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Abstract. An important task for the problem of coronal heat-
ing is to produce reliable evaluation of the statistical prop-
erties of energy release and eruptive events such as micro-
and nanoflares in the solar corona. Different types of dis-
tributions for the peak flux, peak count rate measurements,
pixel intensities, total energy flux or emission measures in-
creases or waiting times have appeared in the literature. This
raises the question of a precise evaluation and classification
of such distributions. For this purpose, we use the method
proposed by K. Pearson at the beginning of the last century,
based on the relationship between the first 4 moments of the
distribution. Pearson’s technique encompasses and classifies
a broad range of distributions, including some of those which
have appeared in the literature about coronal heating. This
technique is successfully applied to simulated data from the
model of Krasnoselskikh et al. (2002). It allows to provide
successful fits to the empirical distributions of the dissipated
energy, and to classify them as a function of model parame-
ters such as dissipation mechanisms and threshold.

1 Introduction

The precise knowledge of the statistical properties of micro-
and nanoflares is a step forward in solving the solar corona
heating puzzle.

Due to the central limit theorem, Gaussian distributions
are widespread in Nature. Many unusual properties can be
described as small deviation from the Gaussian such as rare
events modelled by algebraically decaying tails, or power-
laws. In solar physics, it is common to approximate the
Probability Density Function (PDF) of rare and energetic
flares (including micro-flares) by a mixture of power-laws
with different indices, which suggests scale invariance of the
observed phenomena down to more frequent and less ener-
getic events such as nanoflares. However, it is notoriously
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difficult to fit a distribution by a power-law, as for example
it often cannot be easily distinguished from an exponential at
large values of the argument.

Assuming that flares, microflares and less energetic phe-
nomena are distributed according to a (unique) power-law,
the crucial factor that determines the characteristics of the
heating process and its scales is related to the index of the
power-law. If this index is larger than−2 then flares pro-
vide more heating than nanoflares (Hudson, 1991), but not
enough to heat the corona. Conversely, an index smaller than
−2 indicate that efficient coronal heating may occur at small
scales, thanks to an excess in the occurrence rate of small-
scale events as suggested by Parker (1988).

For regular flares (generally located in active regions),
the observations have mostly been analyzed by peak flux or
peak count rate measurements. The results are power-laws,
f (E) ∼ E−α, distributions with indexesα around 1.8 (Dat-
lowe et al., 1974; Lin et al., 1984; Dennis, 1985; Crosby et
al., 1993, 1998; Aschwanden et al., 2001). The later authors
also present a substantial investigation of the total energy in
the flare electrons observed in hard X-Ray bremsstrahlung,
finding α = 1.5 ± 0.02. Soft X-Ray peak fluxes of regular
flares have a power-law index between 1.84 (Hudson, 1969)
and 1.75 (Drake, 1971). The later authors reports an expo-
nent of the fluence (time-integrated flux, proportional to the
total radiated energy) of 1.44. Shimizu (2001) finds a power-
law index between 1.5 and 1.6 for flare thermal energy in-
puts larger than 1027 ergs, as determined from soft X-Ray
brightenings in active regions. He estimates that the energy
supplied by these small flares is at most 20% of the required
amount to heat the corona in active regions. The relatively
flat distribution (α < 2) suggests that the flare below the sen-
sitivity limit cannot be responsible for the rest of the energy
input. The very same microflares can be more easily detected
in the quiet corona. Soft X-ray observations (Benz et al.,
1997) and EUV observations (Harrison, 1997) have revealed
enhanced emission and thus intense heating above the mag-
netic network. A similar phenomenon that forms small X-
ray jets at the limb was reported by Koutchmy et al. (1997).
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It was found that the number of observed events increases
with the sensitivity. It is worth noting that observations of
high-temperature iron lines in EUV originate directly from
the corona, and allow the derivation of the coronal emission
measure with less noise than previous soft X-Ray observa-
tions. In addition to these various power-laws with different
exponents, non-power-law distributions were found for the
statistics of the whole EUV emissions. Aχ2-distribution
(quasi-Gaussian) with a power-law tail of index about−5
for intensities of pixels measured by SOHO/EIT was found
(Aletti et al., 2000), as well as the log-normal distribution
or a superposition of lognormal and Gaussian distributions
for the EUV emission lines in the quiet sun (Pauluhn et al.,
2000).

