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Abstract. We present an overview and some new re-
sults on anomalous diffusion of passive scalar in turbu-
lent flows (including those used by Richardson in his
famous paper in 1926). The obtained results are based
on the analysis of the properties of invariant quantities
{energy, enstrophy, dissipation, enstrophy generation,
helicity density, etc.) - i.e. independent of the choice
of the system of reference as the most appropriate to
describe physical processes - in three different turbulent
lahoratory flows (grid-flow, jet and boundary layer, see
Tsinober et al. (1992) and Kit et al. (1993)).

The emphasis is made on the relations between the asymp-
totic properties of the intermittency exponents of higher
order moments of different turbulent fields (energy, dis-
sipation, helicity, spontaneous breaking of isotropy and
reflexional symmetry) and the variability of turbulen-
t diffusion in the atmospheric boundary layer, in the
troposphere and in the stratosphere. It is argued that
local spontaneous breaking of isotropy of turbulent fow
results in anomalous scaling laws for turbulent diffusion
(as compared to the scaling law of Richardson) which are
observed, as a rule, in different atmospheric layers from
the atmospheric boundary layer (ABL) to the strato-
sphere. Breaking of rotational symmetry is important
in the ABL, whereas reflexional symmetry breaking is
dominating in the troposphere locally and in the strato-
sphere globally. )

The results are of speculative nature and further analy-
sis is necessary to validate or disprove the claims made,
since the correspondence with the experimental results
may occur for the wrong reasons as happens from time
to time in the field of turbulence.

1 Introduction

Geophysical turbulent flows are characterized by rather
large Reynolds numbers. Therefore, it has been a com-
mon expectation that universal relations (such as energy

spectrum E(k) ~ k=33, diffusivity K ~ £ */3) should
be valid in such flows as well as their ¥ two-dimensional”
analogs in quasi-two-dimensional situations.
Richardson (1926) in his famous paper initiated the
modern approach to the subject of turbulent diffusion
(Taylor , 1959), stressing the importance of relative dif-
fusion rather than single-particle diffusion. In particu-
lar, to find out how the coeflicient of eddy diffusifity X
varies with scale £ Richardson plotted K versus £ rang-
ing from 0.05 to 108¢m. His original plot is reproduced
in Fig. la.

Discussing this result Taylor writes:

It will be seen that if the lowest point, which refers fo
molecular diffusion, and the highes! point which refers
to transfer over distances of thousands of kilometers are
left out of consideration the staright line

K =02¢%3 (2)

is @ very good approzrimation to the curve between £ =
10% and £ = 10%¢m. Since the curve shown here seems io
contain all the observalional deta thet Richardson had
when he announced the remarkable law (2), it reveals a
well-developed physical intuition that he chose as his in-
dez 4/3 instead of, say, 1.3 or 1.4 but he had the idea
that the inder was determined by something connecled
with the way energy was handed down from larger to s-
maller and smaller eddies. He perceived that this is a
process which, because of its universality, must be sub-
ject to some simple universal rule. It is perhaps rather
surprising that he did not take the step which Kolmogo-
roff (1941) and Qbukhov took fiflcen years later, name-
ly to express his equalion non-dimensionally using only
the two physical quantilies which could be relevant to e
universal rule regqulating the handling down of energy,
namely ¢ the rate of energy dissipation and v the dy-
nemical viscosily.

The Richardson law was clzimed to be confirmed in a
large number of experiments (Monin and Yaglom (1971,
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Fig. 1. Three interepretations of the data used by Richardson (19286).

1975), Monin and Ozmidov (1985)).

However, in spite of the common expectation there ex-
ist many examples of turbulent flows in the atmosphere,
ocean and laboratory, in which the turbulent difussivity
K as a function of scale £ does not follow the Richard-
son law (Richardson , 1926)

K~ 243, (1)

as well as its "two-dimensional” analog.! Examples of
such behaviour are given in the main text of the paper
for various situations. Here we give an example of dif-
ferent interpretation of the data of Richardson’s original
paper. Namely, it is claimed in Hentschel and Procaccia
(1983) that, excluding the lowest point which pertains
to molecular diffusivity, these data are best fitted by a
relation

Kook 4/3+2u/3,

(2)
with non-zero intermittency exponent g = 0.36 and a
slope of 1.57 in 2 (see Fig. 1b adapted from Hentschel
and Procaccia (1983)). However, this interpretation (as
well as the original one by Richardson) does not take
into account that the upper three points in Fig. 1 cor-
respond to strongly anisotropic (quasi- two-dimensional
- QTD) conditions. It is argued below that in such a
situation the relevant parameter is the rate of produc-
tion of helicity { = (} dh/dt |} rather than ¢ the rate of
energy dissipation. This results in the relation

K~ £5/3, (3)

with the exponent 5/3. The straight line with this slope

is shown in Fig. lc together with the data of Richard-
son’s original paper.

