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Abstract, Using finite data sets and limited size of study
volumes may result in significant spurious effects when
estimating the scaling propertics of various physical
processes, These effects are examined with an example
featuring the spatial distribution of induced seismic
activity in Creighton Mine (northemn Ontario, Canada).
The events studied in the present work occurred during a
three-month period, March-May 1992, within a volume of
approximate size 400 x 400 x 180 m® Two sets of
microearthquake locations are studied: Data Set 1 (14,338
events) and Data Set 2 (1654 events). Data Set 1 includes
the more accurately located events and amounts to about
30 per cent of all recorded data. Data Set 2 represents a
portion of the first data set that is formed by the most
accurately located and the strongest microearthquakes.

The spatial distribution of events in the two data sets is
examined for scaling behaviour using the method of
generalized correlation integrals featuring various
moments ¢. From these, generalized correlation
dimensions are estimated using the slope method. Similar
estimates are made for randomly generated point sets
using the same numbers of events and the same study
volumes as for the real data. Uniform and monofractal
random distributions are used for these simulations. In
addition, samples from the real data are randomly
extracted and the dimension spectra for these are
examined as well.

The spectra for the uniform and monofractal random
generations show spurious multifractality due only to the
use of finite numbers of data points and limited size of
study volume. Comparing these with the spectra of
dimensions for Data Set 1 and Data Set 2 allows us to
estimate the bias likely to be present in the estimates for
the real data. The strong multifractality suggested by the
spectrum for Data Set 2 appears to be largely spurious;
the spatial distribution, while different from uniform,
could originate from a monofractal process. The spatial
distribution of microearthquakes in Data Set 1 is either
monofractal as well, or only weakly multifractal. In all

similar studies, comparisons of results from real data and
simulated point sets may help distinguish between genuine
and artificial multifractality, without necessarily resorting
to large numbers of data.

1 Introduction

A number of methods have been applied in recent years
to quantitatively analyze structures in geophysical systems
whose behaviour is best described as non-linear. The
concepts of simple self-similarity and monofractals came
to be widely used. Some of the geophysical phenomena to
which monofractal distributions have been applied are
crustal fragmentation (e.g., Aviles and Scholz, 1987;
Turcotte, 1986), size distribution of earthquakes (e.g.,
Aki, 1981; Rundle, 1989), spatial distribution of
earthquakes (e.g., Kagan and Knopoff, 1980; Hirata,
1989; Eneva, 1994; Henderson and Main, 1992; Main,
1992), and mining induced microearthquakes (Coughlin
and Kranz, 1991; Eneva and Young, 1993).

At present, the notion of monofractals appears
insufficient in many cases to address the richness of non-
linear behaviour. The natural framework for scale-
invariant non-linear dynamic systems seems to be better
described by multifractals (e.g., Grassberger, 1983;
Hentschel and Procaccia, 1983; Halsey et al., 1986;
Pawelzik and Schuster, 1987). Some of the various
applications of multifractals have been in the fields of
astrophysics (e.g., Atmanspacher et al., 1988); physics of
atmosphere, rain, and clouds (e.g., Lovejoy and
Schertzer, 1990; Tessier et al., 1993); sediment studies
(e.g., Block et al., 1991); crustal faulting (Davy et al.,
1992); and earthquakes (Hirata and Imoto, 1991).

Among various methods to evaluate the fractal
dimension when simple invariance is assumed, the
correlation integral method has been particularly widely



used (Grassberger and Procaccia, 1983). In this method,
the correlation dimension is estimated as the slope of the
straight segment of the correlation integral C(r)} in a
double-logarithmic plot, log(C(r))-log(r), where r is
distance and C(r) is number of pairs of points with
distances smaller than r. The notion of correlation
dimension has been extended to generalized correlation
dimensions (e.g., Grassberger, 1983; Hentschel and
Procaccia, 1983) featuring various moments q of the
correlation irtegral; the generalized correlation dimension
for q=2 is the standard correlation dimension. The
generalized correlation dimensions have been used to
evaluate the global scaling properties displayed by various
experimental data sets (e.g., Block et al., 1991;
Atmanspacher et al., 1988; Kurths and Herzel, 1987;
Hirata and Imoto, 1991).