An important result that supports the hypothesis of Parker
was reported by Krucker and Benz (1998) who have found
from Yohkoh/SXT observations that dissipated energy by
nanoflares has a power-law PDF in the range 1024–1026 ergs
with the index−2.59. This result was confirmed by Par-
nell and Jupp (2000), who estimated the index to be between
−2 and−2.1 making use of the data of TRACE. However,
Aschwanden et al. (2000) have found significantly differ-
ent value of this index (−1.80), suggesting that there may
not be enough energy in microflares or nanoflares to heat
the corona. Differences may arise for several reasons, such
as the ways of selecting events, instrumental sensitivity and
the models used to translate the emission measures into heat
(Benz and Krucker, 2002; Aschwanden and Parnell, 2002),
and may as well reveal difficulties with the statistics.

It is also worth mentioning that Benz and Krucker (1998)
and Berghmans et al. (1998) have noticed that the heating
events occur not only on the magnetic network boundaries
but also in the cell interiors. They pointed out that the statis-
tical properties of the faint events that occur in the intra-cell
regions of the quiet corona manifest quite small deviations
from Gaussian distributions, while supposed nanoflares that
are associated with the network boundaries have more promi-
nent enhancements and stronger deviations (see also Harra et
al. (2000)).

All the observations show how important it is to provide
characterizations of these various distributions as unambigu-
ous as possible. Providing a reliable approximating distribu-
tion is essential for the problem of forecasting and compari-
son with theories and models, and moreover it can be equally
important to be able to classify distributions for instance ac-
cording to the physical process of energy radiation. For this
purpose we use a powerful method proposed by K. Pearson
at the beginning of the twentieth century. Pearson proposed a
classification of distributions according to their first four mo-
ments, each class corresponding to well-known distributions.
From each class an analytical PDF can be extracted whose
agreement with the empirical distribution can be checked by
a standard goodness-of-fit test. Although this method is not
widely used in the Solar physics community, we propose that
it could useful for the characterization of peak-flux emission
measures or energy release and various other problems.

In the present paper, we provide a detailed description of

Pearson’s method and apply it to simulated data from a lat-
tice model proposed in Krasnoselskikh et al. (2002) to be
described in section 3. The model allows for various sources
and magnetic field as well as various magnetic energy dissi-
pation mechanisms. The way how they affect the probability
distribution of dissipated energy is studied by means of Pear-
son’s method.

2 Pearson curves for the approximation of statistical
distributions

A study of empirical distributions and their fit by theoret-
ical ones should fulfill the following conditions (Hahn and
Shapiro, 1967):

– Objectivity. A freehand “fit” to the same data may dif-
fer from person to person, and it is particularly uneasy
to safely estimate power-laws. The use of empirical dis-
tributions eliminates such arbitrariness.

– Automatization. The data analysis should be as much
automatized as possible, in order to allow for fast and
economical analysis of large data sets.

– The results of the test should be put in a form as com-
pact and unambiguous as possible, like a small set of
parameters.

In accordance with the above criterion, Pearson’s distribu-
tions open an opportunity to carry out in most cases a unique
choice of probability distributions and a classification.

Brief reviews of Pearson’s curves are given e.g. in (Hahn
and Shapiro, 1967; Kendall, 1958; Wadsworth, 1998). For-
mulas for each family of them are given in Elderton (1957);
Tikhonov (1982). Moreover, a method for computing spe-
cific Pearson percentiles is also described in Davis and
Stephens (1983). However the problems of classification can
not be solved on the basis of an estimation of percentiles only
(Johnson et al., 1963; Pearson, 1954). These reviews being
relatively condensed, we give a detailed description of the
method for reader’s convenience.

2.1 Pearson distributions

Pearson distributions are defined by the differential equation

dp(x)

dx
=

x − a

b0 + b1x + b2x2
p (x) , (1)

wherea andbi are constant parameters of the distribution.
Depending the value of these parameters, 12 types of curves
can be obtained, which include famous distributions such as
the Normal,γ, β, χ2 and Student which all satisfy Eq. (1)
and are special cases of Pearson curves.

