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Abstract. Due to the local and global impacts of algae
blooms and patchiness on water quality, carbon cycling and
climate, models of plankton dynamics are of current
interest. In this paper, the temporal and spatial patterns in
natural plankton communities are interpreted as transient
and stationary nonequilibrium solutions of dynamical
nonlinear interaction-diffusion-advection systems, A simple
model of phytoplankton-zooplankton dynamics (Scheffer,
1991) is presented in space and time. After summarizing the
local properties as multiple stability and oscillations, the
emergence of spatial and spatio-temporal patterns is
considered, accounting also for diffusion and weak
advection. In order to study the emergence and stability of
these structures under hydrodynamic forcing, the
interaction-diffusion-advection model is coupled to the
hydrodynamic equations. It is shown, that the formation of
nonequilibrium spatio-temporal density patterns due to the
interplay of the deterministic nonlinear biological inter-
actions and physical processes is a rare occurence in rapidly
flowing waters. The two-timing perturbation technique is
applied to problems with very rapid single-directed steady
flows. A channel under tidal forcing serves as an example
for a system with a relatively high detention time of matter.
Generally, due to the different time and length scales of
planktic interactions, diffusion and transport, initial non-
equilibrium plankton patches are simply moved through the
system unless the strong hydrodynamic forces do not
destroy them before.

1 Introduction

The dynamics of spatial and spatio-temporal pattern
formation in nonlinear systems far from equilibrium is of
considerable interest in theoretical biology and ecology.
Several scenarios and mechanisms of structure formation
have been found, e.g.:

i) In his basic paper on the role of nonequilibrium
reaction-diffusion prepatterns in biomorphogenesis, Turing
(1952) proved that the interplay of nonlinear reactions and
diffusion of at least two substances can give rise to
diffusion-induced instabilities of a spatially homogeneous
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distribution, resulting in standing spatial structures. A main
condition for the emergence of such structures is a
significant difference of the diffusion coefficients. Early
generalizers of Turing's work were Gmitro and Scriven
(1966) as well as Prigogine and Nicolis (1967). Most of the
following experimental and theoretical investigations have
been done in the fields of physics as well as physical and
biological chemistry, compare Nicolis and Prigogine
(1977), Haken (1978) and Ebeling and Feistel (1982) for
reviews. The existence of diffusive Turing structures has
been verified only recently in a chemical system (Castets et
al., 1990), i.e. for the chlorite-iodide-malonic acid reaction.
Segel and Jackson (1972) were the first to apply Turing's
idea to a problem in population dynamics: The dissipative
instability in the prey-predator interaction of phytoplankton
and an herbivorous species.

il) A spatially homogeneous distribution can also be
destabilized by a differential or shear flow of the key
species (Okubo, 1967; Evans, 1977; Spiegel and Zalesky,
1984; Rovinsky and Menzinger, 1992; Doering and Horst-
hemke, 1993). This mechanism is free from the restrictions
of the Turing instability on the diffusion coefficients and
can thus be expected to appear in a larger class of physical,
chemical, and biological systems. Recently, Rovinsky and
Menzinger (1993) have reported the differential flow-
induced chemical instability in the ferroin-catalyzed
Belousov-Zhabotinsky system, resulting in wave-like
patterns.

iii) The emergence of convective Bénard cells in an
initially uniform fluid, heated from below, is a well-known
thermal effect (cf. Ebeling and Feistel, 1982). It has its
analogue in biology. This so-called bioconvection (Platt,
1961) appears in dense populations of free-swimming
microorganisms. Certain conditions are required for the
occurence of bioconvection, e.g. an overcritical density of
the population as well as a minimum depth of the culture,
compare also Okubo (1980), Kessler (1986), and Pedley
and Kessler (1992).

iv) Density-dependent dispersal of species towards fa-
vourable habitats in heterogeneous environments has been
described as diffusion in an environmental potential (Shige-
sada and Teramoto, 1978). Spatio-temporally varying
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potentials necessarily destabilize uniform species distribu-
tions (Malchow, 1988).