Theoretically, the spectra of generalized dimensions for
different moments q have specific characteristics for
multifractals, while no dependence on q is expected for
monofractals. On the basis of this, with few exceptions
(¢.g., Block et al., 1991; Marshak et al.,, 1993),
multifractality has been assumed in various studies as
soon as the spectra of dimensions estimated from the
experimental data appeared to have the shape expected for
multifractals. The problem with such assumptions is that
the experimental data sets feature certain measurement
errors and are always finite, in terms of numbers of data
points and size of study volume. This can result in
spurious multifractality in the estimated spectra. As the
generalized correlation integrals naturally show saturation
for large distances, it has been frequently assumed that
estimates below the points of saturation are essentially
free of the edge effect for limited data sets. In fact, the
existence of statistically good straight segments (scaling
regions) in the correlation integrals still does not mean
that these segments are unaffected by saturation and other
factors. For this reason, the estimates of the correlation
dimensions can be quite low and since the effect of finite
data sets varies for different moments, monofractals may
appear as multifractals.

In the present work the slope method using the
generalized correlation integrals is applied to the spatial
distribution of seismic activity induced in mines. The
particular data used here originates from Creighton Mine,
a copper-nickel mine near Sudbury, northemm Ontario
(Canada). Previous work with earthquake catalogues from
various seismically active areas (e.g., Eneva et al., 1992;
Eneva, 1994) suggested that the spatial distribution of
seismic events is in many ways more informative than
their temporal distribution. This motivated the emphasis
on spatial distribution in the case of mining induced
seismicity as well (Eneva and Young, 1993). Particular
attention is payed here to the effect of limited data sets on
the estimates of the global scaling properties. This effect
has important implications for the conclusions one can
derive from all similar studies, as well as for the practical
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use of the parameters estimated. It is noteworthy that
these estimates can be effectively used even in the
presence of significant bias due to the finite data sets.
This is possible through comparison of the results from
the real data with estimates from randomly generated sets
of points with the same limitations as the real data. Since
the underlying distributions for the randomly generated
sets are known (uniform and monofractal distributions are
used here), the edge effect can be readily evaluated for
such simulations. This allows us to estimate the errors
committed when the real data sets are studied.

2 Data

The data used in this work was supplied by Inco Ltd., the
owner of Creighton Mine. The study period is March-
May 1992. Creighton Mine is characterized by the highest
level of seismic activity among all the nine nickel-copper
mines operated by Inco Ltd. in the Sudbury Basin of
northern Ontario; more than 46,000 events were recorded
in this mine during the three-month study period. The
excavation process i quite intensive, as evidenced by
more than 400 blasts during the same period. Rockburst
concerns have been high here, especially after a
particularly damaging M3.6 event in 1987 (Morrison and
MacDonald, 1990). 'Rockburst’ is a mining term to
indicate an event causing more damage than certain preset
criteria.

The study volume is relatively small, about 400 x 400
x 180 m® in size. It is located below 2 km depth. A dense
array of 64 receivers of the so-called MP-250 systems
encompasses this small volume. Magnitude estimates are
not available for the events recorded by this array. The
sizes of the largest events, however, are known, as events
of magnitudes above 1.5 are completely recorded by the
local and regional seismic networks. Seven such events
occurred in and around the study volume during the three-
month period, the strongest of those being a M2.6
rockburst. Thus, the majority of events featured in the
present work are microearthquakes with unknown
magnifudes; had their magnitudes been measured, many
of them would be negative.