Using general properties of probabilities densities, we
shall derive expressions for the constants of Eq. (1) for uni-
modal distributions (dp/dx = 0 at a uniquex = a, which is
called the mode).
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Eq. (1) can be written as follows

xn
(
b0 + b1x + b2x

2
) dp (x)

dx
= xn (x − a) p (x) . (2)

Integrating by parts both sides of Eq. 2, and assuming that
the distribution decays fast enough at largex

lim
|x|→∞

xn+2p (x) → 0,

we get the following recurrence between the moments

amn − nb0mn−1 − (n + 1) b1mn

− (n + 2) b2mn+1 = mn+1 (3)

wheremn is then–th order moment.
For n = 0, 1, 2, 3, with m−1 = 0 and taking into account

thatm0 = 1, Eq. (3) yields

−a + b1 = 0

b0 + 3b2µ2 = −µ2,

−aµ2 + 3b1µ2 + 4b2µ3 = −µ3,

−aµ3 + 3b0µ2 + 4b1µ3 + 5b2µ4 = −µ4,

whereµn are the central moments of the distribution. (As-
suming without loss of generality that the distribution is cen-
tered,m1 = 0, thenµn = mn.) From this set of equations
one can get

a = b1, b0 = c0/d, b1 = c1/d, b2 = c2/d (4)

where

c0 = −µ2

(
4µ2µ4 − 3µ2

3

)
,

c1 = −sgnµ3

(
µ4 + 3µ2

2

)
,

c2 = −2µ2µ4 + 6µ3
2 + 3µ2

3,

d = 10µ2µ4 − 18µ3
2 − 12µ2

3.

Hence, since the coefficientsa, b0, b1, b2 in Eq. (1) can be
expressed in terms ofm1,µ2,µ3,µ4 only, the Pearson distri-
butions are entirely determined by their first four moments
(provided they exist).

Furthermore, analytical expression of Pearson distribu-
tions can be found from Eq. (1). For centered distributions
(a = b1), the solution of Eq. (1) reads

p(x) = Ceϕ(x), (5)

where

ϕ (x) =

x∫
0

s − b1

b0 + b1s + b2s2
ds. (6)

Features ofϕ (x) strongly differ depending on the roots of
b0 + b1s + b2s

2
= 0, which are

s1,2 = −
b1

2b2

(
1 ±

√
1 −

1

k

)
, k =

b2
1

4b0b2
. (7)

Depending onk, several cases are distinguished:
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Fig. 1. The diagram of different distributions of Pearson curves
family. Hereβ1 = skewness2, β2 = kurtosis+ 3. Theβ2-axis has
been reversed for convenience. The shaded area is forbidden. A
detailed presentation of the different classes is given in the Table 1.

– If k < 0, roots are real and have different signs. This
case corresponds to type-I distribution in Pearson’s clas-
sification, also calledβ-distribution. The distribution is
defined in]s1, s2[ (assumings1 < s2), andp vanishes
outside of this interval.

– If k > 1, roots are real and have identical signs (type-
VI or β-distribution of the 2nd kind). Depending on
this sign, the distribution is non-zero on] − ∞, s1[, or
]s2, ∞[.

– If 0 < k < 1, roots are complex (type-IV distribution).
Thenp is defined on] − ∞, ∞[.

Further distinctions were proposed by Pearson, taking
into account particular distributions and boundaries between
classes. The normal (type VII) and exponential (type X) dis-
tributions are examples of such distributions that fall at the
boundary between classes. The total number of classes de-
vised by Pearson is 12. They are summarized together with
their analytical form in Table 1.

Since Pearson curves are determined by their first 4 mo-
ments, and considering centered distributions, Pearson’s
classification can be summarized by a diagram (fig. 1) in
the (β1, β2) plane, whereβ1 andβ2 are dimensionless pa-
rameters defined by

β1 =
µ2

3

µ3
2

, β2 =
µ4

µ2
2

.
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Table 1. Pearson distributions

Type Parameters Probability density

I

β–distribution

k < 0,

x1, x2 ∈ R,

x1x2 < 0


p(x) = c |x − x1|g |x − x2|h

or

p (x) = cxµ1−1 (1 − x)µ2−1
, x ∈ [x1, x2]

II

β–distribution

k = ±∞

x1 = x2

g = h

p(x) = cex/b1 |x + b0/b1|
1−b0b

−2
1

III

γ –distribution

k = ±∞

b2 = 0, b0 = −µ2
if b1 = −2, p(x) is theχ2 distribution

IV
0 < k < 1

x1, x2 ∈ C



p(x) = c
(
x2

+ r2
)1/2b2

e
−

s
rb2

arctanx
r

or

p(x) = c
(

b0
b2

)1/2b2
(
1 +

x2

b0/b2

)1/2b2

or

p(x) =
1√
πn

0((n+1)/n)
0(n/2)

(
1 +

x2

n

)−(n+1)/2

V
k = 1

x1 = −
b1
2b2

= x2 ∈ R p (z) =
|γ |q−1

0(q−1)