An impressive summary of spatial and spatio-temporal
pattern formation phenomena in nonlinear ecological and
biological reaction-diffusion-advection-convection models
has been given by Okubo (1980) and Murray (1989).

Because of their role in carbon cycling and in temperature
control and, hence, due to their strong impacts on the global
climate changes (cf. Charlson et al., 1987; Williamson and
Gribbin, 1991), the modelling of plankton population
dynamics is a current problem. In this paper, the local
behaviour and the spatial patterning in a two-component
plankton model due to Scheffer (1991) are summarized.
Local bistability, limit-cycle oscillations, plankton front
propagation and the generation and drift of planktic Turing
patches have been found recently (Malchow, 1993). Then,
the model and its patterns are coupled to tidal hydro-
dynamics in order to study their stability against strong
forcing.

2 A Skeleton Model for Plankton Interactions

The trophic interactions of nutrients, phytoplankton, zoo-
plankton and fish, considered here, are sketched in Fig. 1:

CZooplankton)—-) Fish

Nutrients Phytoplankton

Fig. 1. Trophic levels of the considered system.

Phytoplankton and zooplankton biomass are treated as the
dependent dynamical variables whereas the environmental
factors of nutrient concentration and fish density act as the
external control parameters, driving the system away from
equilibrium. Scheffer (1991) formulated the following
minimal model for this interaction sequence:
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with P and Z as phytoplankton and zooplankton biomass
respectively. N denotes the nutrient level of the system and
F the predation rate of the present fish stock on zooplank-
ton. a is the growth rate of phytoplankton, y the grazing rate
of zooplankton on phytoplankton, ¢ the competition coeffi-
cient of phytoplankton, e the prey assimilation efficiency of
zooplankton and & the mortality and respiration rate of
zooplankton. Hp, Hz and Hy are the half saturation
constants of functional responses and nutrient limitation. P,
Z, Hp and H; are measured in [mg.dw 1'']. N and Hy are

given in relative units, e is a dimensionless parameter. The
dimension of o, v, 8 is [d'1], whereas F is measured in
[mg.dw d! I'']. ¢ is expressed in [mg.dw1 171 d-1].

The nutrient limitation of logistic phytoplankton growth
as well as the dependence of the zooplankton grazing rate
on phytoplankton density are of Monod type. Hence, in the
absence of zooplankton, phytoplankton growth will saturate
at Py = aN/[c (Hy + N)]. Growth limitations by different
nutrients are not considered separately, but an overall
carrying capacity, depending on the total nutrient level, is
assumed (Rosenzweig, 1971). The zooplankton predation
by fish follows a type-III functional response (Holling,
1959; Yodzis, 1989). This sigmoidal response can be
caused by the existence of refuges for the prey or by the
possibility of switching to alternative preys (Murdoch and
Qaten, 1975; Murdoch and Bence, 1987).

2.1 Local Properties of the Model

The local behaviour of system (1,2) has been analysed
graphically by Scheffer by means of zero-isocline repre-
sentations:
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It is readily seen that the nutrient level N only influences the
shape of the phytoplankton isocline (3), whereas the preda-
tion rate of fish F only affects the zooplankton isocline (4).
Combining the graphical with a usual numerical bifurcation
analysis, the following stationary states and bifurcations can
be found for fixed parameters but decreasing predation rate
F of fish on zooplankton:

(I) High fish predation rate: Existence of a non-oscillating
(stable node-type) phytoplankton-dominated state;

(I1a) Generation of another non-oscillating (stable node-
type) but zooplankton-dominated state and an unstable
saddle point through a fold catastrophe (Thom, 1975;
Ebeling & Malchow 1979), emergence of two-node
bistability;

(IIb) Change of the stable-node zooplankton-dominated
state to a stable focus (damped oscillation), emergence of
focus-node bistability;

(IIT) Vanishing of both the stable-node phytoplankton-
dominated state and the saddle point through a fold
catastrophe, ’

(IV) Low and zero fish predation rate: Hopf bifurcation of
the stable-focus zooplankton-dominated state to an unstable
focus and a stable limit cycle (remaining of the typical
phase-shifted prey-predator oscillations).