1We refer to such situations as possessing anomalous diffu-
sion (e.g., Zaslaveky , 1992). Recall the dimensionality of {K] =
L2T-1, For an overview and a partial list of references on 'mis-
behavoiur’ of a passive scalar in turbulent flows see Holzer and
Siggia (1994).

It is possible that more appropriate is a related quan-
tity ¢ = (| d(h)/dt |}, where hy = 11-w and @t = u4Vg.
It was shown by Kuzmin (1983) (see also Oseledet-
s (1988)) that V¢ can be chosen in such a way that
— in contrast to h — h is a lagrangian invariant, i.e. it
is conserved along the paths (pointwise) and therefore
for any fluid volume. In the absense of boundaries (or
with some special boundary conditions) the integrals of
h and A coinside. As long as one is concerned with di-
mensional arguments the result is the same employing
either {| dh/dt |} or (| d(h)/dt |), since the dimensional-
ity of both is the same.

One of the natural candidates among the possible
reasons for the deviations from the Richardson law is
the phenomenon of spontaneous breaking of statistical
isotropy (rotational and/or reflexional) symmetry - lo-
cally or globally? 2 In the sequel an attempt is made
to provide a quantitative explanation of anomalous dif-
fusion in terms of this phenomenon.

2 Atmospheric boundary layer

It is argued in Bershadskii et al. (1994) that regions
with large fluctuations of turbulent energy are charac-
terized by strong anisotropy and a local cascade of an-
gular momentum (breaking of rotational symmetry), i.e.
of a quantity of the type of Loytsianskii’s invariant

2This should be distinguished from imposed reflexional sym-
metry breaking as in Cattaneo et al. (1988), Chechkin et al.
(1993), Drummond et al. (1984), Moffatt (1983) and references
therein.

3The intermittent {multi)fractal behaviour of turbulence could
be considered as another possible reason {Hentschel and Procaccia
y 1983). However, while both reasons seem to be intimately relat-
ed (Tur and Levich , 1992) for the velocity field, there are some
indications that the impact of (multi)fractality and intermittency
on dispersion may be small {Borgas (1993), Borgas and Sawford
{1993})).
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where Do, characterizes the subregions {2, with large
fluctuations of turbulent energy

Ic:r_qe/n u? (x)dx ~ rPe=, (3)

It is argued further in Bershadskii et al. (1994) that
the governing parameter is the rate of transfer of angular
momentum

_ dA/v)
c=| 2, (6)
which has the following dimensionality
[€] = [Z} "*P=[1] 2. (M)

It is straighforward to obtain the numerical value of Dy,
from dimensional arguments

Iargef uw?(x)dx ~ L 23 ¢ 13/5, (8)
nr

i.e. that for the field of turbulent energy Do, = 13/5.
These arguments are supported by laboratory and nu-
merical data on asymptotic values of intermittency ex-
ponent g, for large g of turbulent energy (Bershadskii
et al. (1994), Menevean (1991), Hosokawa (1993)),
which gave a value of D, = 2.6+ 0.05.

In particular the parameter £ becomes relevant in
case when the energy of turbulence is supplied at dif-
ferent scales. In such a situation one can expect that
the Richardson-Kolmogorov cascade process will not be
realized since there will be not enough time to allow for
the process of isotropization owing to the action of long
range forces due to pressure gradients. However, the re-
maining anisotropy in such a case allows to assume that
a ’cascade’ of angular momentum mentioned above can
be realized in a considerable range of scales. For exam-
ple, one can expect such a ’cascade’ in a turbulent flow
over urban or rocky landscapes as well as over complex
terrains.

A scaling relation for the effective diffusivity K as a
function of scale £ follows from dimensional arguments
assuming that the only relevant parameter is £ (equa-
tion 8)

K~LW3yg 4/5’ ' 9)

which is different from the Richardson law 1 as well
from the relations describing correspondingly the initial
(K ~ £) and the final (K ~ const) stages of diffusion
(Monin and Yaglom (1971, 1975), Pasquill and Smith
(1983)). An estimate of the spread ¢ of a puff from a
source of a passive scalar as a function of characteristic
time of its motion 7 can be found in a similar way*

4The exponents A1 and Az in the relations K ~ # M oand £ ~ A2
are related by a simple relation A; = 2(A2 — 1)/Az
or Ay = 2/(2 - A1).
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Fig. 2. Vertical spread from a source at a height 50 m at Ages-
ta, Sweden measured by Hgstrém 1964. Adapted from Pasquill
{1983). The slope 5/6 corresponds to the relation K ~ £ 1/3 £ 4/5,

o~ L 318 £ 818 (10)

In case when the puff is advected horizontally o is taken
from the vertical spread, while 7 is estimated as X/V,
where X is the distance from the source and V is the
mean horizontal velocity (Monin and Yaglom (1971,
1975), p.365.) In such a case

o~ X5¢ (11)

In Fig. 2 adapted from Pasquill and Smith (1983},
p.218 are shown results obtained by Hogstrém from a
tube at a height of 50 m at Apesta, Sweden.