∣∣∣x +
b1
2b2

∣∣∣−q
e
−γ /

(
x+

b1
2b2

)

VI

β-distribution

k > 0

x1x2 > 0

x1, x2 ∈ R


p(x) = c |x − x1|g |x − x2|h

or

p(x) =
1

B(p,q)
xp−1

(1+x)p+q

VII

Gaussian

b1 = b2 = 0,

β1 = 0, β2 = 3. p(x) =
1√

−2πb0
e
−

x2
−2b0

VIII

idem I, with

g = 0, −1 < h < 0, where

h = 0, −1 < g < 0.

p(x) =
(x2−x1)

−h−1

B(1,h+1)
(x2 − x)h x ∈ [x1, x2]

IX

idem I, with

g = 0, h > 0, where

h = 0, g > 0

X

exponential

idem III or IX, with

b0/b2
1 = −1

β1 = 4, β2 = 9
p(x) =

1
|b1|

e
x−b1

b1 for x ≥ b1

XI
idem VI, with

h = 0 whereg = 0

XII p(x) = c
(

c1+x
c2−x

)m

Certain distributions are represented by a single point on
such a diagram, such as the normal at (0,3), the exponential
at (9,4), or uniform distribution at (0,9/5). Other distribu-
tions are represented by curves, such as Student-t (of which
the normal is a particular case, and which belong to type IV)
or theγ –distribution (type III). Finally, certain more general
classes such asβ–distributions (type I) occupy finite area on
the diagram. In particular, power-laws belong to the later
class. However, certain distributions, such as the Cauchy
distribution (which formally belongs to type IV), cannot be
represented on the diagram, if at least one of the first four
moment does not exist.

It is also worth noting that probability distributions are
confined to a certain area in the(β1, β2) plane. Indeed,

for any centered random variableξ , making use of Cauchy-
Bunyakovsky inequality we have

β1 =

〈
ξ

µ
1/2
2

(
ξ2

µ2
− 1

)〉2

≤

〈
ξ2
〉

µ2

〈(
ξ2

µ2
− 1

)2〉
=

=
µ4

µ2
2

− 1 = β2 − 1

Hence, for any probability distribution the inequality

β2 ≥ β1 + 1

must be true. The area which does not satisfy this inequality
is shaded in gray on Fig. 1.
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2.2 Approximation technique by means of Pearson curves.

The parametric technique of approximation of observed dis-
tributions determined from time series by Pearson curves can
be reduced to the following stages:

1. From the time series, one computes the first 4 moments
and(β1, β2), which determines the distribution’s class.

2. According to expressions (4) one takes the values of ex-
perimental moments as the moments of chosen theoret-
ical distribution.

3. Determining the integral (6) and substituting in (5) one
can find the required distribution.

4. Validating the results by comparing the obtained PDF
with the statistical one.

It is worth noting that the estimation of the moments, and
thus the whole procedure, uses all the samples at hand, and
thus uses more information from the initial data than the sim-
plest techniques which consist in fitting an histogram to ob-
tain an empirical Pearson distribution.

To estimate if the chosen theoretical probability density
agrees well with the results of observations (step 4), one can
use the best-fit criteria. This is an important stage, particu-
larly since errors may arise in the estimation of the moments.
The most used (and strictest) criteria is probably Pearson’s
χ2 (Bendat and Piersol, 1986).

3 A statistical model of magnetic energy dissipation in
the corona

The method shall now be applied to simulations of a simple
lattice model for small scale heating in the lower quiet corona
(Krasnoselskikh et al., 2002). The output of the model is a
time series of dissipated magnetic energy transformed into
heat, whose PDF was found to depend on the dissipation
mechanism considered, as well as on the way the magnetic
energy (magnetic flux emergence) is deposited into the sys-
tem. The goal here is to classify these distributions and pre-
cisely characterize their shapes.

The model consists of a 2D grid representing a cross-
section of the low solar atmosphere, were a magnetic field
perpendicular to the grid is distributed in each cell. At each
time step, magnetic energy is deposed into the system. In
each cell, a quantityδB is added to the previous value,
whereδB may be a random variable equiprobably chosen in
{−1, 0, 1} (other types of sources were considered by Kras-
noselskikh et al. (2002); Podladchikova et al. (2001)).

The magnetic energy dissipation and transformation into
heat depends on the currents. Currents are computed as
j = ∇ × B, and circulate on the borders between cells. Two
dissipation mechanisms relevant for coronal physics are con-
sidered:

Fig. 2. PDF of dissipated energy atjmax = 32, reconnection. Dot-
ted line shows the Gaussian distribution with the same mean and
variance as statistical one.

