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Abstract. We consider Hamiltonian description of
weakly nonlinear wave dynamics in unstable and
nonequilibrium media. We construct the appropriate
canonical variables in the whole wavenumber space. The
essentially new element is the construction of canonical
variables in a vicinity of marginally stable points where
two normal modes coalesce. The commonly used nor-
mal variables are not appropriate in this domain. The
matter is that the approximation of weak nonlinearity
breaks down when the dynamical system is written in
terms of these variables. In this case we introduce the
canonical variables based on the linear combination of
modes belonging to the two different branches of disper-
sion curve.

As an example of one of the possible applications
of presented results the evolution equations for weakly
nonlinear wave packets in the marginally stable area are
derived. These equations cannot be derived if we deal
with the commonly used normal variables.

1 Imtroduction

The methods of Hamiltonian formalism are extremely
fruitful for the description of weakly nonlinear wave dy-
namics (Zakharov, 1968). The most adequate instru-
ment for the description of wave motions in stable me-
dia is the formalism of normal modes. It is based on
the possibility to introduce in the space of wavenum-
bers k the special canonical variables a;{(k} which are
called normal variables.

The quadratic part Hs of Hamiltonian in its expan-
sion into a series in a small parameter of nonlinearity
€ has the well-known simplest form in these variables.
When the number of normal modes is finite, the inte-

n

grand of Hy has the form 3 w; |a;|°, where the eigen-
i=1

frequencies w; corresponding to the normal modes are

positive for equilibriumn media.

In case of instability when a pair of complex conju-
gated roots appears in the spectrum of eigenvalues, we
can construct the transformation from the initial vari-
ables to the canonical normal variables in a similar way.
However the canonical form of Poisson structure and the
structure of quadratic part of Hamiltonian have then the
other form. In the unstable area of wavenumbers k there
are linear solutions that grow exponentially with time
but the quadratic part of Hamiltonian H» is conserved
with time due to its special form.

In the vicinity of marginally unstable point ko where
two different modes coalesce, the matrix of linear trans-
formation from the initial variables to the normal ones
degenerates. We introduce the other canonical variables
connected with the coalesced mode in the vicinity of
the point kg, The corresponding columns of the ma-
trix of linear transformation to the new variables in this
area are the linear combinations of eigenvectors corre-
sponding to two close eigenvalues w. 'The coefficients of
dynamical equations written in these variables are ana-
lytical functions of wavenumber deviation Ak = k — ko
and can be expanded into a series in Ak.

As a consequence we can obtain the evolution equa-
tions describing the dynamics of weakly nonlinear wave-
packets in a marginally unstable area. The introduc-
tion of canonical variables connected with the coalesced
modes demonstrates that the commonly accepted ex-
pression for wave energy density of the form w8L /0w la|?
(see Whitham, 1974) corresponding to normal mode is
not applicable in the neighborhood of a marginally sta-
ble point. The well-known exppession for group velocity
of the form dw/dk fails in this area also.

2 The governing equations

We begin by considering the system of dynamical equa-
tions written in terms of Fourier transform by one-dim-



ensional space variable:

§H
Sy (—k)

where dot indicates differentiation with respect to time.
Here H is the total energy of system, y(k) is the 2n-
dimensional vector of dependent variables, and é/éy is
the symbol of variational derivative; the system depends
on wavenumber k parametrically. The demand for the
initial variables to be real leads us to the condition

y(k) = y*(—k) (2)

where asterisk means complex conjugation. We employ
the approximation of weak nonlinearity and expand the
Hamiltonian H as a power series in the small parameter
of nonlinearity ¢:

y(k) = —1(k) (1)

H:H2+EH3+'--

where the quadratic part of Hamiltonian is equal to

= 3 [0, nuw)ar ®)

and the domain of integration is the number axis. The
matrices of 2n order I{(k), J(k) = I"1(k) and h(k) are

subject to the following conditions:

I(k) = I(=k),  I"(k)=—I'(k) (4a)
T k) = J(=k),  TE)=—T(k)  (4b)
R(k) = h(—k),  h*(k) = (k) (4c)

where the prime means the transposition symbol. So, we
have the dynamical system (1) determined in the phase
space of 2n-dimensional complex-valued vectors y(k),
the wavenumber k being a continuous parameter. The
matrix I(k) defines the Poisson brackets in the space of
smooth functionals in our phase space in the following
way:

{H(y),Gw)} = f (%, I(—k)%)dk _
_ ]( 5G_ o OH_ (5)
A O

where the domain of integration is the number axis. Due
to the properties {4a) the Poisson brackets (5) are sub-
ject to the standard conditions of skew symmetry. The
Jacobi identity is fulfilled the matrix I{k) being inde-
pendent of the variables y(k). If the functional G(y) is
equal to yp (k') - the value of the p-th coordinate of the
vector y in the point &/, then

6G(y)
6ym(k)

where 62, is the Kronecker symbol, and 8(k — k') is the
Dirac delta function. It is easy to see that if we take

= 8. 6(k — k')
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Hamiltonian as the second functional in (5), the dynam-
ical equations (1) can be written in the form (Arnol’d,
1978; Dubrovin et al., 1984):

vi (k) = {H, y;(k)} = Vj'

where Y¥ is the Hamiltonian vector field determined by
the Poisson structure.

So the dynamical system (1) is the Hamiltonian sys-
tem determined in a phase space that is in fact a com-
plex infinite-dimensienal manifold. We can also con-
struct in this manifold the symplectic 2-form {z,y)
connected with the Hermitian structure {Arnol’d, 1978;
Dubrovin et al., 1984). This symplectic form is deter-
mined by the inverse matrix J(k):

0z,) = = [ (k). TRk
The matrix I(k) 1s not degenerate, and the inverse ma-
trix J(k) exists. It follows from the conditions (4b) that
Q(z,y) = —Qy,z). Tt is easy to show that the value
of the Poisson brackets defined on the two functionals
is equal to the value of the symplectic form on the two
vector fields determined by these functionals:

{H,G} = q(x x%

A special example of the Hamiltonian system descri-
bed above is the obtained by Goncharov (1986) system
of equations describing the weakly nonlinear waves in
the piecewise linear n-layer stratified flow. Let’s take a
closer look at this system.

‘We consider the n-layer inviscid two-dimensional par-
allel stably stratified flow with a piecewise constant den-
sity profile and a piecewise linear velocity profile. We
shall deal with the irrotational perturbance of this flow.
The associated velocity perturbations have the form
U; = V¥;, where ¥; is a velocity potential satisfying
Laplace’s equation in the j-th layer. The disturbances
are assumed to decay to zero as |z} — oo. At the inter-
faces z = hj + n;(2,t), where n;(2,1) is the vertical dis-
placement of the j-th interface at z = h;, the traditional
kinematic and dynamical boundary conditions should be
satisfied. As it was shown in (Goncharov, 1986), after
the introduction of dependent variables n;{x, ), ¢; (2, 1),
where ¢; = ¥, 11 —¥; is the difference of velocity poten-
tials in the two neighbouring layers (in the Boussinesq
approximation), the governing equations for description
of wave perturbations have the form:

6@3-— g 6H y'éﬂ . OH
52717 "Bz by %e T 5,
where v; is the vorticity jump of unperturbed flow at
the j-th boundary. In terms of Fourier-transform by =

the system (6) has the form (1), where the vector Y (k)
is equal to

Y (k) = (¢1(k), -

(6)

s¢n(k)= 7?1(’“):"':77:1(’“))- (7)
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The matrix I(k} of order 2n has the form:

--iUl /IC ].

I(k) =

and the matrix that determines the quadratic part of
Hamiltonian in equaticn (3} is equal to

h(k) = ( am (k) —jm )

Vim Tim

vim = KV (R )80, rim = (98p;/p; + vV (R;)) &7,
where ajm(k) is the symmetric matrix of order n, its
form depending on the boundary conditions, It is easy
to see that these matrices satisfy the conditions (4).
Note that the physical variables are not always the ca-
nonical ones, and this is the case.