A straight line with the slope ”5/6” is drawn in this fig-
ure in order to make a comparision with the relation 11
and also a straight line with the slope ”1/2” correspond-
ing to the long time limit in the statistical theory {Monin
and Yaglom , 1971, 1975). The broken lines have the s-
lopes ”3/2” (Richardson-Kolmogorov theory) and ”1”
(short time limit in statistical theory). It is seen from
the Fig. 2 that at the fnitial stage of the evolution of the
puff of passive scalar it follows the relation 11, ie. the
process of turbulent diffusion seems to be controlled by
the ’cascade’ of angular momentum. A similar trend is
seen clearly for a number of experimental results shown
in Fig. 3 also adapted from Pasquill and Smith (1983),
p.195.

While the above considerations can be applied to the
initial stage of diffusion, in case of the final stage one
has to take into account the presence of organized struc-
tures, which can modify considerably the process of tur-
bulent diffusion (Bershadskii and Tsinober , 1993). It
has been shown in Bershadskii et al. (1993b) that if
in a turbulent flow there exist a finite number of large
scale ‘sinks’ of turbulent energy (such as sclitons, spota-
neously formed large scale vortices, etc.) then at scales
of the order of these objecis it is more appropriate to
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Fig. 3. Crosswind spread measured by different authors. Adapt-
ed from Pasquill {1983). The slope 5/6 corresponds to the relation
o 1/3 £ 4/5 .

use as a governing parameter the ‘dissipation’ rate of
energy per sink - G and not the dissipation rate per
volume unit {¢) as in the Kolmogorov-Obukhov theo-
ry (Monin and Yaglom , 1971, 1975). Since G and {¢)
are of different dimensionality ([G] = [L]*[T]~3, where-
as [(¢)] = [L]*[T]~?), it follows from dimensional argu-
ments that the scaling relation for diffusivity has the
following form

K ~ G318 (12)
Similarly
o~ G536 (13)

at the G-range of scales. In Fig. 4 (adapted form
Pasquill and Smith (1983), p.225) is shown the vertical
spread of elongated smoke puffs observed by Hogstrém
(1964) in Studswick (Sweden), source height 87m for t-
wo values of stability category A = 2.25 (lower points)
and A = 1.5 (upper points).

We have drawn continuous straight lines with the s-
lope 0.6 in this figure for compatison with the relation
o ~ X 3/5 (where X is the horisontal distance from the
source). The dotted lines correspond to the long time
limit of statistical theory ¢ ~ X 1/2 (see also Pasquill
and Smith (1983), p.194 and Cramer et al. (1958)).

3 Diffusion in the troposphere and in the ocean

This question has been addressed in Bershadskii et al.
(1993a) by means of analysis of experimental data on he-
licity obtained in laboratory for turbulent grid, bound-
ary layer and jet flows (Tsinober et al. (1992), Kit et al.
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Fig. 4. Vertical spread of elongated smoke puffs in ABL. Adapted
from Pasquill {1983).

(1993)). It was shown that Kolmogorov (homogeneous)
turbulence is unstable in respect to local states - frac-
tons (for their definition see Alexander (1986)), which
appear to be the subregions with large helicity. These
self-organized states arise spontaneously in subregions
of turbulent flow with essential breaking of reflezional
symmetry with large helicity. The governing dimension-
al parameter for helical fractons is different from the
Kolmogorov one. It is the so called renormalized dissi-
pation rate & (Bershadskii et al. , 1993a), which has the
dimensionality

&= [LY[T]~1-Dy, (14)

with fracton dimension Dy = 4/3 (for details see Ber-
shadskii et al. (1993a}).

In particular, the diffusivity K in fractons follows the
relation

K~ g3/ 817 (15)

and not the law of Richardson 1.

In case, when the number of helical fractons is large
enough , the mean diffusivity (over the whole flow re-
gion) will follow the relation 15 too. Such a possibility
is rooted in the properties of fractons enabling them to
trap the pasgsive scalar inside them for a very long time.
Therefcre, after some initial period most of the passive
scalar will be located within the fractons. On the oth-
er hand, the interaction of fractons with their environ-
ment is controlled primarily also by the parameter &,
i.e this parameter controls the statistical properties of
the stochastic trajectories of fractons. In other words,
the statistical properties of the fractons trajectories will
be determined mainly by the properties of the fractons
themselves and to a much lesser degree by the properties
of their environment. This brings us to the conclusion
that the relation 15 can be valid not only on the scales
of the order of fractons scales , but also in a range of
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Fig. 5. Observations of widths (horizontal standard deviation)
of diffusing tracer as a function of downwind travel time in tro-
posphere. Different symbols correspond to the results of different
authors. Adapted from Gifford (1983). The slope 7/6 corresponds
to the relation K ~ £ 8/7.