– anomalous resistivity, which arises when the current ex-
ceeds a threshold for micro-instabilities such as modi-
fied Buneman. Here, currents are dissipated whenever
they exceed a given thresholdj > jmax

– reconnection, which here is supposed to occur when a
configuration similar to a X-point occurs (B has oppo-
site signs in neighboring cells) and when the current ex-
ceeds the thresholdjmax.

The energy dissipated over the grid is computed as the sum
of the dissipatedj2. The model is described in more detail
in (Krasnoselskikh et al., 2002; Podladchikova et al., 1999).

4 Estimation of dissipated magnetic energy distribution

A detailed application of Pearson’s technique is given for
simulations of uniformly random sources of magnetic field
on a 128× 128 grid duringt = 105. The currents dissi-
pate by magnetic reconnection when they achieve the critical
valuejmax = 32.

The dissipated energy is bounded byEmin = 1024 and
Emax = 5.416 · 104. This interval is broken into 120 equal
intervals (classes). The histogram of dissipated energy, in the
stationary regime, is shown on Fig. 2.

The procedure is decomposed into the following steps:

– Moments. The average ism1 = 2.225 · 104, the vari-
anceµ2 = 2.901· 107, the skewnessγ1 = 0.28 and the
kurtosisγ2 = 0.37. From this we get

β1 = γ 2
1 = 0.08, β2 = γ2 + 3 = 3.37

– Distribution type. The character of the roots (7) is de-
termined by the value ofk = 0.13. Since 0< k < 1,
the roots (7) are complex, which corresponds to type-IV
in Pearson’s classification.
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Fig. 3. Probability density of dissipated energy atjmax = 32, re-
connection. The dotted line shows the distribution found by Pear-
son’s method. The fit is accepted with a significance valueα = 0.29
according toχ2-criteria.

A special case of this distribution atβ1 = 0, β2 ≤ 3 is
the Student distribution, andβ2 = 3 corresponds to the
normal distribution law (type VII).

– Distribution’s parameters.Using the Eq. (4), we shall
determine the distribution’s parameters

b0 = −2.6 × 107, b1 = −671.7, b2 = −0.03

It is thus quite different from the normal distribution,
which corresponds tob1 = b2 = 0.

– The distribution. For such parameters, the functionϕ

defined by Eq. (6) can be explicitly written as

ϕ

(
x −

b1

2b2

)
=

1

2b2
ln
(
x2

+ A2
)

−
B

Ab2
arctan

x

A
+ c

with

B = b1

(
1 +

1

2b2

)
, A2

=
b0

b2
−

b2
1

4b2
2

.

Hence the probability density according to expression
(5) reads

p

(
x −

b1

2b2

)
= C

[( x

A

)2
+ 1

] 1
2b2

e
−

B
Ab2

arctanx
A

for −∞ < x < ∞, with A = 2.6× 104, B = 9.5× 103

andb2 = −0.03. Given these coefficients,

p (x) = 1.1 × 10−5 e11 arctanf (x)(
f (x)2 + 1

)15

Fig. 4. Tail of the PDF of Fig. 3. Energies belowE0 ≈ 3 × 104

were cut, and data was rescaled between 0 and 1. Theβ-distribution
found by Pearson’s method is shown by a dotted line.

wheref (x) =
x−2.22×104

2.6×104 + 0.39, andC is found from
the normalization condition. Let us notice that this dis-
tribution is centered, and thus shifted with respect to the
original one bym1.

A comparison between the experimental histogram and the
obtained Pearson curve is shown on Fig. 3. The agreement
seems satisfactory both in the core of the distribution (area
of high probabilities) and in its tails (in the areas of small
probabilities). Indeed, Pearson’sχ2-criteria was applied to
check the accuracy of this fit. The hypothesis that Pearson’s
distribution fits the experimental one is accepted with a very
high level of the significanceα = 0.29, atr = 100 (while
for a Gaussian hypothesis,α = 10−9).

5 Probability of high-energy events

As we have previously seen, distribution functions of the dis-
sipated energy are often rather close to the Gaussian, the
most significant difference being in the tail of the distribution
which correspond to high energy events. Another reason to
study high-energy events is that experiments cannot resolve
micro- or nanoflares down to arbitrary small energy, and thus
introduce some sort of low-energy cut-off corresponding to
the minimal energy and scale of the observed events.