In a certain parameter configuration, the Hopf bifurcation
(IV) can precede the decay (III) of the phytoplankton-
dominated state, resulting in local limit cycle-node bistabi-
lity of the model. Three typical isocline graphs are super-
posed in Fig. 2.
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Fig. 2. Zero-isocline graphs for parameters:
0=1450=0.175,y=04,e=0.6,c=02,N=25,Hy=
0.1, Hp = 0.6, Hz = 2.5, (a) F = 0.28, node monostability,
(b) F = 0.24, focus-node bistability, (c) F = 0.20, limit-cycle
oscillations.

The parameter values are chosen within a realistic range.
Phytoplankton growth limitation has been chosen to get a
maximal phytoplankton carrying capacity of 7 to 10 mg.dw
1! which is thought realistic under eutrophic conditions.
The zooplankton grazing rate, its assimilation efficiency,
mortality and respiration are taken close to the values given
by Rose & Swartzman (1988) for medium-sized Daphnia.

It can be concluded (Scheffer 1991), that a gradual change
in fish density can cause discontinuous changes in phyto-
plankton and zooplankton density. Furthermore, planktivo-
rous fish tends to damp the planktic predator-prey oscil-
lations.

2.2 Spatio-temporal Patterns

Horizontal and vertical freshwater and marine algae
patterns are well-known from direct measurements, airplane
photographs or satellite images. The mechanisms of their
formation are not known in detail yet, but there must be a
permanent interplay of biological, chemical, and physical
processes to generate, to stabilize or to destroy, to move etc.
these patterns. Several experimental and modelling attempts
have been made to achieve more detailed knowledge (cf.
Nihoul, 1975, 1986; Steele, 1978; Brown and Barnwell,
1987; Ambrose et al., 1988; Cosper et al., 1989; Michaelis,
1990).

Spatial and spatio-temporal patterns in plankton commu-
nities have been interpreted as nonuniform nonequilibrium
solutions of nonlinear interaction-diffusion systems with
constant but weak advection (Malchow, 1993). The results
will be briefly summarized now.

Following Scheffer's minimal approach, the considera-
tions have been restricted to two-species models

oP oz

L Pz _;*1 . 2L _ (P, U7 :

s =1(P.2)~Vfp, = =5(P.2)-T], )
with the fluxes

jx =V(F.O)K(F.t)- Dy VK(F,t); K=P, Z; (6)

where §=Ex(a/ax)+ €,(9/0z) is the Nabla operator in

Carthesian (rectangular) co-ordinates x € [0, L] with unit
vector €, in horizontal direction, and z € [0, D] with unit
vector €, in vertical direction, i.e. a horizontally one-

dimensional cross-section is modelled only. The vector
7 ={x,z} determines the position, whereas the vector

V(F J£)= {u(z.t),w} gives the velocity at position 7. The

velocity field is divergence-free: div V(7,t)= VV(7,t)=0.

The vertical velocity component w describes the settling
of species, and it is assumed to be constant in space and
time. The component ¥ models the horizontal drift which
might vary with depth z. Furthermore, the motion of
plankters is regarded as passive (Fickian) diffusion. Hence,
the diffusion coefficients Dp and D are treated as
constants, i.e. time-, density- as well as temperature effects
are neglected.

Throughout the paper, Neumann boundary conditions are
applied.

The reference and derived magnitudes of the used quanti-
ties have again been chosen to achieve parameter values
within a realistic range of densities, wind shear, sinking
rates as well as vertical and horizontal diffusivity scales.
Accounting for the local properties of Scheffer's model for
different parameter domains, the formation of spatio-
temporal patterns in the corresponding distributed system
has been investigated (cf. Malchow, 1993).