The data used here consists of microcarthquake
locations obtained by using an algorithm specifically
designed to work with the arrivals recorded by the MP-
250 systems (Ge and Kaiser, 1990). The range 8-15 m is
probably representative for the lower limit of the location
accuracy for this data (Eneva and Young, 1993). Only the
more accurately located events were used for the present
study, Data Set 1 includes 14,338 microearthquake
locations (30% of all located events). Although
magnitudes for these events are largely unknown, a
special ranking procedure (Ge and Kaiser, 1990) allows
us to assume which of the microearthquakes may be the
strongest ones. Thus, Data Set 2 (1654 events) includes



184

Z (x100 m)
215 20.5

Y (x100 m)

X (x100 m}

Fig.1. Microearthquake locations for Data Set 2 (Creighton Mine,
March-May, 1992): horizontal plane and two vertical cross-sections,
(x,¥), (z,¥) and {x,z), respectively; x, y, and Z are mine co-ordinates.

about 1/9 of Data Set 1 and consists of the most
accurately located and the strongest events (Fig.1). The
same study volume (size above) was used to extract the
events in both data sets. While the events in Data Set 1
fill in the entire volume, the effective volume covered by
Data Set 2 is smaller, not more than 85% of the initially
imposed study volume; a difference that will play an
important role for understanding the results in this work.

3 Technique

The global scaling properties of the two data sets are
evaluated using the so-called generalized correlation
dimensions D@ (e.g., Grassberger, 1983; Hentschel and
Procaccia, 1983). These are evaluated as the slopes of the
straight segments displayed by the generalized correlation
integrals (e.g., Pawelzik and Schuster, 1987; Kurths and
Herzel, 1987; Atmanspacher et al., 1988) in double-
logarithmic plots. The generalized correlation integrals are
given by:
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The Heaviside function © above counts how many pairs
of points (x,,x)) fall within distance r. The spectrum of
dimensions D® can be used to evaluate the distribution
for multifractal behaviour. ¢=0, 1, and 2, correspond to
the better known capacity {or fractal), information, and
correlation dimensions, respectively.

Figure 2 shows schematically the D®-spectrum for a
hypothetical data set characterized by a multifractal
behaviour. In contrast, a monofractal is characterized by
the same dimensions for all values of the moment ¢; i.e.,
the spectrum D® ideally turns into a horizontal line. The
special cases of uniform random distribution of points on
a plane or in a volume would be indicated in Fig.2 by a
D®-spectrum that is a horizontal line through the values
of 2 or 3, respectively. It is repeatedly emphasized further
that this will not be observed unless the number of points
considered and the size of the volume in which these
points are distributed are infinite for all practical
purposes. Otherwise, the spectrum may exhibit a spurious
multifractal behaviour for both monofractal and uniform
random point sets. One cannot then reliably conclude that
a finite data set is characterized by a genuine multifractal
behaviour only because the D@-spectrum exhibits a shape
expected for multifractals. In view of this, the scaling
properties of the spatial distribution of mining induced
seismicity are evaluated not only for the real data, but
also for simulated points that are randomly generated by
using uniform and monofractal distributions.
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Fig.2. Schematic representation of the D®-spectra for multifractals (solid
line) and monofractals {dotted line).
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Fig.3. Generalized correlation integrals for: (a) Data Set 2 (1654 events); (b) 1654 randomly generated points using a uniform distribution; (¢)
1654 randomly generated points using a monofractal distribution with fractal dimension 2.35. Generalized correlation integrals from right to left

of each plot are calculated for q changing from -25 to 25 with step 1.