A second special case of the system (1) is the de-
scribed by Zakharov (1974) canonical system of the sec-
ond order that has the following form in terms of Fourier
transform:

. 6H . 6H
P= 3?1 q=— 6p* '

The first term in the expansion of the Hamiltonian
has the form (3), where A is the second order matrix
satisfying to conditions (4c).

The canonical systems constitute the particular case
of the type (1) systems.

3 The construction of normal variables

Qur aim is the construction for the considered systems of
the special type of canconical variables that are called the
normal variables, everywhere over the region k, in both
stable and unstable domains. Note that when we do the
linear transformation to the new dependent variables
a, y = Za, where Z 1s a transformation matrix, then
evolution equation for a has the same form (1) but with
the matrices J and h interchanged into

J = 2/(—R)IRER), b = Z(-RREZE).  (8)

Let Z be an eigenvector of the following hnear sys-

tem of algebraic equations correspomding to linearized
gystemn (1):

(h{k) = iw(k)J(k)) Z(k) =0 (%

where eigenvalue w is a solution of a dispersion equation

det | h(k) — fw(k)J (k)] = 0. (10)

It follows from (4), (9), (10) that Z(k) = Z*(—k) for
both the real and complex values of w.

The space of eigenvectors consists of 2n linearly in-
dependent vectors Z;. We can naturally unite them
into pairs at any point k. There are three possible vari-
ants. If the two eigenvectors Z;,, Z;j2 correspond to the
different real values of w;1, wj2, we unite them into a
pair if the values of expressions (Z}, (k), J (k) Z;1(k)) and
(Z3(k), J(k)Z;2(k)) have opposite signs. Due to the
propetties (4) these values are purely imaginary for real
eigenvalues. In the unstable case when a pair of complex
conjugated eigenvalues w;1, wjz appears in the spectrum
of eigenvalues, we unite the corresponding eigenvectors
into a pair. A pair of eigenvectors corresponding to one
double root w in the spectrum of eigenvalues are the
eigenvector and the adjoint eigenvector. Linear transfor-
mation from the vector of initial variables to the normal
variables a;q 2 is

T

Y(k,t) = > (Zi1(k)ajr(k, 1) + Z52(k)asa(k, 1) (11)

i=1
where
aj1,2(k,t) = ajy o(—k, ). (12)

The other form in which we can write down the trans-
formation of initial variables to the normal ones can be
constructed if we introduce the vector Z; (k) defined as

o [ Zu(k), k>0
%) ‘{ Zpa(k), k<0, (13)
and the function

) _ ajl(k)s k> 0,

s ={ 9 170 (14)

It follows from the properties of the eigenvectors and
from (13), (14) that

* _ sz, k>0x
Zj (_k) - { Zj]_, k< 0,

Int these variables expression (11) has the form

ki _ a‘j?ak>0)
aj( k)_{ajl,k<0

Y(k,t) = ) (% (k)a;(k,t) + Z7 (=k)aj(=k,1)). (15)
i=1

So, instead of 2n varlables defined on the semi axis
k > 0, we are looking for the n functions a; defined over
the whole axis. In these new variables the transformed
matrix J(k) determining the symplectic structure is

B,

J(k) = ’ B; (16)



where Bj; is the second order matrix with coefficients
B = (Z(=), T(R)Z(k)),

80 = (27 (k), T(k)Z(k)), (17)

b‘” = (Z;(—k), J (k) 2} (—k)),
bé’; = (27 (%), J(R)Z} (—k)).

Below we omit the index j. The other coefficients in
the transformed matrix (16) are equal to zero due to
orthogonality of eigenvectors corresponding to different
eigenvalues, if they are not complex conjugated. It fol-
lows from (1) that the equations for variables a(k) and
a*(—k) corresponding to any pair of eigenvectors are

s (A% ) =) oo

We can write down (17) in terms of eigenvectors Z:

{ (Z5(k), J(k)Z1(k)), k>0,
(Z1(k), J(k)Z2(k)), k<O,
b (Zf(k),-](k)zl(k)L k>0,
T EEIBER), k<0 g
{ (25(k), J(k)Z2(k)), k>0,
(Z1(k), J(k)Z1(k)), k<O,
b _{ (Z1(k), J(k)Z2(k)), k>0,
2T (23(k), J(B)Zu(K)), k<.

