can not exist without a
nonlinear Alfv́en wave.

Consider a highly localized vortex moving in a plasma ac-
cording to the solution (1):

9 =
(C1J1 (k r) − u r) sinθ, r ≤ a ;

0, r > a ;

Velocity of the relative motion of a plasma isVa = −ueξ .
From a continuity condition (2) we get

9 (r = a − 0) = 9 (r = a + 0) = (g0 − u a) sinθ = 0

and

C1 =
u a

J1(k a)

g0 = u a
(7)

Introduce a finite jump in∂9/∂r at the vortex boundary
r = a:[
∂9

∂r

]
= 1 sinθ (8)

Physically we imply a finite jump in tangential compo-
nents:

[Vθ ] = 1 sinθ, [Bθ ] = −s [Vθ ] . (9)
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Fig. 3. Scheme for discontinuity types associated with the vortex
solution (11).U indicates velocity of the structure.

Typical profile of magnetic field in a vortex is shown in
Fig. 2.

Normal velocity component to the boundary (Vn) con-
sists of a normal component of the vortex velocity fieldVr

and a normal component of the ambient plasma flow around
the structure in the vortex’ reference frameV n

a = Va cosθ ,
whereVa = −u is the velocity of a relative motion:

Vn (a) = Vr (a) + V n
a = Vr (a) − u cosθ

According to the ideal MHD boundary conditions and the
Eqs. (5) we obtain:

Bn (a) = −Vn (a) = Br (a) + Ba cosθ

= −s Vr (a) + u cosθ ,

whereBa = −Va for a linear Alfvénic flow. Continuity of
Vn (a) andBn (a) implies thatVr (a) = 0, which is consis-
tent with the solution (7).

Because of the relative motion withV τ
a = −Va sinθ (see

Fig. 3), a tangential velocity component to the boundary (Vτ )
has a discontinuity according to Eq. (7):

[Vτ ] = [Vθ ] − Va sinθ = (1 + u) sinθ = 2u sinθ

and

1 = u (10)

which is consistent with the ideal MHD boundary conditions
and

[Bτ ] = − [Vτ ] = [Bθ ] = −s [Vθ ] = −s1 sinθ

The self-consistent solution of a vortex with embedded
discontinuity depends on two free parametersu anda:

9 =

(
u a

J1(k a)
J1 (k r) − u r

)
sinθ, r ≤ a ;

0, r > a
(11)

Using the solution (11) and the conditions (5) and (7)–(10)
we can define the parameterk from the equation:

J ′

1 (ka) = 0 (12)

There is an infinite set of solutions of Eq. (12) with every
k corresponding to a definite type of vortex (Fig. 1).

This discontinuity at a vortex boundary looks similar to
the MHD one, but its nature changes with vortex phase angle
θ . For the rotational-like discontinuity we get Eqs. (9), (11):

[Vθ ] = 0 for θ = 0, π ;

[Vθ ] = ±1 for θ = ±π/2 ;

The discontinuity changes from pure tangential at the vor-
tex “flank”, becomes rotational at other positions and van-
ishes at the “nose”.

It should be noted that the condition (8) is consistent with
the “classic” MHD boundary condition. Taking into consid-
eration velocity field near a vortex boundary (Fig. 3) and
relative streaming of a plasma in opposite direction around
the structure, one can notice that a velocity jump occurs at
a boundary, which becomes maximum at the “flanks”. This
effect physically creates and maintains the boundary condi-
tion.

4 Comparison with experimental data

The model (7)–(12) represents a set of nonlinear MHD struc-
tures with disturbances localized in the region ofr < a. The
geometry of a vortex velocity field is defined by parameterk

(see Fig. 1). The structure is situated in a plane(ξ, y) with
normal inclined by an angleα to the background magnetic
field. Inasmuch asα � 1, we conclude thatu = 2α � 1. It
means that vortex is moving across magnetic field lines with
a velocity which is much smaller than the Alfvén velocity.
Such structures can create vortex tubes elongated under the
angleα to the background magnetic field (Petviashvili and
Pokhotelov, 1986; Verkhoglyadova et al., 2001).