4 Results

4.1 Correlation integrals for Data Set 2 and simulated
point sets

Figure 3a shows the correlation integrals D9(r) for Data
Set 2 (1654 events), obtained using Eq.(1) for integer
values of g between -25 and 25. If the effect of using
limited data sets can be ignored, the "spreading” pattern
observed would be indicative for a multifractal behaviour.
However, the two remaining frames in Fig.3 show that
this effect has to be accounted for in the case studied
here. The generalized correlation integrals in these frames
are obtained from 1654 randomly generated points using
two different distributions: uniform (Fig.3b) and
moncfractal (Fig.3c). Uniform random distribution is used
in order to compare the generalized correlation integrals
obtained from the real data (Fig.3a) with the integrals
from points occurring with equal probability everywhere
in the study volume. The monofractal distribution used
here (code provided by A. Davis, private communication)
is characterized by a fractal dimension 2.35. The point
co-ordinates in this case are generated by using the mid-
point displacement algorithm to simulate fractional
Brownian motion with exponent 1/2,35. The particular
choice of the value 2.35 will be explained below.

The volume in which the random points are generated
is determined by the real data; that is, this volume is of
irregular shape and covers closely the real Data Set 2.
This is achieved by randomly generating points in a
paralielepiped encompassing the real data, but retaining
only the points that fall within a prescribed distance from
the real events. The distance used here, 15 m, is compa-

rable to the location error. Although this procedure
introduces additional geometric structure into the cloud of
randomly distributed points, it most adequately reflects
the fact that the volume covered by the real data might
contain non-negligible "holes" inside. The resolution with
which one has to account for such effects is obviously
disputable. As the distance used to construct the irregular
volume increases, the spreading pattern seen in the family
of generalized correlation integrals shrinks. It is to be
noted, however, that the generalized correlation integrals
for a volume with regular shape and no inner geometric
complexity (not shown here), still exhibit a spreading
pattern (i.e., spurious multifractality}, although to a lesser
extent. Since the spreading observed in Figs.3b and 3¢
can be only due to the use of limited data sets in terms of
size and geometry of the study volume, and/or number of
events, the appearance of the generalized correlation
integrals for the real data in Fig.3a cannot be reliably
considered as a sign of multifractality. It will be shown
later that some types of limitations may have a stronger
effect than other types.

4.2 Choice of scaling range

The method used here to evaluate the dimensions D@
consists of calculating the slopes of the straight segments
of the integrals from Fig.3. The intent is to avoid the
edge effects appearing in the correlation integrals for too
small or too large distances. More often than not, it is not
being particularly discussed in the literature how these
straight segments are chosen. One of three methods can
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Fig.4. Two-point slopes estimated from the generalized correlation
integrals for integer values 2<q<5.

be used: (1) choosing arbitrary segments which are visibly
straight (most frequently used by authors); (2) calculating
the slopes for each two consecutive points of a given
generalized correlation integral and choosing the distance
range over which the two-point slopes do not vary
significantly; and (3) introducing some formalism to
evaluate the "proper” straight segment for a given data
set.

One example of the third method applied in the case of
D@ js the work of Nerenberg and Essex (1990), They
determine two characteristic distances, the distance of
depopulation (r,) and the distance of saturation {r,), as
functions of the embedding dimension (d), the number of
points (N), and the linear size (2R) of the hypercube
encompassing the data set: r,=2R(I/N)'* and
r,=R/(d+1). It is to be noted in these estimates that the
saturation distance (r,) depends on the size of the volume
(2R) and the embedding dimension (d), but not on the
number of points (N). Thus, using more data points
extends the scaling range only at the lower end; i.e., for
small distances. A proper scaling region is the one
between distances r, and r,. If r,<r, for a particular data
set, a proper scaling region cannot be defined. In practical
applications, it is safe to start the scaling range quite
below r, (for example, at r,/3). The role of r,, however,
is more decisive. In practice, the correlation integrals do
not necessarily bend at the distance of saturation.
Reasonable straight segments can be observed for
distances significantly larger than r,. The estimates of the
correlation dimension evaluated over the whole visible
straight segment is then quite low, as significant saturation
is already involved. Thus, a proper scaling range is not
necessarily identical with the distance range over which
the best straight segment from a statistical point of view
can be defined (see (1) and (2) above).