These coefficients are different depending on the three
different situations referred above: (e} a pair of real
eigenvalues: (b} a pair of complex conjugated eigenval-
ues; (¢} a double eigenvalue.

In case (a), the coefficients §;; and by are equal to
zero owing to the orthogonality of eigenvectors Z; and
Zy. It can easily be shown that due to the properties
(4) the expression (Z*(k),J(k)Z(k)) is purely imagi-
nary, its sign changing with the change in the sign of
k. Any eigenvector Z is determined correct to arbitrary
constant ' choosing which we can write the coefficients
of matrix B equal to: by = —17, bio = i. Let L(w, &) be
the right-hand side of the dispersion equation. Then the
expression dL/8w is the wave-action density. It can be
easily shown (Whitham, 1974; Voronovich, 1979), that
OL[0w = i(Z*(k), J(k)Z(k)), where Z(k) is the eigen-
vector normalized in some definite way. The arbitrary
eigenvector has the form Z = (CZ, and it follows that
the constant C = 1/4/0L/0w, 8L/3w being positive
due to our choice of eigenvector pairs. As a result the

equation (18) for a pair of real eigenvalues has the form
(Zakharov, 1968):

a(k) = —i—k

In case (b) when a pair of eigenvectors Z;, Zs cor-
responds to the two complex conjugated roots, it fol-

lows from (4) that the expression (Z7(k), J(k)Z2(k))
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is not equal to zero. However the coefficients b1s, by
in the matrix B are equal to zero due to the relations
(ZF(k), J(R)Z1(k)) = (Z3(k), J(k)Z2(k)) = O following
from (4) in case of complex conjugated eigenvalues. It
is easy to show that in this case

bii(—k)=—b11(k), baa(—k)= — baa(k}), br1(—k)=b3,(k).

By the appropriate choice of arbitrary constants we
can make the coefficients 611, b2 equal to

bn(k) = bgg(k‘) = z'sgn k

and as a consequence we obtain from (18) the following
equation corresponding to the complex conjugated pair
of eigenvalues:

o
Fa(—F)" (21)

We can also pose the sign of the right-hand side of
(21) to be minus.

So, the canonically conjugated pair in the case of in-
stability is (k) and {sgn ka(—#k), i.e. the canonical Pois-
son structure has the other form in this case, as it was
shown in (Goncharov et al., 1993).

Now we regard the third case (c), when a pair of
variables a(k) and e*(—k) corresponds to one two-fold
root w. Let Z; be the eigenvector, and Z; be the ad-
Joint eigenvector. Then we can write Z; = C’l,?: and
Z, = C1Z, + CgZ where Z is the eigenvector nor-
malized in a definite way. Note that the wave-action
density dL/0w = 0 at the point of root coalescence,
and the quantity (Z7(k), J(k)Z1(%)} = 0 at this point.
If the connection Co = —C1 Lyww /{210 ) between the
arbitrary constants holds, then (Z(k), J(k)Za2(k)) = 0.

So, the coefficients b19 = b3; = 0. For the other two
coefficients the equations bi1(—k) = —b11(k), baa(k) =
—b5%, (k) hold. It can be shown that for positive values
of k the term by1(%) is equal to

a(k) = isgnk——

bii(k) = —(Z3(k), J(k)21(k)) =
s 1620
= -CiCH(Z,,12) =ilCy) YR

The sign of b;1(k) depends on the sign of §%L/d.°.
If it is positive when k is positive, we take (' equal to

1/4/38%L/8w?, and get b1y (k) = isgnk. As a result we
obtain the canonical equations in the same form (21) as
for the unstable case. In the opposite case the coeffi-

cients by1, bap change sign, and the right-hand side of
(21) has the opposite sign.