To study high-energy events, we have simply filtered out
energy releases smaller than a minimalE0, and replaced the
time series of the dissipated energy values smaller thanE0
by white noise. Typically,E0 can be taken of the order of the
mean plus standard deviation. Then data are conveniently
normalized so thatE varies between 0 and 1.

The histogram of dissipated energy after such a filtering
is presented on Fig. 4. The time series is the same as the
one analyzed in the previous section (the grid is 128× 128,
t = 105, currents dissipate by reconnection andjmax = 32).
The maximum value of energy isEmax = 5.4 · 104 and we



O. Podladchikova et al.: Classification of dissipated energy distributions 329

Fig. 5. Tail of the dissipated energy PDF, for the same parameters
as in Fig. 4 but with a sharp cut-off at low values. The obtained
β-distribution by Pearson’s method in shown by a dotted line.

takeE0 = 2.97· 104. The range of energy valuesEmax− E0
is broken into 120 equal intervals.

Although the distribution seems to follow a power-law, the
found significance valueα = 1 × 10−12 from χ2-criteria
rejects this hypothesis.

5.1 β-distributions

Therefore the choice of probability density was made from
the family of Pearson curves. Here we getb0 = −5.3 ×

106, b1 = −1678, b0 = 0.008 and

β1 = 2.05, β2 = 6.0,

and according to formula (7)k = −16.23. Ask < 0, this
corresponds to aβ-distribution) which is non-zero in the in-
terval]x1, x2[.

Let us write the integrand in (6) as

x − b1

b0 + b1x + b2x2
=

x − b1

b2 (x − x1) (x − x2)

=
g

x − x1
+

h

x − x2
,

where

g =
b1 − x1

b2 (x2 − x1)
, h =

x2 − b1

b2 (x2 − x1)
. (8)

Then

ϕ (x) =

x∫
0

(
g

s − x1
+

h

s − x2

)
ds

= g ln |x − x1| + h ln |x − x2| .

Sincex1 ≤ x ≤ x2, then

p (x) = C (x − x1)
g (x2 − x)h . (9)

As already noted, the power-law is a special case of this dis-
tribution.

The normalizing coefficient is found to be

C =
1

(x2 − x1)
g+h+1 β (g + 1, h + 1)

whereβ(x, y) is theβ-function defined by

β(p, q) =
0(p)0(q)

0(p + q)
=

1∫
0

tp−1(1 − t)q−1dt

(Abramowitz and Stegun (1974)).
Writing z = (x − x1) / (x − x2), we get a more usual form

for this distribution

p(z) =
0 (µ1 + µ2)

0 (µ1) 0 (µ2)
zµ1−1 (1 − z)µ2−1 ,

whose moments read

µ1 =
m1

(
m1 − m2

)
m2 − m2

1

, µ2 =

(
1 − m1

) (
m1 − m2

)
m2 − m2

1

,

wherem1 andm2 are respectively the first and second order
moment of p(x).

Following the same procedure as in the previous section,
and using the values of the moments, we obtain an approxi-
mated distribution density of the following form:

p(z) = 29.15× z0.4 (1 − z)9.0 .

This PDF is shown in Fig. 4 as a dashed curve, and is seen
to coincide with the statistical PDF on the whole interval of
energies. It is not a simple power-law, but a slightly more
complicatedβ–distribution. One can notice that the cut-off
at low-energies is rather smooth, although rather abrupt, due
to the presence of white noise.

If we impose a sharp cut-off at low-energies, by simply
cancelling all energies smaller thanE0, the distribution is
also found to belong to type–I (Fig. 5). However, the param-
eters

β1 = 2.85, β2 = 7.14

are slightly different, and the found Pearson curve reads

p(z) = 9.47× z0.02 (1 − z)8.0

The rather good coincidence of the statistical distribution
with the theoretical one is clear on the figure, and was con-
firmed by theχ2 test.

5.2 γ -distributions

It is necessary to notice that theβ-distributions obtained in
the both of cases of cut-off are located near the border of the
area on Pearson’s diagram, determined by the condition

2β2 − 3β1 − 6 = 0,

between theβ-I distribution (type I in Pearson’s classifica-
tion) and theβ-II distribution (type VI).
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Fig. 6. The same series with the noisy cut-off of low-energy events
as on the figure 4, but approximated by theγ -distribution shown by
a dotted line, and accepted with a significance valueα = 0.33 by
χ2-criteria, forr = 30.

Thus, for a noisy cut-off of lower energies

2β2 − 3β1 − 6 = 0.15.