Figure 4 shows examples of two-point slopes calculated
from the generalized correlation integrals as functions of
distance for the real Data Set 2. Similar curves were
evaluated for the random data sets as well (not shown).

Figure 4 is representative for other values of >0 as
well; in fact, the variability for q>>5 (not shown) is even
less noticeable. This plot indicates that a reasonably good
scaling range from a statistical point of view is the one
over distances 30-120 m (1.5-2.1 in log-scale). This is the
range used further to evaluate D for ¢>0. In contrast,
the variability of the two-point slopes for q<0 is very
large and these are not considered further.

To see how the range chosen above (30-120 m)
compares with the proper scaling range, the formalism
described by Nerenberg and Essex (1990) is applied to the
specific case studied here. The following values are used:
d=3:; N=1654; and 2R falling between 180 and 400 m
for the initially imposed volume. Note that 2R is smaller
for the effective volume. If one considers the proper
range for the practical evaluation of D to be between
r,/3 and r,, a range 1-23 m at least and 3-50 m at most is
obtained.

There is, however, an additional parameter to be
seriously considered here: the location error. It does not
make sense to either consider distances smaller than this
error or attempt to distinguish between points of the
correlation integral spaced more closely than the error.
This leaves us with a proper scaling range 15-50 m at
best, over which one can only consider points of the
integral evaluated for distances 15 m or more apart. There
are at least two arguments, however, that point to the
necessity for a larger distance to be used as a lower limit
of the scaling region. First, from statistical point of view,
15 m (or 1.2 in the log scale of Fig.4) is already outside
the relatively flat portions of the two-point slope curves.
Second, given that 15 m is representative for the location
error here, it is wise to consider the beginning of the
straight segments at a larger distance, following the
estimates made by Kagan and Knopoff (1980) for the
radius of influence of the location error of earthquake
hypocentres. Thus, 30-50 m may be a more appropriate
range than 15-50 m, although it is too short to be
practically useful. As indicated above, the range 30-120
m appears a reasonable choice from a statistical point of
view, although it is much wider than the presumed proper
range. Obviously, if we insist on either using the proper
range or not performing any analysis, not much choice is
left and valuable information has to be dropped.

No theoretical frame (like the one described for q=2 by
Nerenberg and Essex, (1990)) is available to estimate the
proper ranges for values of 2, but similar to the case
of D@, we can assume that these ranges are shorter than
the distance ranges over which statistically good straight
segments are observed. Nonetheless, it is possible to
proceed with using the range 30-120 m for all 9> 0; this
does result in low values for the dimensions, but the bias
can be readily evaluated through comparison with the
effect on randomly generated points scattered according
to known distributions. The term "bias" here is not to be
understood by analogy with standard deviations, for
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Fig.5. Spectra of dimensions (¢ >0) for Data Set 1 and Data Set 2 (all bold lines) shown together with the average + 2 standard deviations of
the spectra obtained from randomly simulated sets of 1654 points each (all thin lines), using a uniform (a) and monofractal (b) distributions.
Dotted bold line in (a) and (b) - D*¥-spectrum for Data Set 2. Solid and dashed bold lines in all frames - mean + 2 st. dev. estimated for 100
samples from Data Set 1 (1654 events each). Grey bold line in (¢} - spectrum for the whole Data Set 1 (14,338 events). Thin solid and dashed
lines in (a) and (b) - mean + 2 st. dev. estimated from 50 randomly simulated sets of points in the volume of Data Set 1. Thin dotted and long-

dash lines in (a) and (b) - same, but for the volume of Data Set 2.

example. It represents in fact a one-sided bias that only
leads to lower estimates, unlike standard errors equally
likely to result in measurements above or below estimated
means.