Firstly, the parameter region of local bistability has been
considered. The dynamics of systems with two alternative
stable homogeneous solutions has been investigated
extensively, compare Malchow and Schimansky-Geier
(1985). The two homogeneous states can coexist in space,
forming a diffusive front between them. In one-component
systems, the standing front is structurally unstable and any
fluctuation will force it to move. The direction depends on
the local kinetics. As a result, only one solution will
"survive". In more-component systems, this front can be
stabilized, i.e. conditions for the stable spatial coexistence
of the homogeneous distributions can be found. There are
several analogues to nucleation phenomena. In particular,
there is a critical nucleus size of one homogeneous solution
surrounded by the other. Only nuclei of overcritical size can
grow.

The successful growth of an initially small phytoplank-
ton-dominated nucleus in the surrounding zooplankton-
dominated "phase” has been demonstrated in Malchow
(1993). The phytoplankton-dominated solution "wins the
competion” and, finally, it homogeneously fills the whole
space domain. The added constant shear, . linearly
decreasing with depth, disturbs the smoothness of the
evolving structure.
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Secondly, the capacity of the distributed model to form
diffusion-induced Turing patterns has been elucidated. For

simplicity, the external shear V(?,t) is neglected here.

Following Turing's idea, one has to suppose stability of a
spatially homogeneous stationary distribution

[PE(F.1) . Z*(F.1)]|=const., f(P®,2%)=g(P*,2°)=0;
of the system (5,6) against spatially uniform perturbations.
This distribution can loose its stability against certain
spatially nonuniform perturbations for overcritical ratios of
the diffusivities. The full set of conditions for inducing such
a diffusive Turing instability of a homogeneous two-species
distribution reads

() 0pf°+0,8° <0, 0pf" 078" —3,f°-3p¢° >0, (7)

with
¥(P°.2°%) dg(P*,2°)
s _ S _ A =
aKf aK ’ aKg aK ’ K P»Z» (8)
and

DZ apfs + DP azgs 2

Z\IDpDz(ans 928" —9,f° ‘apgs)

(ii) )

The equality sign in eq.(9) corresponds to the critical point.
If the zooplankton species is supposed to be the
destabilizing activator of the system, then it additionally
holds

Gii) pfS <0, 38°>0 %»1. (10)
Z

The latter conditions have already been derived by Segel &
Jackson (1972). Several examples for the formation of
spatially nonuniform patchy plankton distributions have
been provided for system (5,6) in Malchow (1993), also
taking into account external shear as well as space- and
time-variable phytoplankton growth o due to its depend-
ence on light and temperature. This problem is not the focus
of the present work. For illustration of the possible spatial
structures of system (5,6), a combination of a diffusive front
between the phytoplankton- and zooplankton-dominated
state and a Turing structure, evolving from the destabilized
zooplankton-dominated level, is given in Fig. 3.

The final stationary solution is the stable coexistence of
the phytoplankton-dominated state at the left-hand side and
the Turing pattern at the right-hand side.

3 Coupling to Hydrodynamics

In order to study the effect of hydrodynamic forcing on the
considered nonequilibrium planktic interactions and
patterns, the biological interactions and fluxes (5,6) are
coupled to the hydrodynamic equations. This coupling may
create a number of problems due to the significantly diffent
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Fig. 3. Combination of a diffusive front between the phyto-
plankton- and zooplankton-dominated state and a Turing
structure, evolving from the zooplankton-dominated level
for Dp/D; =200 , L=D=200m, and all other parameters

like in Fig. 2. (a) Three-dimensional plot of phytoplankton
density, (b) two-dimensional cut at mean depth.

time and length scales of biological and physical processes
(cf. Purcell, 1977; Zaret, 1980; Okubo, 1985; Nihoul, 1986;
Nihoul et al. 1994). Therefore, advection and biological
interactions can be of variable dominance. However, if one
considers an area with a nearly vanishing or with a very
rapid steady flow respectively, these processes can be
separately treated, i.e. dominant biological interactions in
very slowly moving waters and dominant transport of any
species distribution in very rapidly moving waters. O'Brien
& Wroblewski (1973) introduced a dimensionless parame-
ter, containing the characteristic water speed and the maxi-
mum specific biological growth rate, to distinguish these
two extremes. They can be treated by making use of the
multiple-scale (two-timing) perturbation technique (Nayfeh,
1973) which has already successfully been applied to
rapidly dispersing species in heterogeneous environments
(Ei & Mimura, 1984; Shigesada, 1984; Malchow, 1988).