4 The expression for wave energy density in
normal variables.

We have to obtain the transformed matrix » determin-
ing the quadratic part of Hamiltonian (5) in the normal
variables according to the formula (8).



238

It is easy to show that the transformation to normal
variables leads to the following expression for h(k):

hy

h(k) = ’ hy

where h; are the second order matrices with coeflicients

R = (Z(=k), h(k) 7 (k)),
hé? = (27 (k), h(k)Z;(k)),
h{y = (Z;(—k), h(k)Z; (—k)),
hé? = (2} (k), h(k)Z; (~k)).

Omitting the index j we write down the part of qu-
adratic term of energy Ho that corresponds to the pair
of new variables a(k), ¢"(—k) for three different cases.
In case (a) when normal variable a(k} corresponds to a
pair of real eigenvalues, the energy of this stable mode
has the form

E= / w(k)a(k)a* (k)dk

where
k>0,

wi(k),
w(k) = { walk), k<0

In case (b) when we have the complex conjugated pair
of roots wy and wg = wi,

= %f(—w(k)sgn ka(k)a(—k) + c.c.)dk

where the area of integration is that of instability.
In case (c), when the two eigenvalues coalesce, the
energy density is

Ey = :I:%w(k') sgn k(a(k)a(—k) +c.c)+

+ 0(—k)a(k)a" (k),

(22)

where 4+ and — correspond to the two points bordering
the area of instability, and #(&) is the Heaviside function.

5 Canonical variables in the vicinity of margin-
ally stable points.

As we can see from the previous sections, the method
of normal modes is not appropriate for description of
weakly nonlinear waves in the vicinity of a marginally
stable point. The expansion of Hamiltonian written in
terms of normal variables in the small parameter of non-
linearity € fails in the vicinity of this point. The reason
is the normalization of the eigenvectors by the quan-

tity /0L/0w, that is small in this area. In the area

k = kg+ Ak, where Ak is of the order ¢!/, the following
terms in the expansion of Hamiltonian are comparable
with the first one, and should be taken into account.

The coefficients of dynamical system written in terms
of normal variables are not analytical functions of % in
the vicinity of ko because of the singularity of w(k) in
this area. The usual statement {Ostrovskiy et al., 1986)
that wave energy density in the vicinity of marginally
stable point tends to zero (the waves of zero energy)
means only the fact that the notion of normal mode con-
nected with the pair of dispersion equation roots does
not hold in the domain where these two roots are close
to each other. In this case we should deal with the coa-
lesced mode.

In case when two eigenvalues w;; and wj» are close to
each other, we take in the matrix of transformation in-
stead of eigenvector the following vector Z; (k) (omitting
index j below):

Zi(k)+ 2o 2 k 0,

k) = { ( ((Z)l(k) (Z?/k)) 2 0,
. | —alk)(Z1(k) — Za2(k)), k>0,
2k = { (Z1(k) + Z (k)2 k<O,

where (k) = 1/(wi(k) — w2(k)). These are the linear
combinations of the two eigenvectors corresponding to
the two close eigenfrequencies.

This transformation is valid in the vicinity of the
marginally stable point &g, where wq = wq, in both sta-
ble and unstable areas adjacent to the point kq.

The properties of function a(k) are the following ones.
In the stable area adjacent to the marginally stable
point it is a real quantity (e(k) = a*(k)), and a(k) =
—o{—k). In the domain of instability, when w; and
wq are complex conjugated, it is purely imaginary, and
a(—k) = o(k).

The coefficients of corresponding matrix B are de-
termined by the equations (17), if the vector Z(k) is
determined by eq.(23). In the domain of stability they
are

bus = bay = —(a(k)/2)sgn (2], J 21) — (23, 1 22)),

b = 2(k)[(ZI!JZI)+(ZZSJZZ)1 k> 01
2= (L/O[(27,72)+ (25,720, k<0,
- (1/4)[(2"?:'}21)+(253J22)]1 k> 0:
H oHE)N( 2T, T21) + (25,7 22)), k<0
It follows from these equations that bia(—k) = ba1(k).