much larger scales. It is naturally to call this range the
{fracton range of scales. It is plausible that these prop-
erties of fractons form the basis of the extremely broad
range of universal behaviour of the dependence £(t) in
the troposphere (see Fig. 5). Indeed, it follows from the
relation 15 that

Lt 718, (16)

Looking at Fig. 5 - adapted from Gifford (1983) and
containing data on cloud width versus travel time of
many authors in different conditions - one is amazed
that all these results are well described by a single u-
niversal relation 16 in the range of scales (horizontal
standard deviation) from one mefer to one hundred k-
slometers.

The straight line corresponds to the relation 15 and
the dotted lines correspond to the relation 1 and K ~ £.
As seen from the Fig. 5 the universality of the relation
16 is manifested not only by the single exponent '7/6’
but also by the universal constant in this relation. Ap-
parently in all these experiments the fractons have been
of the same type and the scales of cloud width fell into
the fracton range.
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Fig. 6. Eddy diffusivity versus scale £ in the occan. Adapted
from Okubo (1971).

The relation of X versus £ shown in Fig. 6 is based
on the results obtained in the ocean by Okubo (1971)
(see Fig. T), where an empirical relation £ 2 ~ ¢ 23 was
obtained.

The relation 15 results in £ 2 ~ ¢ /3.

The relations (15, 16) are valid also in some cases
for quasi-two-dimensional turbulence (large horizontal
scales in the troposphere - Fig. 5, and in the ocean
- Fig. 6 and Fig. 7), since fractons - which are three-
dimensional formations of rather small scale - most prob-
ably can be effective in the transport of a passive s-
calar on much larger quasi-two-dimensional scales for
the same reasons as argued above.

Since the above results have been obtained in essen-
tially different external conditions it is naturally to as-
sume that the processes responsible for such universal
behaviour are realized on spatially localized (and com-
pact} carrier with universel dynamics (we call this pro-
cess - fracton transfer of a passive scalar).

It should be stressed that the above results are rather
speculative since in the atmosphere and in the ocean
there are observed relations of X(£) different from 15 and
the geophysical conditions leading to the fracton trans-
fer of a passive scalar are not clear yet. In particular, in
the next section an example of a different behaviour of
turbulent diffusion in quasi-two-dimensional turbulence
1§ given.
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Fig. 7. Mean square separation £ versus time in the ocean.
Adapted from Okubo (1971).

4 Diffusion in real quasi-two-dimensional tur-
bulence - stratosphere

There exists a gualitetive difference between strictly two-
dimensional (2D) and real quasi-two-dimensional (Q2D)
turbulence in spite of the ”smallness” of the difference
in their geometry. In fact, this difference can be rather
large primartly due to its topological nature. In par-
ticular, helicity Hy = [, hydv, helicity density h, =
u - w, superhelicity H,, = [}, hodv and its density h, =
w - rot w and related quantities ® vanish identically in
strictly two-dimensional tubulence, whereas in real Q2D
turbulence H and h can be finite for whalever small rate
of change of flow propertics along the slow variation co-
ordinate. .

Since purely two-dimensional turbulence is unstable
to three-dimensional perturbations it cannot be real-
ized in real 3-D space. However, the 3-D instabilities
can be moderated or even totally suppressed by exter-
nal factors and constraints such as stratification, rota-
tion, magnetic field, rigid walls or strong velocity gra-
dient in some direction. It is argued in Bershadski-
1 et al.  (1993b) that in the presence of such fac-
tors the quasi-two-dimensional regime arises as a re-

5For a review on helicity in laminar and tubulent flows see
Moflatt and Tsinober (1992).

85

sult of a spontaneous breaking of reflexional symmetry
(parity breaking bifurcation), which in turn is a conse-
quence of the instability of two-dimensional turbulence
to three-dimensional helical travelling waves and /or soli-
tons through super- and/or sub-eritical bifurcations. Such
instabilities can be realized on scales ry much larger than
the the characteristic scale rg of energy input into the
two-dimensional turbulent flow 6

The only source of energy for the 3-D disturbances is
the basic two- dimensional turbulent flow with an energy
input at the scale rg. Since the characteristic scale of the
travelling waves r; >> rg there should occur an inverse
(anisotropic) energy transfer to support their existence.
This energy transfer cannot be of a cascade type, due to
the scale separation r; >> ry. For this reason the mean
rate of energy transfer {¢} is not a governing parameter
in this range of scales and its place it taken by the mean
magnitude of rate of spontaneous helicity generation

¢ = (| dh/dt |). (17)

Then in the range r;y >> r >> ry in analogy with the
Kolmogorov theory it follows from dimensional argu-
ments that the energy spectrum has the following form:

Ey(k) ~ ¢33 k=73, (18)

where k is the modulus of the wave number in the plane
of the primary two dimensional turbulent flow.