The points on this border correspond to type III distributions
or γ -distribution. Hence, one can accept the hypothesis that
statistical distribution of high-energy events can be approxi-
mated by such aγ -distribution:

p(z) =
1

−b1 · 0(α + 1)

(
z

−b1

)α

ez/b1,

wherez = x +
b0
b1

− m1; α = −1 −

(
b0
b2

1

)
. Special cases of

this distribution are theχ2-distribution and the exponential
distribution (see the Diagram 1).

Then for the noisy cut-off the distribution looks like (see
Fig. 6):

p(z) = 6.29× 10−5z0.30e−z/1840,

and for the case of a sharp cut-off at low energies:

p(z) = 9.765× 10−7z0.87e−z/1678.

This distribution is closer to the exponential on the Dia-
gram 1. The approximation of statistical distribution shown
on the figures 6 and 7 by theγ -distribution is not less precise
than their approximation by aβ-distribution. Pearson’sχ2–
criteria gives the significance valuesα = 0.33 andα = 0.37
respectively, atr = 30.

6 Dependence of the distribution on model parameters

Although a detailed presentation of the method was given, all
the procedure can be done rather automatically. This allows
to take great advantage of Pearson’s method by classifying

Fig. 7. The same series with a sharp cut-off of low-energy as on
the figure 5, but approximated by theγ -distribution shown by a
dotted line. It accepted with significance levelα = 0.37 atr = 30
according toχ2 best-fit criteria.

and studying parameters’s evolution of the distribution func-
tion as the model’s parameters are varied.

Whereas dissipated energy distribution appears to be
rather insensitive to the source’s properties, it strongly de-
pends on the dissipative processes. Increasing the dissipa-
tion thresholdjmax, PDFs more and more strongly depart
from thermal (Gaussian) distribution. With the growth of
jmax supra-thermal tails of distributions become appreciable,
and a supra-thermal tail forms at high energies (with differ-
ent rates for different sources) and visually remind the power
law.

More precisely, an approximation of the dissipated energy
PDF by Pearson curves method was systematically applied
to several simulation runs with different thresholds and dis-
sipation mechanisms. Results can be summarized as follows:

– For any type of source of magnetic field and dissipa-
tion mechanism, for small (of the order of 1 or smaller)
dissipation thresholdjmax the distribution function of
dissipated energy is close to normal. The best approx-
imation of the statistical law of distribution is the type-
IV distribution in Pearson’s classification. This result is
validated by goodness of fit criteria. A limit case, a nor-
mal law, of this distribution is reached at small thresh-
olds (see a fragment of the Diagram 1 with trajectories
of the obtained functions of distributions on Fig. 8).

– With the growth of jmax, the distributions tends to
β-distribution for all types of sources. The firstβ-
distributions have a global maximum, while when the
threshold is further increased it degenerates to the
monotonous decreasing case, the power-law distribu-
tion (see Diagram 8). It is important to note that the
approach to power-law distribution with the increasing
of jmax is faster with reconnection than for anomalous
resistivity.
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Fig. 8. Evolution of probability distribution of dissipated energy,
with various dissipation thresholds, for the grid 200× 200, and re-
connection (squares) or anomalous resistivity (circles), in Pearson’s
classification. Distribution density evolve from type-IV (nearly
Gaussian, point 3 on the diagram), toβ-distributions. Both curves
approach the power-law (type I(J)) for large current density thresh-
olds, although reconnection processes tend faster toward the power-
law.

– The supra-thermal tails of distributions in high ener-
gies are approximated by the distributions of the type
p (x) ≈ A · x−αe−x , or γ -distributions. A rather nar-
row class of points (the straight line on the Diagram 1)
corresponds to this distribution, on the border ofβ-
distributions. The contribution of power and exponen-
tial co-factors varies depending on parameters.

7 Discussion and conclusion

Pearson’s technique of approximation of data sets by empir-
ical distributions was described and applied to results from
a simple model of small-scale coronal heating. The depen-
dence of the statistical properties of the dissipated energy
(heat) on the dissipation mechanism of magnetic energy was
studied carrying out a series of simulations with various dis-
sipation thresholds depending on currents and various mech-
anisms of dissipation (anomalous resistivity and local recon-
nection).

The results of simulations are summarized in Fig. 8. They
were found to be independent of grid size for sufficiently
large grids. We have found that for any source type of mag-
netic field and dissipation mechanism, the parametersβ1 and
β2 belong to the range of possible distributions permitted by
the Pearson approximation, and that an empirical distribution
could always be found for all cases under investigation.