1t is to be noted that, in principle, correlation integrals
like the ones in Fig.3 above, reflect the combined effect
of the fracture process and the artificial inhomogeneity
imposed by the excavation, the blasting, and the geometry
of the mine openings. Thus, significant non-linearities in
the proper scaling range would not necessarily indicate a
lack of scaling in the seismic process. The mine openings,
however, are unlikely to have any effect here, as their
diameters are much smaller than the lower limit of 30 m
used in the present work. The inhomogeneities due to the
excavation and the blasting are potentially much more
important, but no significant non-linearities are observed
within the scaling range chosen here.

4.3 Comparison of Data Sets 1 and 2

The generalized correlation integrals shown in each of
Figs.3b and 3¢ above were calculated from a single set of
simulated points. Thus, a single dimension spectrum
corresponds to each of these families of curves. It is,
however, unacceptable to compare the spectra for the real
data sets with isolated randomly generated point sets. For
this reason, 50 point sets are simulated in each case,
resulting in 50 simulated spectra. The average + 2
standard deviations of those are used for comparison with
the spectra for the real data,

Similar computations are performed for Data Set 1 as
for data Set 2 above, using the same scaling range 30-120
m. Figure 5 compares results from Data Sets 1 and 2.

Several issues need to be addressed before this
comparison is performed. First, recall that although both
data sets were initially extracted using the same imposed
volume, the effective volumes covered by the two data
sets are different, For this reason, the volumes used for
the random generations are different, as in each case the
randomly generated points were compared with the
respective real event locations and only the ones within 15
m from them were retained. Second, in order to compare
the two data sets, one should initially use the same
numbers of events, Thus differences, if any, would not be
due to the use of different numbers of events. For this
reason, while a single D@-spectrum is used for Data Set
2 (1654 events), 100 D¥-spectra are calculated for Data
Set 1 instead of using all events (14,338) at once. The
latter is done by re-sampling the real Data Set 1, so that
100 samples of 1654 events each (same number as in Data
Set 2) are randomly extracted from Data Set 1. Thus, the
real Data Set 1 is not represented by a single spectrum,
but by the average + 2 standard deviations, obtzined
from these 100 samples. The random re-sampling of real
data here is not to be confused with the random
simulations. As the procedure of re-sampling is faster
than the random simulations, 100 samples from Data Set
1 were used versus only 50 random simulations.

Figure 5a shows the D-spectra for the real Data Set 2
(a single spectrum} and Data Set 1 (average spectrum +
2 st. deviations from re-sampling), together with results
from 50 randomly generated sets of 1654 points each
(average + 2 st. deviations from random simulations). If
the data sets were not limited, the spectra for the random
data would have been represented by horizontal lines
through values around 3 (since the embedding dimension
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is d=3). Figure 5b shows the same as Fig.5a, but the
random simulations use monofractal distributions with
fractal dimensions 2.35 and 2.40 for Data Set 2 and Data
Set 1, respectively. Finally, Fig.5¢ displays only results
for Data Set 1, showing again the real D@-spectra
calculated from the re-sampling (1654 events per sample),
together with the D®-gpectrum calculated from the whole
Data Set 1 (14,338 events).

Figure 5a first suggests that the D%-spectra for the real
data is significantly different from the “spuriously
multifractal” spectra for the uniform random points. It is
apparent that the generalized correlation dimensions for
the random data are all lower than 3 and the bias is larger
for the random simulations in the volume of Data Set 2.
This is entirely due to the fact, that this volume is at most
85% of the volume for Data Set 1; i.e., the effect of
changing size of effective volume (and not number of
simulated events) is demonstrated here very well. Second,
Fig.5a shows that there is a significant difference between
the spectra for the two real data sets. Since it is not due
to differences in the number of events used, it can be only
attributed to two other factors: differences in the volumes
occupied by the two data sets and/or real differences
between larger (Data Set 2) and smaller (Data Set 1)
microearthquakes. The first of this factors is apparently
responsible for most, if not all, of the discrepancy, as the
offset between the random spectra (due only to difference
in volume sizes) is approximately the same as the offset
between the spectra for the real data sets. Thus, a
significant difference between smaller and larger
microearthquakes is unlikely to exist in this respect,
despite the appearance of the D@-spectra. All this shows
that unless comparisons with simulated data are
performed, one cannot reliably distinguish between the
scaling properties of data sets filling in volumes of
different size and geometry.