The expression 18 was obtained by Brissaud et al.
(1973) for the case of three-dimensional isotropic turbu-
lence. However, since in the last case there seems to
exist no natural mechanism of scale separation rp and
r, (see above) the expression 18 appeared to be inade-
quate to the existing experimental data. By contrast in
the case of quasi-two-dimensional turbulence there is a
great variety of experimental and field observations of
spectra with wide ranges in full agreement with 18. We
will limit ourselves with examples in which the differ-
ence between 2D and Q2D turbulence is manifested in
particular in dissimilar difusive properties. Arguments
similar to those used by Corrsin and Obukhov (Monin
and Yaglom (1971, 1975) , p.377) lead to a following
expression for the spectrum of fluctuations of a passive
scalar

Eo(k) ~ (NY T3 p=4/3, (19)

where N =| dc?/dt | An example of spectra of kinetic
energy and temperature from the GASP flights in the
stratosphere is shown in Fig. 8 (Gage and Nastrom ,
1986a).

61t is noteworthy that the situation is different in the case of
3-D instability of laminar Hows. Here, short wave instability can
play an essential role due to the absence of (2-D} turbulent dif-
fusion and of a stabilizing factor (Pierrehumbert (1986), Waleffe
(1990}).



&6

480 wavelength km
I

E, (k)

a4

10 “a

6° i0 10
K| ' km-l

Fig. 8. Spectra from the GASP flights in stratosphere at least
4800 km long: A-kinetic energy; B-temperature. Adaptied from
Gage and Nastrom (1986a).

While the energy spectra are seen to follow clearly
the relation 18 7, the temperature spectrum does not
follow the power law 19 with the exponent ”- 4/3” (see
also Gage and Nastrom {1986b)) but rather the power
law with the same exponent ”"-7/3”". Note, that in Ber-
shadskii et al. (1993Db) it has been erroneously asserted
that the expression of type 18 for E, (!) can be obtained
employing as a governing parameter {. Before address-
ing this additional ”anomaly” we show three results in
which a clear range with the exponent "-4/3” does ap-
pear. The first result presented at Fig. 9 shows the low
frequency part of fluctuations of temperature obtained
from a month-long series of radiosonde soundings tak-
en over Kharkov, USSR, in July 1966 (Vinichenko and
Dutton , 1969).

The second result regarding the spectrum of ozone in the
stratosphere in the GASP (Gage and Nastrom , 1986c)
is shown in Fig. 10. An indication of similar behaviour
of spectra of carbon monoxide can be seen too (Gage
and Nastrom , 1986¢). '

The third result has been obtained for temperature fluc-
tuations in a totally different situation: in a laboratory
flow past a circular cylinder at a distance about 100
diameters downstream of the cylinder on the wake cen-

TOther examples are given in Bershadskii et al. (1993b). In
fact, velocity spectra with the slope close to -7 /3’ were observed
earlier (Pao and Goldburg (1969), Monin and Ozmidov {1985)).
For example, in their Fig. 13.1 Monin and Ozmidov (1985) com-
piled data of different authors on one-dimensional spectra of large-
scale meteorological fields. It should be emphasized thta the slope
.7/3 is much closer to the data than the slope ‘-3’ drawn in this

figure.

SPECTRAL DENSITY (PPBV)® m/rad

WAVELENGTH {km)

Fig. 10. Spectra of ozone in stratosphere. Adapted from Gage
and Nastrom {1986c).

terline (Sreenivasan , 1991). It is shown in Fig. 11 and
exhibits a slope ”-4/3" over more than 1.5 decades (in
Prasad and Sreenivasan (1990) this slope was observed
over more than two decades).

An important feature of this last result is that the ”-
4/3” scaling at the low-wave number end extends
to scales substantially larger than L (Sreenivasan
, 1991) ( L - is the velocity correlation, or ’integral’,
length scale), i.e. this result is consistent both with
the fact that the flow in the wake of a circular cylinder
is dominated by large quasi-two-dimensional structures
and with the use of { as a governing parameter as above.
It should be noted that Sreenivasan (1991) ascribes the
’-4/3’ exponent to insufficiently large Reynolds number.
Howewer, the evidence given in Sreenivasan (1991) for
larger Reynolds numbers is not of such quality as in Fig.
11 and seems to be inconclusive. A slope very close to
-4/3’ was recently obtained in Jaesh et al.  (1994)
for temperature fluctuations in a grid turbulent flow
when the temperature fluctuations were introduced by
fine wires placed downstream from the grid in a paral-
lel array (the spectra were different when the temper-
ature fluctuations were introduced from a heated grid
(Warhaft and Lumley , 1978) or by a teaster (Jaesh et
al. , 1994)). In this last case the velocity spectrum
had the same slope. Therefore it seems that the results
of Jaesh et al. (1994) cannot be explained using the
argument based on the helicity invariant only and the
question remains open.