For very rapid flows the solution simply appears as the
transported initial condition.

3.1 An Approximative Solution for Dominant Advection

For simplicity, advection with constant speed u > 0 and
constant growth f of a single species P in one spatial
dimension x€[0, L] are considered. The growth and
advection processes are described by

oP(x,t) = oP(x,t)
ot +u ox

=ef(P), an

with initial and boundary condition P(x,0) = s(x) and P(0,?)
= §(0) = Pp respectively. For later convenience, the growth
function is written as the product of a parameter € and the
function f. To realize the case of very rapid advection
processes, it is assumed that € is small enough for making
use of the two-timing perturbation technique. The growth
function f and the advection term udP/ox are set to the
same order of magnitude O(1). The formal procedure of
constructing the approximative solution as a truncated
expansion which is valid for all times up to O(1/¢) closely
follows the treatment given by Shigesada (1984) and
Malchow (1988):
Two different time scales Ty and T are introduced by

To=t; T = &t, so that the time derivative is transformed to

d d ad
o0 dT, T, (12)
A solution is sought with the ansatz
P(x,t)=P(x,Ty,T,e
()= P(To.T,.0) -

=P0(x,T0,T1)+8P1(X,To,T1)+ vee .

Substituting (12) and (13) into (11) and grouping together
terms of the same order in €, one finds in leading order O(1)
the advection equation

Py (x,T,,T;) . oPy(x,Ty.T))

=0
ot ox
(14)
Py(x,0,0) = s(x) ; Po(0,T0,T)) =5(0)=Pp .
Its solution can be written as
Py(x.To. 1)) =Yo(T}) Z(x,T,) ; (15)

where the function Z is again the solution of an advection
equation

BZ(x, To) u aZ(X, TO) =0; (16)

ot ox

s(x)
Z(x,0)= 4—~—;

j:s(x)dx
zor)=-"9 ___Ps
(070) I:s(x)dx _[:s(x)dx

Eq.(16) is satisfied by any function Z(x,Ty) = Z(x - uT,). For
Ty — oo or at least T, 2 L/u, the whole area x [0, L]
will be spatially uniform at

Pp
Z(x,Ty) = ——2— = const. 17
Io s(x)dx

i.e. any spatially nonuniform initial condition has run out.
The function Y (7, ) remained arbitrary up to now, but it

will be determined from the next step of the perturbation
scheme O(g):

oPy(x,Ty,T}) .\ uE)Pl(x,TO,Tl)

aT, ox
oPy(x,T,,T)
= f(Py) - ——2L -
f(P) oT,
(18)
P(x,0,0)=0 ; P(0,T,,T;)=0.
Integrating eq.(18) over [0,L], one obtains
oY, (T,,T,
%-Q +u[P(L,T5,T,) - P,(0.T,,T,)]
° (19)
_ J-Lf(P )dx— aYo(Tl)
0o \0 aT,
with
L
YI(TO’T1)=IO Pl(x,To,Tl)dx N (20)

For Ty —» e, it holds that P(L,T,,T,)— P,(0,T,.T;).
Moreover, the right-hand side of eq.(19) should tend to zero
because otherwise Y, (T0 ,Tl) will become unbounded due
to the occurrence of secular terms. Hence, the function
Y,(T;) is fixed as the solution of

(1) % Py
— DU [ 1Y (1)) —2— |ax
T, { o l)jLs(x)dx
° 1)
=L f| Yo(T}) i

f: s(x)dx
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o(0)= J; s(x)dx.

This follows by equating the r.h.s. of eq.(19) to zero and
substituting the stationary value (17) into Z(x,T,). Finally,

one finds the solution of eq.(11) as a truncated expansion
which is valid for times up to O(1/e):

P(x,t)=Y,(et) Z(x,t) + O(e). (22)

Y,(er) is the solution of the ordinary differential equation

(21). The short-time behaviour of system (11) is governed
by the rapid advection process O(1).