Figure 5b suggests that although different from uniform
random distribution (Fig.5a), the spatial distribution of the
microearthquakes in Data Set 2 apparently cannot be
shown to be genuinely multifractal. No significant
difference can be demonstrated between the real spectrum
for this data set and the simulated spectra. The spectra
from the monofractal distributions almost overlap, leaving
the real D¥-spectrum for Data Set 1 high up. However,
higher values for the fractal dimension in the random
generations are expected to raise the simulated spectra
further up, enough to substantially include larger portions
of the spectra for the real data. Thus, at most, only weak
multifractality can be assumed for Data Set 1 (for q<35).
Note that the scatter of the D¥-spectra is about 3 times
larger for the monofractal simulations than for the
uniform ones (compare the bands outlined by 2 standard
deviations in Figs.5a and Sb).

The value 2.35 for the fractal dimension of the
simulated monofractal distribution in the volume of Data
Set 2 above was chosen for the following reasons.

Various tests with the algorithm generating monofractals
with a prescribed fractal dimension indicated that a very
good estimate of this dimension is provided by the
correlation dimension D® (given that a proper scaling
region is used). On the other hand, the estimate of D?
over distances 30-120 m is 1.68 for Data Set 2. The
values of D® estimated over the satne range for 50 sets of
1654 points each, randomly generated within the irregular
volume, using uniform distribution, vary between 2.31
and 2.38. These latter values, compared with the proper
value of 3, indicate that the correlation dimensions for the
uniform random points are by 0.62 to 0.69 lower for the
specific limited data set used here. If an error of the same
order is committed when the correlation dimension is
evaluated for the real data set, and if it were a
monofractal, one can assume that its "true” dimension is
somewhere between 1.684+0.62=2.30 and
1.684+0.69=2.37. Thus, a value of 2.35 seemed to be a
reasonable first choice for the prescribed fractal
dimension in generating the random monofractal. Upon
further consideration, however, the choice of the fractal
dimension for the monofractal simulation may not be that
simple, as the error committed with the uniform random
distributions is probably only a lower bound of the bias
for other distributions. For example, D@=1.4940.40 for
the monofractal simulations in Fig.5b, which indicates a
bias of 2.35-(1.49+0.40)=0.86+0.40. Thus, one might
have to extensively experiment with various monofractals
of fractal dimensions > 2.35, which is not done in this
work. In view of the wide spread of the simulated spectra
here, it is expected that reasonably higher values of the
fractal dimension in the simulations would still not result
in demonstrating genuine multifractality for the real Data
Set 2.

Following the same reasoning as for Data Set 2, the
fractal dimension used for the simulations in the volume
of Data Set 1 was chosen as 2.40=2.11+0.29. This latter
value was estimated taking into account the value of the
average correlation dimension, D®=2.11 (from 100
randomly chosen samples), and the range obtained for
randomly and uniformly generated points, 2.68 to 2.72,
suggesting a bias of 0.28-0.32. This bias is naturally
smaller than the bias for the random points in the volume
of Data Set 2 (0.62-0.69), as the effective volumes
covered by the two data sets are of different size.
Obviously, the difference between the simulated spectra
obtained using fractal dimensions 2.35 (for Data Set 2)
and 2.40 (for Data Set 1) is negligible, despite the
difference in the effective volumes.

Finally, Fig.5c demonstrates that using almost an order
of more events (14,338) still results in a spectrum that is
very similar to the sample spectra (for 1654 events each),
only slightly above the average spectrum. This is not
surprising in view of the fact that increasing number of
events only extends the scaling range at the lower end (for
small distances) of the correlation integrals. One cannot



really take advantage of such an improvement in the case
studied here, as the location error (of the order of 15 m)
puts the lower bound at much higher distances.