Consider the ratio of normal components to the discontinu-
ity. We obtainBr/Vr = −1 strictly at the boundary, but this
ratio is equal to−2 inside a vortex, which value can be re-
vealed as a typical feature of developed Alfvénic turbulence
(Goldstein et al., 1995). This ratio can be also observed in the
close vicinity of a discontinuity (Neugebauer et al., 1984).

Another important consequence of the model is align-
ment of velocity and magnetic field changes across a tan-
gential discontinuity (Neugebauer, 1985; Neugebauer et al.,
1986). This type of discontinuity occurs as a partial case un-
der the general boundary conditions (9). We getBn (a) =

−Vn (a) = 0 at θ = ±π/2, with [Bτ ] = − [Vτ ] = −21.
While crossing a discontinuity at “flank” regions one obtains
that tangential velocity and magnetic field are related. In the
vicinity of discontinuity [Bθ ] = −2[Vθ ]. We believe that
this effect could explain a number of measurements (Neuge-
bauer, 1985).
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Table 1. Summary of physical properties of discontinuities (ratio of
the normal component to the field magnitude and ratio of magnitude
jump to the field magnitude) according to (Neugebauer et al., 1984)

Type Bn/|B| [|B|]/|B|

Rotational (RD) High Low
Tangential (TD) Low High
Either (ED) Low Low
Neither (NT) High High

Table 2. Occurrence rate for the solar wind measurements (Neuge-
bauer et al., 1984) and the model predictions for discontinuity types.
We considerRD andNT categories together, because of ambiguity
of B evaluation and presence of strong normal component for these
discontinuity types. Model prediction isRD : T D : ED : NT =

23 : 46 : 0 : 31

slow solar wind fast solar wind model prediction

RD + NT 38...44 57... 63 54
T D + ET 56...62 37... 44 46

An occurrence rate of detecting certain type of a discon-
tinuity while crossing a vortex boundary is studied. Ac-
cording to the paper (Neugebauer et al., 1984) we calcu-
late the values ofBn (a) /|B(a)| and[|B|] /|B(a)| and eval-
uate ranges of phase angleθ that correspond to highBn and
small changes in|B| (rotational discontinuity). The classi-
fication criteria for discontinuity types is quantitatively pre-
sented in the Table 1. Regions of rotational discontinuity,
tangential discontinuity, and ambiguous cases (ET stands for
“either discontinuity”, and NT for “neither discontinuity”)
are selected (Fig. 3). The resulting ratio of discontinuities
is RD : T D : ET : NT = 23 : 46 : 0 : 31. By def-
inition, the category NT includes “suspicious cases” which
could not be accurately put in any of the two categories be-
cause of uncertainty of data processing for respective mea-
surements. However, this category includes discontinuities
with high normal magnetic field component across it, and
we define these cases as being rotational discontinuities in
our theoretical modelling. Thus, one can obtain the ratio
(RD + NT ) : T D = 54 : 46, which is close to the re-
sults obtained in a high-speed solar wind flow(63 : 37 and
57 : 44) (Neugebauer et al., 1984), (see Table 2). As far
as the model describes strong Alfvénic turbulence, our result
shows less coincidence with measurements made for slow-
speed solar wind regions, which are characterized by compli-
cated nonlinear processes possibly involving compressional
waves.