For sufficiently small system length L, it might be that the
effects of the long-time behaviour O(1/e) will never be
recognized. For constant speed u, the latter can be
investigated better by a "moving-boat" technique, i.e.
quantities as nutrients and fish stock, governing the
plankton interactions, are assumed to be variable in space;
N = N(x), F = F(x). Then one can concentrate on the local
interactions with variable control parameters which are then
described by nonautonomous differential equations through
the transformation of space to time dependence ¢ = x/u.

The time-scale separation, described above, is not pos-
sible for tidal hydrodynamics which is taken into account
now.

3.2 Horizontally One-dimensional Tidal Hydrodynamics

The full set of tidal hydrodynamic equations of motion for

the components of the velocity vector V can be reduced for
the horizontally one-dimensional description, given above.
The remaining governing equations are

) 0% d

for the horizontal velocity component u, and

¢  af

?a—;'*'—a‘;us'—Ws:O, (24)

for the water surface elevation {. Here, A, is the turbulent
exchange coefficient and g the gravity constant. ug and wg
are the velocity components at the water surface. Eq.(24)
also represents the kinematic boundary condition for the
surface. Furthermore, one has to take into account the
continuity equation

Ju odw
u w_o 25
PP @3)

as well as the interaction-diffusion-advection equations
(5,6). However, the Fickian diffusion coefficients in the
latter expressions have to be replaced by the eddy diffusion
coefficients because sub-scale processes cannot be resolved.
The main assumptions, leading to eqs. (23-25), are (Siinder-
mann, 1971):

1. All terms in the hydrodynamic equations of motion,
containing the vertical velocity component w or its derivati-
ves, are neglected.

2. Convective terms are discarded.

3. External forces except gravity vanish.

4. Then, the equation of motion for the vertical velocity
component w is simply the equation for the hydrostatic
pressure.

5. The air pressure is constant along the water surface.
Hence, pressure gradients correspond to water level
changes.

The additional appropriate boundary conditions can be
formulated as:

1. At the water surface with wind speed Uy and wind-
drag coefficient A, it holds

Avg—" =\ |Uw| Uy. (26)
Zls

2. At the bottom with friction coefficient r, it holds

:r|uB| Ug. (27)
B

Ju
As

3. The velocity components normal to a closed boundary
vanish.

4. At the seaward open boundary, one has the system-
driving tide

o (t) = Acos(ot - x), ‘ (28)

with maximum water surface elevation A, tidal angular
speed ¢ and phase k.
5. At closed boundaries, it holds a{/dx = 0.

The initial conditions are the motionless water u =w =0
and { = 0, as well as different nonequilibrium spatial
plankton distributions, found without hydrodynamic coup-
ling.

The equations are reformulated for an open channel of
constant depth as a finite-difference scheme on a grid of 80
x 6 points, also considering the stability conditions (Siinder-
mann, 1971; Roache, 1982; O'Brien, 1986; Rood, 1987),
and then numerically integrated. The van-Leer algorithm
(van Leer, 1974; Allen et al., 1991) is used for the
advection scheme in order to minimize the numerical
diffusion.

Some numerical results for the coupled plankton transport
and interaction are given. The hydrodynamic parts of the
program have been run over 4 tidal periods to provide a
stationary water speed oscillation. Then, the transport and
interaction modules have been switched on. At length x=0
the system is driven by the model tide with the angular
speed of the M,-tide, i.e. the semi-diurnal, principal lunar
tide (Pond and Pickard, 1983). Furthermore, the system is
forced at the surface z=0 by an periodically varying wind.
The continuous forth-and-back motion of the water body



leads to the high detention times of suspended matter
observed in estuaries and, hence, it makes the simultaneous
consideration of hydrodynamics and biochemical inter-
actions necessary. The used hydrodynamic parameters are:

Dp=347*10%m? 5!, D; = 6.25%*102 m? s
A,=0.1m2s! A =32*%106, r = 6.0%103
L=80km,dx=1000m,D=20m,dz=4m
A=15m,0=14052*%10%s1, x=-n/f2
Uw=10m s’! cos(c?)