Let us return to the power law for E.(k) with the
exponent ”-7/3". It can be oblained via dimensional ar-
guments too taking instead of ¢ the following governing
parameter

n={92 ), (20)
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Fig. 11. Spectral density of temperature fluctuations in the wake
of heated cylinder of circular cross section. Adapted from Sreeni-
vasan (1991).

low frequency part is shown in the in-
set. Adapted from Vinichenko & Dut-
ton (1969).

which has the meaning of average variation of ”two-
dimensional” dissipation in the direction z of slow vari-
ation of flow properties. It follows in this case that

N | _i/3,_
Eo(k) ~ (| S a7, (21)

The parameter n has the same dimensionality as ¢ and
therefore the energy spectrum in the form 18 can be ob-
tained empoying 7 as a governing parameter too (Bra-
nover et al. , 1993). The difference in spectra of E (k)
in 19 and 21 arises due to different contributions of
N =|dc?/dt |. One of the possible ways of resolving the
issue of the parameter i versus { is that in the GASP da-
ta the polential iemperature is nof really passive, since in
this particular case the magnitude and shape of poten-
tial temperature spectrum are determined by the same
dynamics that govern the velocity spectra (Gage and
Nastrom , 1986b), whereas ozone and carbon monoxide
are passive (Gage and Nastrom , 1986¢). It should be al-
so emphasized, that in the laboratory experiments men-
tioned above the temperature (Sreenivasan , 1991) and
the dye (Prasad and Sreerivasan , 1990) were passive
and obeyed 19. Therefore, it seems that the parameter
¢ is the relevant one (see the last section for discussion).

Let us lock now at other parameters related to tur-
bulent diffusion.

The turbulent diffusion coefficient K for quasi-two-
dimensional t urbulence can also be obtained via di-
mensional arguments in the following form
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Fig. 12. Mean square relative velocity of balloon pairs in strato-
sphere. Adapted from Morel and Larcheveque (1974).

K ~ d({€2))/dt ~ 13 ¢ 3/3, (22)

where £ is the characteristic scale of the cloud of the
passive substance.

The expression 22 is different both from the case of
3-D turbulence with

K~ g3, (23)

and from the case of purely two-dimensional turbulence
with

K~e? (24)

in the range of enstrophy transfer (i.e. E(k) ~ k=) (in
the range of energy transfer in 2I) case K ~ £ 4/9),

In a similar way an expression for the mean square
relative velocity can be obtained

((defdt)®) ~ ¢33 g 413, (25)

The relations 22 and 25 are in agreement with the results
of experiments on diffusion of passive scalar in the lower
stratosphere (Morel and Larcheveque , 1974) as can be
seen from Fig. 12 and Fig. 13.

Similar behaviour was observed in a laboratory ex-
periment on turbulence in a rotating fluid (Mory and
Hopfinger , 1986) (Fig. 14).

The situation considered in this section (with spon-
taneous generation of helicity in Q2D turbulence) is d-
ifferent from the case of turbulence with ezfrinsically
imposed mean helicity, which can have considerable in-
fluence on the transport properties (see Cattaneo et al.
(1988), Chechkin et al. (1993), Drummond et al.
(1984), Moffatt (1983) and references therein).

5 On fractal properties of turbulent diffusion of
passsive scalar

I It can be expected that fractal properties of tur-
bulent diffusion® should be qualitatively different for

81t is noteworthy that Corrsin (1959) gave a beautiful illus-
tration of fractal nature of turbulent diffusion, see his Fig. 9.
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Fig. 13. Mean square relative velocity of balloon pairs in strato-
sphere. Adapted from Morel and Larcheveque (1974).
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Fig. 14. Mean square relative velocity of particle pairs in a ro-
tating fluid. Adapted from Mory and Hopfinger (1986).



three-dimensional (Kolmogorov) and Q2D turbulence
discussed in section 4.

In order to illustrate this difference consider the ex-
pansion of a cloud of turbulent fluid, which is symmet-
ric in the mean and its cross section passing through its
geometric center (again in the mean) with an effective
radius R(t). Approximating the perimeter of this cross
section by a broken line consisting of sections of length
r the number N of such sections

N~ (r/R) P>, (26)

where D, is the fractal dimension of the perimeter of
the cloud cross section which is related to the fractal
dimension of the cloud surface by the simaple relation:
Dy =Dy +1.