It is necessary to remind that the quantities (27, J2)
and (Z;,JZ3) are purely imaginary and have the op-
posite signs. Normalizing the eigenvectors Z; we can
obtain the equations

(Zf5 le) = _(235 JZZ))
—alk)ysgnk(ZF,JZ) = isgnk



if the quantity {(e(k))(Z7,JZ;) > 0. As a result the
matrix B corresponding to the two close eigenvectors is

equal to
_ f isgnk 0
B= ( 0 isgn k )

and dynamical equation in new variables a(k), a*(—k)
has the same form (21) as in the case of instability.

Now we consider the unstable area of wavenumbers
adjacent to the marginally stable point. In this area
(Z5,J21) = (25,72,) = 0, and the expression A(k) =
(Z},7Z2) # 0, and (Z5,7J2) = —A*(k). As a con-
sequence the coefficients of matrix B in the domain of
instability are equal to:

(k) = baa(k) = 2 en k (AR 4 X (0],
_ [ al(BR) - M E)], E >0,

bralk) = { (1/D[Ak) — A (k)], k<0,

2

1/4)[ME) — A (k)], k>0,
b?l(k) = { ((yz(k))g:}\((k)) _ }\*(k)):%’ k<0,

Normalizing the eigenvectors we can do A to be real,
and as a consequence b1y = b2z = sgn ka{k)A(k), b2 =
ba1 = 0, and, varying the arbitrary constants, we obtain
bi1 = bgg = isgnk. So, one can see that the equation
{21) is valid in both stable and unstable areas of k ad-
jacent to the marginal point kg.

Now we have to express the quadratic part of Hamil-
tonian in the new wvariables corresponding to the two
close eigenvalues. The components of matrix A; in the
new variables are equal to (omitting calculations):

hi1(k) = hoalk) = Q(k) = —sgn k(w1 +w2)/2,

= 1, k>0,

=t ={ Do iZ0

— By — (wl—w2)2/4, k>0,

paa(h) =0k = { TP 2D
and, as a conseguence, the expression for the part of en-

ergy corresponding to the coalesced mode in new vari-
ables has the form:

E= f [%(Q(k)(a(k)a(—k)+c.c.)+Q(lc)a*(k)a(k) dk
Ak

(23)
where Ak is the interval of proximity of roots. The
width of this interval depends on the parameter of non-
linearity ¢, namely, Ak = e*kq.

It is quite natural that at the point kg, where w; =
wa,we obtain for the coeflicients of energy matrix & the
following values:

hii(k) = —wsgnk, has(k) = —wsgnk,
hrak) = hax (—F) = 0(F),

The expression for energy density in this point coin-
cides with (23).
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6 Evolution equations in the neighbourhood of
marginally stable points.

The introduced canonical variables are useful in many
applications. In particular the amplitude equation for a
weakly nonlinear wave-packet in the neighbourhood of
a marginally stable point kg can be obtained using the
canonical equation (21). It is convenient to write down
this equation in terms of variables a;{£) and as(k). We
have in mind that now

— (k)! k>0! * _ "aﬂ(k)ﬂ
“(’“)“{ (k) k<0, “("”—{ ay(k),

It follows from (21) that the linearized dynamical
equations in these variables are

a(k) = —il(w) +wa)ay /2 + ag],
ax(k) = —i [(wl + walae /24 {wy — w2)2a1/4] .

k>0,
k<0

(24)

We will now obtain the evolution equation for the
wave-packet with wavenumbers adjacent to the point
of coalescence of modes &y from both of sides. It means
that we take into account both stable and unstable parts
of spectrum. We regard the case when ky is not the
critical point of instability, 1.e. 8L/8k # 0 in this point.
When the relation L/9% = 0 holds, evolution equation
differs from that given below.

It is necessary to mention that if the function w(k) is
singular in the vicinity of ko, the functions (w; + wq)/2
and (w; —w3)?/4 are analytical functions in the vicinity
of kp, and can be expanded into into a series in powers
of Ak =k — ko.