Study of nonlinear Alfv́en waves in the heliosphere re-
veals their arc-polarization properties (Tsurutani et al., 1994,
1996). Vortices are nonlinear two-dimensional Alfvénic

(a)

(b)

Fig. 4. The Ulysses magnetometer data (1-s resolution) for the time
interval 11:15–11:30 UT, 208 day, 1995, show a pair of discontinu-
ities (about 11:26 UT and 11:29 UT)(a). The satellite was moving
in a high-speed solar wind above the north solar pole at heliocentric
distance about 2 AU. Lower panel represents magnetic field compo-
nents found using the Minimum Variance Analysis(b).

structures. Model magnetic field hodograms retain elliptic-
like polarization and contain parts of arcs associated with
discontinuity. A comparison is made between measurements
of large-amplitude Alfv́en waves with discontinuities and re-
sults of theoretical modelling. Consider an example of exper-
imental data obtained with the Ulysses in the high-speed so-
lar wind over the north solar pole. High-resolution magnetic
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Fig. 5. Hodogram for the 1st discontinuity(a), magnetic minimum(b), magnetic maximum(c), and for the 2nd discontinuity(d) of the pair.
Results of theoretical modelling show a magnetic field profile for “shallow” potential well(e)and hodogram(f).
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field data for the time interval 11:15–11:30 UT, 27 July 1995
are presented in Fig. 4a. A pair of discontinuities is selected
for detailed study. Using the Minimum Variance Analysis
we calculate magnetic field components, which correspond
to directions of maximum(B1), medium(B2), and minimum
(B3) variations (see Fig. 4b). A bipolar structure inside the
magnetic well is noted. Hodograms for time intervals with
the first discontinuity, magnetic minimum, magnetic maxi-
mum and the second discontinuity are presented in Fig. 5a–
d. Discontinuity time intervals are characterized by back-
ward motions. Other time intervals show arc-polarization.
Model magnetic field profile and corresponding hodogram
calculated for a vortex crossing are shown in Fig. 5e and f.
We consider a “shallow” potential well with a discontinuity,
that results in small backward motions in the plane(B1, B2).
Shape of a polarization arc is caused by magnetic field asym-
metry and depends on a direction of the vortex crossing. The
results of theoretical modelling are similar to the experimen-
tal results showing relationship between interplanetary dis-
continuities and nonlinear Alfv́en waves (Tsurutani et al.,
2002).

5 Conclusion

We consider a model for solar wind plasma as a turbulent
medium which consists of a mixture of nonlinear Alfvén
waves and quasi-two dimensional MHD vortices. The lat-
ter structures represent a stage in dynamical evolution of the
shear plasma motions and magnetic field fluctuations. The
proposed model describes the localized nonlinear structure
formation in the regions where a significant number of MHD
discontinuities is present in the solar wind. Thus the power
spectrum of the interplanetary magnetic field fluctuations is
affected by the discontinuities and related nonlinear struc-
tures. Our new model includes Alfvén vortices with embed-
ded discontinuity. A set of vortex solutions is obtained and
the magnetic and velocity vector fields are analyzed.

Several features of this model are important toward ex-
plaining interplanetary observations. The first is the ratio of
normal components to the discontinuityBr/Vr which is not
necessary equal to−1, but can be close to−2. The alignment
between velocity and magnetic field vectors takes place for
vortex crossings.

The second point is that spacecraft crossing such vortices
will typically observe a pair of discontinuities, but with dis-
similar properties. Occurrence rate for different discontinuity
types obtained with theoretical modelling is consistent with
observations in high-speed solar wind stream.

The third point is that the structure crossing will provide
an arc-polarization properties of magnetic field disturbances.
Discontinuity crossing provides a backward rotation of mag-
netic field vector and can be observed as part of a backward
arc. The Ulysses magnetometer data are used to illustrate the
point.

This is a simplified approach to 2D Alfvénic turbulence
developed in terms of ideal MHD and cold plasma environ-

ment, which shows an opportunity to include both Alfvénic
vortices and related discontinuities in the self-consistent
model. Further study will include:

– development of a theory of pressure-balanced struc-
tures with inclusion of finite plasmaβ effects and field-
aligned disturbances;

– estimate of pitch-angle scattering by resonant particle
interactions with vortices and energy transfer perpen-
dicular to the large-scale magnetic field;

– construction of vortex turbulence spectrum in helio-
sphere;

– detailed comparison of the vortex model predictions
with the database of the Ulysses measurements.
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