In order to relate the fractal dimension with the ex-
ponent in the power spectrum of passive scalar let us
find the effective rate of increase of the area of the cloud
cross section ds/dt. Using the simple relation

ds = r(8u,dt)N, (27)

where éu, is the velocity of the section r normal to it
(Townsend , 1966), and (4) it follows that

ds/dt ~ v1=D»§u, RD», (28)

The velocity fu, can be estimated via the well known
relation {Monin and Yaglom , 1971, 1975)

Sup ~r%,  where a=(y—1)/2, E(k)~k™",(29)
and the relation 28 becomes®
ds/dt ~ pl=Drte (30)

Finally, since the rate of increase of area of the cloud
cross section is independent of r (which has been used
for its approximation) it follows from 29 that

Dy=1+a=(1+7y)/2 (31)

Let us look at two important cases:

¢ — Kolmogorov turbulence (which is 3D). In this case
v=5/3 and D, = 4/3.

¢ ~ Quasi-two-dimensional turbulence. In this case (see
equation 18) v = 7/3.

These numbers are in good agreement with measure-
ments of area 4 versus perimeter P of rain and cloud
areas, determined from radar and satellite data (Love-
joy , 1982), shown in Fig. 15. We have drawn straight
lines corresponding to Dy = 4/3 and D, = 5/3 using
the relation (Mandelbrot , 1982) A ~ P ¥Pr_ Gifford
(1989) recognized that fwo values of D, are better char-
acterizing the data of Lovejoy (1982) than the single
value D, = 1.35, reported by Lovejoy for all points.

91t should be empasized that the relation 30 is the simplest
(average) of this kind. It becomes more complicated after taking
into account different singularities of the turbulent field.
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Fig. 15. Area A versus perimeter P for clond and rain areas
Adapted from Lovejoy (1982).

IT. It is a common assumption in turbulence research
that turbulent dissipation is well represented by a sin-
gle squared velocity derivative (dissipation surrogate).
However, except of their mean values other properties
of these two quantities are different even in homoge-
neous and quasi-isotropic flows. This problem has been
posed by Gibson and Masiello (1972) (see also Sreeni-
vasan et al. (1977}, Tsinober et al. (1992)). In case
of a passive scalar it is much more difficult to realise
the reasons for such a difference. However, there exist
clear indications that there is a considerable difference
between fractal and multifractal properties of the dis-
sipation rate of passive scalar and its surrogate. For
example it has been shown (Bershadskii and Tsinober ,
1993) that the fractal dimension (Kolmogorov capacity)
of the carrier of the rate of dissipation of passive scalar
is equal to 3, while its’ value for an individual squared
derivative is 5/3 (D). This result is in good agreement
with the one obtained from a recent simulation of tur-
bulent dispersion (Stiassnie et al. , 1993). Some results
adapted from Stiassnie et al. (1993) are shown in Fig.
16 and Fig. 17. It is seen that the fractal dimension
Dy reduces from 3 at the initial moment to about 5/3
at £ = 1sec (Fig. 16). It has been pointed out correctly
by one of the referees that the ’evolution’ of Dy shown
in Fig. 16 is linked to multifractality. At the same time
the dimension of the perimeter of the projection of the
cloud surface increases from 1 at ¢ = 0 to about 4/3 at
t > 0.5sec (Fig. 17).

Similar results were obtained for the dimension of the
perimeter of the large-scale cloud structures in the trop-
ical zone (= 1.34) (Baryshnikova et al. , 1989), clouds
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over Indian region (= 1.3) (Jain , 1989), (Jayanthi et
al. , 1990), in measurements of the Chernobyl spot of
the radionuclides contamination (2 1.37) (Bar’yakhtar
et al. , 1993) and in a laboratory smoke plume {2 1.43)
(Praskovsky et al. , 1993).

6 Summary, discussion and some open prob-
lems

Summarizing we would like first to reiterate the main
points of this communication.

A. It is argued that regions with large fluctuations of
turbulent energy are characterized by strong anisotropy
and a local cascade of angular momentum, i.e. of a
quantity of the type of Loytsianskii’s invariant. These
arguments - which have been supported by laboratory
and numerical data on asymptotic properties of high-
er order intermittency exponents of turbulent energy -
have been used for the analysis of diffusion of a puff of
passive scalar. The result is a scaling law for the turbu-
lent diffusivity K ~ £ ¥/5, where £ is the characteristic
scale of the puff. This relation appears to be in good
agreement with many observations (Bershadskii et al. ,
1994).

B. It is claimed that Kolmogorov turbulence is crit-
ical in respect to the localization effects of subregions
with large helicity (helical fractons) and that the Kol-
mogorov cascade is renormalized in the helical fractons.
The quantiteive consequences of such a renormalization
have been confirmed by the analysis of the asymptotic
behaviour of the higher order intermittency exponents
of the field of helicity, obtained in three different tur-
bulent laboratory flows (grid, boudary layer and jet).
These results lead to a scaling law K ~ £3/7 in which
the turbulent diffusion is controlled by helical fractons.
This scaling law is in good agreement with a variety of
observations in troposphere and in the ocean (Bershad-
skii et al. , 1993a).