For simplicity we shall obtain the evolution equation
for a wave packet in case n = 1, when the dispersion

‘equation has the form (Zakharov, 1974):

A(k)
B(k) — i

B* (k) + iw

det C(k)

=0,

and the solutions of it are

w12 = Bin(k) = JAR)C(R) — BL(F)
and, as follows,
(w) +w2)/2 = Bim(k),
(w1 = wa)?/4 = ARYC(R) — BL(K) = 6(k), (ko) = 0

Both the functions are analytical in the vicinity of
marginally stable point ko, and can be expanded into a
series by Ak =k — ky:

Bim (k) = Bim (ko) + Bl (ko)Ak + ... = k),
(k) = ¢'(ko)Ak + ¢" (ko)A + . ..
We substitute them into the equations (24}. Then we
eliminate the variable as and set

ay = A(r, k) exp(—iQ(ko )t),
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where the amplitude A(r, ) depends on the slow time r.
After this we do the inverse Fourier transform and as a
result we obtain the linear part of the evolution equation
for amplitude A(r, z) of wave packet in the vicinity of
marginally stable wavenurmber k. It is evident that the
main nonlinear term is of the third order in A, and we
obtain the evolution equation in the form:

o 0\ A 1,0%4

Retaining the terms of main order in linear part, na-
mely, proportional to 8A/8x and 82A/872, we obtain
from (25) the evolution equation in the form of the
nonlinear Schrodinger equation, but with the roles of
z and 7 interchanged. It is clear that the linear part
of evolution equation (25) can be written heuristically
by the way suggested by Whitham (1974). If the spa-
tial and temporal modulations of amplitude A{7, k) in
wave-packet are small compared with the characteristic
wavelength and wave period, the linear evolution equa-
tion for A is

L(UJ(] -+ 18/0t, ko + zc‘?/c‘):r:)A(a:, t) = 0.

Expanding /. as a series in partial derivatives we ob-
tain the linear part of equation (25). Nevertheless the
proposed method is extremely useful, because the cal-
culation of the nonlinear coefficients using Hamiltonian
approach is essentially simplified comparing with calcu-
lation based on the primitive equations.

Using the equations (21) we can derive the evolution
equation for nonlinear wave packet in the domain of in-
stability when the two modes are weakly coupled. Let
the dispersion equation have the form

(w = Qu(k)){w — Q2(k)) = 22 (k),

where (k) is a small quantity. It is evident that so
long as 21 (k) and 25(k) are well apart, we can consider
these waves geparately, If there is a point ky, where
1(kg) = Qa(ko) = wo, i.e. the two dispersion curves
regarded separately intersect, we have in the vicinity of
this point the following expansions:

wy + W

D) :wo-}-(Vi-l-Vg)Ak/g

(w1 —w2)?
4

where Ak = k—ko, V1 » are the group velocities of waves
considered without coupling, ie. ¥; = €,. Substituting
these expressions into equations (23), eliminating cen-
tral wave frequency, doing the inverse Fourier transform
and taking into account the main nonlinear terms, we
get the following equation:

= i(Vl — Va)2AR? £ €2(k)

g 9N(2 9 201 4 — 2
(-E—FVIBJL') (37+V23m)Ai€ (k)A-—TlAl A.

It is a well-known evolution equation at the point of
linear inviscid instability in the absence of the mean
flow variation (Dodd et al., 1982).

7 Conclusion

For a broad class of Hamiltonian systems describing the
weakly nonlinear wave dynamics for finite number of
modes the general method of canonical variables con-
struction is proposed. Both in the stable and unstable
area the canonical variables are the standard normal
variables connected with the notion of normal modes.
In the vicinity of marginally stable points when we have
the two-fold roots in the spectrum of ecigenvalues cor-
responding to linearized system of equations, the new
canonical variables connected with the notions of co-
alesced mode are constructed. The eguations written
in these variables can be used to obtain the evolution
equations in this domain.
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