Firstly, the transport and deformation of the phytoplank-
ton-dominated state in the bistable node-node regime of
Scheffer's model, starting with a rectangular nucleus of
about 20km length and 12m depth, is presented in Fig. 4:

P/ (mg.dw/1)

Depth/4m

Length/1000m 60 70

P/ (mg.dw/1)

Depth/4m

(®)

Fig. 4. Transport of the phytoplankton-dominated state in
the bistable regime; (a) after 6 and (b) after 12 hours. F =
0.26, all other parameters like in Fig. 2.

The initial condition is simply transported and deformed.
Switches of the zooplankton- to the phytoplankton-
dominated state due to introduced local fluctuations have
never been achieved. They are suppressed by the governing
physical processes. For t — oo the whole considered area is
occupied by the zooplankton-dominated state due to the
seaward overall net movement. Naturally, the same is valid
for the inverse situation of an initial zooplankton-dominated
nucleus surrounded by the phytoplankton-dominated
"phase”.

9

Secondly, the oscillatory regime is considered. A special
initial condition has been designed to have a rectangular
area of about 30km length and 12m depth at another part of
the local limit-cycle oscillation than the rest, i.e. it is ahead
of time. The resulting spatio-temporal patterns can be seen
in Fig. §.

The area ahead of time first reaches the part of the limit
cycle with more rapid growth, resulting in a local maximum
of phytoplankton density. Though it might be a rare event,
the latter is an example for the capacity of deterministic
nonlinear biological interactions to form localized spatial
density structures which are moved by the governing
hydrodynamic forces.

Thirdly, the interplay of nonlinear planktic interactions
and turbulent diffusion could not generate or stabilize
Turing patterns on their relevant time and length scale. As it
appeared in the bistable regime, local fluctuations are
damped out or simply advected by the powerful external
forcing with its own patterns in space and time.

4 Conclusions

The local properties of a skeleton model for phyto- and
zooplankton interactions (Scheffer, 1991) have been
summarized. Parameter ranges of local bistability, i.e. the
local coexistence of a stable phytoplankton- and a stable
zooplankton-dominated state, have been found. The typical -
prey-predator limit-cycle oscillations appear for a low or
vanishing amount of fish and they are damped out for a
high fish stock. This two-species system serves as a
minimal biological water quality model to study the effects
of coupling the biological to physical processes.

After the analysis of the local properties, the spatial
pattern-generating capacity of the model on a two-dimen-
sional spatial cross-section has been investigated. It has
been referred to recently obtained results (Malchow, 1993)
for dissipative structure formation in systems including
passive species diffusion and constant weak advection.
Conditions for the diffusive (Turing) instability of a homo-
geneous plankton distribution have again been given, and
an example for the stable spatial coexistence of a phyto-
plankton-dominated state and a nonuniform structure has
been provided, emerging after Turing instability of the zoo-
plankton-dominated level.

In order to study the effect of hydrodynamic forcing on
the considered nonequilibrium plankton interactions and
patterns, the biological interactions and fluxes have been
coupled to the hydrodynamic equations. It has been
mentioned that approximate results are available for domi-
nant single-directed advection and dominant interactions
respectively when the time scales can be separated and
multiple-scale perturbation techniques are applicable.

Generally, the latter is not possible for the coupling of
biological processes and tidal hydrodynamic forces due to
the continuous forth-and-back motion of the water body and
the high detention time of suspended matter. Examples have
been provided for both the simple transport and
deformation of a spatially nonuniform initial plankton
distribution and for the formation of a localized spatial
density structure due to the nonlinearity of the underlying
deterministic species interactions which is moved by the
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Fig. 5. Formation of spatio-temporal phytoplankton patterns
in the oscillatory regime; (a) after 72, (b) after 180 and (c)
after 252 hours. F = 0.20, all other parameters like in Fig. 2.

governing hydrodynamic forces.

However, switches from one deterministic steady state to
another as a result of local or nonlocal fluctuations which
are well-known for reaction-diffusion systems with weak
advection, decoupled from hydrodynamic forcing, could not
be reproduced. They are suppressed by the governing
physical processes.
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