€. It is shown that the asymptotic properties of the
higher order intermittency exponents of turbulent diss-
pation and other geometrical invariants in quasi-two-
dimensional turbulence (arising as a result of helical
instability of purely two- dimensional turbulence) are
controlled by a global quasi-two-dimensional cascade of
helicity (Bershadskii et al. , 1993b). Again this is con-
firmed by the results of laboratory modelling of quasi-
two-dimensional turbulence (Branover et al. , 1993}.
In this case the scaling law for the turbulent diffusivity
is K ~ £5/3 This scaling law and the corresponding
fractal and spectral scaling relations are observed in the
large scale stratospheric turbulence.

Thus local spontaneous breaking of isotropy of turbu-
lent flow results in anomalous scaling laws for turbulent
diffusion (as compared to the scaling law of Richardson)
znd are observed, as a rule, in different atmospheric lay-
ers from the atmospheric boundary Iayer (ABL) to the



stratosphere. The breaking of rotational symmetry is
important in the ABL, whereas reflexinonal symmetry
breaking is dominating in the troposphere locally and in
the stratosphere globally.

As has been already mentioned in the abstiract the
above results are of speculative nature (mainly due to
use of dimensional arguments and scalings) '° and leave
several important questions open. Some of these ques-
tions are discussed below.

An important criterion of validity of results obtained vi-
a dimensional arguments is that different characteristics
of the flow obtained in such a way should be consistent
with the same governing parameter. For example, in
the case when the governing parameter is £ {see section
2} the turbulent energy spectrum should have the form

Ey(k) ~ L33 §=3/5, (32)
and the spectrum for E,(k)
E (k) ~ (N)L=Y3 |-11/3, (33)

The available evidence does not allow to make a def-
inite judgement about the existence of spectra 32 and
33. However, it seems that such spectra can be observed
in appropriate conditions. Indeed, a spectrum E.{(k))
with the exponent *-11/5” was observed over almost t-
wo decades in the low wave number region in the exper-
iments in the coastal region of the Baltic sea (Ozmidov
et al. , 1971), Fig. 18. Monin and Qzmidov (1978) see
the reason for such a spectrum in the possibilty of en-
ergy supply over (almost) the whole range of scales (cf.
section 2). It is worth to note that the ”-11/5" spec-
trum is obtained from totally different considerations for
vertically stratified wind turbulence {Bogliano-Obukhov
scaling).

In case when the governing parameter is & (section 3)
the situation is more serious, since the energy spectrum
in this case takes the form

Ey (k) ~ &5/7 g =97, (34)

and is not compatible with the existing experimental evi-
dence. It has been claimed in Bershadskii et al. (1993a)
that in this particular case the energy spectrum can be
not compatible with 15 in the generally accepted sense
due to complicated structure of helical fractons which
are able to trap and detain the passive scalar within
their interior. This claim, of course, requires further
elaboration, but even if it is true the spectrum of E.(k)

E (k) ~ (N)y&3/7 1377, (35)

10Citing R. K. Kraichnan - The wonderfull thing about scaling is
that you can get everything right without understanding anything
(Kadanoff , 1990).

Also the citation from R. E. Normal should be seen as a warn-
ing: It is increasingly clear that deterministic chaos and universal
scaling theories can explain everything (Normal , 1993).
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should be compatible with the corresponding governing
parameler. Again there exist no firm evidence on the
existence of the spectrum 35.

Finally, in case when the governing parameter is {
(see section 4, equation 17) there is an alternative pa-
rameter 7 (Branover et al. , 1993) (equation 20). As
has been poined in section 4 it is more likely that the
relevant parameter is { as having clear physical meaning
and compatible with the existing experimental evidence,
though rather limited in the case of a passive scalar.
In this respect the results of Branover et al.  (1993)
should be seen as supporting the first choise, especially
in view of the resuits for E.(k) obtained in Vinichenko
and Dutton (1969), Gage and Nastrom (1986b) and
Sreenivasan (1991), Prasad and Sreenivasan (1990).
Still, the possibility of (co)existence of both situations
cannot be excluded totally and the issue remains open
including the question about possible relation between
¢ and . A trivial (but almost useless) answer to the
last question follows again from the very dimensional
argument, i.e.

¢=(ldn/dty~n = 55 I, (36)

the physical meaning of which (if such can be found) is
not ¢lear.

It is noteworthy that the '—7/3’ turbulent energy spec-
trum can be obtained from totally different considera-
tions as an exact solution of the kinetic equation for
inertial-gravity waves (Falkovich and Medvedev (1992),
Falkovich (1992)) and from the so called 2.5-dimensional
averaged equations for rotating fluid (Mahalov , 1993).
The relation of thise approaches to the discussed above
properties of 32D turbulence is not clear yet.
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