5 Conclusions

The strong appearance of multifractal features in the
global scaling properties of the spatial distribution of
mining induced seismic activity in Creighton Mine
(northern Ontario) is largely spurious in character.
Analysis of the limitations associated with the data sets
studied shows that this distribution can be either described
by only a weak multifractal (particularly for the smaller
events) or a monofractal with a dimension probably not
lower than 2.35. Similarly, multifractals used in the
literature, might have been inappropriate in some cases if
the effect of finite data sets is not evaluated.

In both the monofractal and the multifractal cases,
comparisons of values of fractal dimensions estimated
from data sets featuring different numbers of events,
different measurement errors, different geometries of the
embedding space, and different scaling ranges, seem to be
particularly wrong. The spurious features may be
predominant in such comparisons and differences likely to
reflect real physical processes cannot be established
without additional considerations,

In this connection, a very popular, but questionable,
approach is to give a particular meaning of the estimated
fractal dimensions between 1 and 2 or 2 and 3 as
indicating different degrees of space or volume filling
properties. A data set with volume filling properties,
however, can easily be misrepresented as space filling.
For example, the estimated value for D@ is below 2 for
Data Set 2 in this study, while D® >2 for Data Set 1. If
the artifacts of working with data sets that are subject to
different limitations are not taken into account, one can
reach wrong conclusions about fundamental differences
between smaller and larger events. Indeed, it was shown
in the present work, that this difference is mainly due to
the difference in the sizes and/or geometries of the
effective volumes covered by the two data sets,

Comparison with results from randomly generated point
sets using known distributions (such as uniform and
monofractal), appear to be an effective way to estimate
the bias introduced by the limitations of the real data. In
addition, the effect of limited number of events in
particular, can be evaluated by re-sampling the real data,
extracting at random samples of the desired number of
events. When compared with the dimensions evaluated
from the whole data set, these show that improvement in
estimates is very slow with increasing numbers of events,
Increasing number of events improves only the lower end
of the scaling range, i.e., for small distances. If thisis in
conflict with the measurement error (location error here),
i.e., the radius of influence of the error is larger than the
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proper distance of depopulation, increasing the number of
events remains without any effect. This indicates that
instead of attempting to work with ever increasing
numbers of data, a better approach may be to find ways
to evaluate the bias introduced by the particular limitations
of the data sets studied. In fact, in many fields, collecting
a large nmumber of observations would pose an
unsurmountable problem, let alone the amount of
computer time needed.

The above possibility to effectively work with small
data sets allows us to split the real data into overlapping
groups of events and evaluate the temporal changes of the
scaling properties, if any. Decreasing correlation
dimensions, indicative for increasing spatial clustering,
might be of particular interest, as Hirata (1989), Coughlin
and Kranz (1991), and Eneva and Young (1993) among
others, have reported such trends before larger
earthquakes and larger events in mines. More generally,
decreasing fractal dimensions appear to precede various
phenomena that can be described as "catastrophes”, such
as tropical cyclones (Moiseev, private communication).
Isolated observations, however, are not sufficient and
further studies along this line are called for.

The present work concentrated only on the slope
method of estimating the generalized correlation
dimensions, as this method is very widely, and
sometimes, indiscriminately, used. The slope method has
been criticised by Wells et al.(1994) (see numerous
references therein) who devise an integral method to avoid
the assumption that the correlation integral (for g=2) is
always differentiable. It appears that their method can be
easily extended to the remaining generalized dimensions
(q7=2). The estimates made using methods different from
the slope method (e.g., Tessier et al., 1993) may be
conceptually less prone to large biases. It appears,
however, that comparison with randomly generated point
sets mimicking the limitations of the real data would be
always informative and illuminating,
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