We could follow in a clear and precise way the qualita-
tive evolution, deviation from Gaussianity and shape evolu-
tion of the PDF as the parameters (here the instability thresh-
old) change. This allowed to show that for both dissipation
criteria, the PDFs followed a similar evolution, crossing the
same classes and deviating farther from Gaussianity by de-
veloping heavier tails. Moreover, it allowed to show that
with the reconnection mechanism the probability densities
tend faster toward the power-law. Indeed, for a given thresh-
old, with reconnection the PDF has a higher skewness, and at
large thresholds (greater than 30) it also has a higher kurtosis
which shows that it develops heavier tails. The formation of a
power-law tail was qualitatively explained by the increase of
the energy storage time between dissipative events by Kras-
noselskikh et al. (2002). As a consequence, events corre-
sponding to high energy releases contribute more strongly to
the heating. Finally, Fig. 8 shows that for very large thresh-
olds the statistics of energy release become quite independent
from the dissipation mechanism, as both dissipation mecha-
nisms produce distributions which are close to each other (in
the (β1, β2) plane) and tend to the same class.

Several more general comments may help clarifying the
strengths and limitations of the method, as we see them.
First, having enough information to find a theoretical distri-
bution is always better than to fit an empirical model to data,
although it is rather rarely the case for such complex prob-
lems as coronal heating. Second, it should be clear that Pear-
son curves do not contain all known distributions, not even
all those satisfying the (not very restrictive for our problem)
technical requirements of unimodality and smoothness. For
instance, a different set of empirical curves was proposed by
Johnson (Hahn and Shapiro, 1967; Wadsworth, 1998). Also,
not all distribution can be characterized by their first four
moments only, although in practice higher order moments
are very often useless due to high statistical errors. Hence,
Pearson curves could also miss several interesting distribu-
tions from a purely theoretical point of view. Although it is
improbable that there will ever exist a method allowing to
find a unique distribution which best fits any given data set
without a priori hypotheses, an interesting property of Pear-
son’s method is that it provides a unique empirical function
among Pearson curves for givenβ1 andβ2, the only uncer-
tainity coming from the possible errors onβ1 andβ2. More-
over, these curves cover a huge range of possibilities. Even
in the case of distributions whose first four moments may not
be theoretically finite, in practice a finite amount of samples
provides finite moments, and we have found in most cases
that Pearson’s technique allows to reconstruct correctly the
distribution on the interval in which samples are observed
(Podladchikova, 2002).

Pearson’s technique also has the advantage to produce an-
alytical expressions for the densities containing small sets of
parameters, and to allow a simple graphical representation
and classification as in Fig. 8. Therefore results can be pre-
sented in a compact form, and can be obtained in a rather
automatic way. Having an analytical form can be useful
for comparisons with theories, interpolating or performing
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Monte-Carlo simulations for example. Moreover, these re-
sults are objective, and do not dependent on a subjective fit-
ting by eye which pushes to fit many slowly decreasing func-
tions by power-laws. Finally we would like to stress that this
technique uses all data points, and thus retains much more in-
formation from the original data sets than the simplest meth-
ods based on binning data into an histogram which is then
fitted by a given curve belonging to one of Pearson’s classes.

We expect that the technique shall also be useful (among
other problems) to test the hypothesis of coronal heating by
small-scale impulsive events, in particular for statistics of
EUV brightenings. At this stage of the coronal heating prob-
lem, which is mainly to select between different possible
mechanisms, a precise and as objective as possible knowl-
edge of the statistical properties of the diverse heating phe-
nomena is essential.

Since the events that are looked for are near the instru-
ments’ resolution and sensitivity, their distribution is contam-
inated by Gaussian instrumental noise and appears as devia-
tions from the Gaussian in the high intensity tail. This com-
plicates a lot the task of selecting events (Benz and Krucker,
2002) and characterizing the shape of their distribution. Pear-
son’s method could provide some help at this stage. More-
over, getting a distribution shape as precise as possible is
even more important if, as is probably the case, the impul-
sive events which contribute the most to the heating are those
below the observational capabilities so that some extrapola-
tion of distributions toward smaller energies is required to
estimate their contribution, even though such an extrapola-
tion is always rather hazardous. Another application would
be to classify the observed distributions, for example above
the magnetic network or the cell interiors, or for regions of
various activity levels. Application to simulations was a first
step before the study of experimental data, which we plan to
do in a near future.
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